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Abstract

Forward osmosis (FO) is a technical term describing the natural phenomenon of osmosis: 
the transport of water molecules across a semipermeable membrane by osmotic pressure 
from a feed solution (FS) to a draw solution (DS). The diluted DS is then reconcentrated 
to recycle the draw solutes as well as to produce purified water. As the driving force is 
only the osmotic pressure difference between two solutions, meaning that there is no 
need to apply an external energy, this results in low fouling propensity of membrane and 
minimization of irreversible cake forming, which are the main problems controverted by 
membrane applications, especially in biological treatment systems (e.g., FO membrane 
bioreactor (FO-MBR)). The purpose of the book chapter is to bring an overview on the 
FO membrane manufacturing, characterizing and application area at laboratory or full 
scales. This book chapter is published in two parts. In the second part, which appears 
here, characterization of mass transport in FO membranes, fouling mechanisms and fou-
lants on FO membranes in naturally asymmetric structure and application areas of FO 
membranes in the literature are mentioned. Cutting-edge technologies on FO studies are 
comprehensively reviewed and following major and minor titles are stated truly on the 
new technologies.

Keywords: forward osmosis, characterization, structural parameter, membrane fouling, 
concentration polarization, water/wastewater treatment, desalination, hybrid processes, 
membrane bioreactor

1. Introduction

FO membranes are preferred over the last few years due to the high rejection of a wide range 
of contaminants and the lack of hydraulic pressure, resulting in less irreversible fouling on 
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the membrane surface compared to pressure-driven membranes. However, due to the asym-

metric structure of the FO membrane, concentration polarization (CP) becomes more impor-

tant, which motivates many researchers to focus on the selection and/or development of new 
membrane materials for both active and support layers to decrease CP.

In this second part of the chapter, characterization of FO membranes, such as determining rejec-

tion capabilities of membrane layers by analytical approaches and experimental procedures, is 
thoroughly stated by considering both review and research articles in the available literature. 
In the following section, fouling phenomena in FO membranes are referred by considering 
membrane orientation, and before Conclusion, application areas of FO process are presented. 
Since the permeate (diluting DS) of the FO membrane is not actually a product water, this 
filtrate (diluted DS) needs to be treated again. For this reason, the FO process needs an addi-
tional process to recover the water from the diluted draw solution. In this context, hybrid FO 
processes are also included in this section. Finally, the general summary of the research is 
evaluated and the future prospects for FO membranes and applications are introduced.

2. Characterization of FO membranes

Although the model development on characterization for FO membranes is described in 
some literature [1], more general information from some is given here. The membrane in 
separation process using osmotic pressure as driving force must be capable of rejecting both 
the FS and the DS. When there is no solute retention in membrane, the FS and DS are easily 
diffused from the membrane, and osmosis does not occur. All existing membranes that can 
be used for this purpose are asymmetric. Many of the problems in the FO process resulted 

from this asymmetric structure. As with all membrane processes, mass transfer boundary lay-

ers form near the selective interface. On the FO membrane, these boundary layers occur on 
both sides of the selective layer interface. However, in an asymmetric membrane, one of these 
interfaces is embedded in the support layer. Therefore, the support layer significantly reduces 
the mixing and prevents the mass transfer [2]. The support layers in the TFC RO membranes 

are relatively thick on the FO membranes and have 25–45% porosity [3]. Solutes must be 

transported by support layer to reach to the selective layer on which diffusion or rejection is 
performed. If the mass transfer in these layers is weak, the situation called ICP occurs. Similar 
to conventional CP, ICP reduces the osmotic driving force. In an FO membrane where there 
is an asymmetric support layer in which no mixing occurs, the osmotic driving forces can be 
severely reduced, resulting in no water flux from the membrane [4]. The severity of ICP is 
greatly influenced by the support layer. This structure is often referred to a metric known as 
the structural parameter, S

  S =   t𝜏 __ ε    (1)

where t is the thickness, τ is the tortuosity, and ε is the porosity of the support layer. In the FO 
process, membranes with lower S values are preferred to reduce ICP severity. To this end, a 
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number of studies have been conducted on the production and modification of new FO mem-

branes with low S values since 1990. Tiraferri et al. [5] conducted studies on the effects of sol-
vent quality, dope polymer concentration, backing layer wetting, and casting blade gate on 
support layer production on one of the first TFC membranes designed for the FO membrane. 
The pore morphology of the support layer was characterized with the aid of cross-sectional 

SEM images and reported that the optimum FO membrane must be formed from a mixed 

structured backing layer and that the upper part of the thin sponge-like layer should be 
placed on high porosity macrovoids. Shi [6] investigated UF-type phase inversion cast sup-

ports for hollow fiber FO membranes and reported that substrates with 300 kDa (molecular 
weight cut-off (MWCO)) should be preferred to obtain a “good” semipermeable skin.

It has also been claimed that, considering the suitability of the substrate for IP, taking into 
account the MWCO parameter is more appropriate than the mean pore size. It is estimated 
that membrane thickness is more important than porosity and tortuosity in recent stud-

ies with nanofiber membranes [7]. Moreover, the support layer pore diameter, which is 
thought to be very effective only in the formation of the selective layer, has also been shown 
to influence ICP [8]. The influence of the support layer structure on transport is typically 
expressed using the structural parameter concept. To calculate S, the membrane thickness 
(can be measured by SEM and relatively easily), porosity, and tortuosity should be mea-

sured independently. However, it is quite difficult to measure these last two, especially tor-

tuosity, accurately and reliably. The reason for this is that the characterization of the pore 
structure of soft materials is an area where work is still developing and there is no stan-

dardization for the comprehensive and accurate characterization of 3D structures. Hence, 
researchers on FO use and develop numerical models more commonly than calculating S 
parameters with Eq. (1).

Experimental measurements are used when the S parameter is calculated, and therefore, the 
experimental conditions as a factor are emerging from the structural properties of the mem-

brane. This means that changes in experimental conditions will directly affect the estimated S 
value. Therefore, no significant comparison can be made between these support layers unless 
the same experimental conditions are used to test different membranes. In a study by Cath 
et al., this limitation of the semiempirical method is clearly emphasized [9]. In this study, 
researchers from 7 different laboratory groups tested 2 different membranes from the same 
production line under the same experimental conditions but on different systems. One was an 
HTI-CTA membrane commercially available from HTI, and the other was a TFC membrane 
from Oasys Water. Significant deviations could be observed between the effective S values 
obtained by different groups as shown in Figure 1. Therefore, researchers report that the 
experimental conditions are the main factors in the calculation of the effective S parameter in 
semiempirical calculation method [1].

More recently, a simple characterization method based on a combination of a single FO test 
and a statistical approach has been developed to avoid pressure RO testing, which can damage 
the FO membrane or misread membrane properties in the characterization of FO membranes 

[10]. In this single test, the membrane is operated in AL-FS mode to measure water and reverse 
salt flux using deionized water (DI) as feed and NaCl as the DS. The statistical approach uses 
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both ICP and external concentration polarization (ECP) models to predict Jw and Js on the 
tested membrane and finds the most appropriate water and salt permeability (A and B) and 
salt diffusion resistance in the support layer. Verifications using various experimental results 
in this study and other literature have shown that this new FO membrane characterization 
method sets parameters (A, B, and KICP) more reliably than the conventional characterization 
method based on the pressure-RO experiment to estimate the experimental Jw and Js. The 
consideration of ECP helps to determine more accurate FO membrane parameters (especially 
KICP), but it is difficult to accurately model the ECP for the FO membrane channel tested.

The evaluation of porosity and tortuosity has been carried out with traditional characteriza-

tion techniques such as SEM and porosimetry as well as newer tools such as x-ray computed 
tomography (XCT). While none of these techniques comply with all of the difficulties listed 
above, some are more suitable than others according to the type of the membrane material 
being tested. Imaging approaches provide good visuals for evaluating the qualities of porous 
membranes. However, expensive and time-consuming techniques are required to obtain this 
information from images. It also requires usage expertise. But all of these, as well as reso-

lution and field-of-view (FOV) limitations, are disadvantages that reduce the quantitative 
value of these images.

Membrane pore structure analysis can also be done without relying on the images. There 

are a number of analytical techniques that can examine the pore structure by means of prob-

ing. While these approaches do not reintroduce visual presentation of membranes, they can 
provide critical characterization information about FO membrane, including porosity and 
tortuosity, by using basic models.

Compared with imaging techniques, analytical techniques allow for greater comparisons between 
different FO membrane structures by easily analyzing a larger sample volume. However, the 

Figure 1. Structural parameters of TFC and asymmetric FO membranes [9].
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assumptions used to derive the models calculating the porosity and tortuosity must be carefully 
considered before adapting to the sample being analyzed. Similarly, when analyzing data from 
them, the biases of different analytical techniques should be considered [1]. Direct measurement 

techniques of intrinsic structural parameters are presented together in Figure 2.

Designers of membranes for osmotic processes need to be able to better calculate the mass 
transfer resistance of the membrane to overcome the difficulties in nature of osmotic systems. 
Unless major structural parameters such as porosity and tortuosity are known, wrong areas 
of designs may be focused on. In order to overcome these difficulties, the above-mentioned 
methods for membrane characterization need to be further developed [1].

3. Fouling in FO membranes

Today, the greatest challenges of FO technology can be summarized into three main classes: 
the difficulty of developing a correct and an effective FO membrane, the lack of recyclable 
and economical DS, and the limited availability of information on membrane fouling [11]. 

Although fouling of FO membranes is more reversible than RO membranes, removal of con-

taminants may become more difficult when the feed stream in the FO membrane contacts the 
support layer [12, 13].

Figure 2. Direct measurement techniques of intrinsic structural parameters (adapted from [1]).
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She et al. [14] investigated the membrane fouling in osmotically driven membrane processes 
and concluded that fouling in pressure-driven membranes can occur at different locations 
of the membrane [15, 16]. As shown in Figure 3(a), the foulants in the FS are transported 
to the active layer surface of the membrane in the AL-FS mode, resulting in a cake layer 
similar to fouling of the RO membranes. This type of pollution is called external pollution. 

Fouling occurring in the FO membrane in AL-DS mode is more complicated. Figure 3(b) 

shows possible fouling scenarios in AL-DS orientation. If the contaminant has a relatively 
small size and is able to enter the porous support layer by convection of the FS, it will either 
be adsorbed through the walls of the pores of the support layer or eventually be retained by 
the active layer and accumulate on the back surface of the active layer. Subsequently, the fou-

lants entering the porous support layer will adhere to the contaminants that are adsorbed on 

the walls of the support layer pores or to the accumulated contaminants on the back surface 
of the active layer, thus leading to “pore clogging.” This form of pollution is called internal 
fouling (scenario (1) in Figure 3(b)). In severe fouling conditions, contaminants will continue 
to accumulate on the outer surface of the porous support layer, as well as internal pore clog-

ging. This type of membrane fouling is referred to as combined internal and external fouling 

(scheme (2) in Figure 3(b)). If the foulants have relatively large sizes and cannot enter the 
porous support layer, they may only accumulate on the outer surface of the porous support 
layer. In this case, only external fouling occurs (scenario (3) in Figure 3(b)). If contaminants 
are present in the feedwater in different sizes, both external fouling and internal fouling may 
occur (scenarios (4) and (5) in Figure 3(b)).

According to She et al. [15], compared to internal fouling, it is easier to remove the external 
fouling from the membrane surface by optimizing the hydrodynamic conditions of the feed 

stream (such as by increasing the cross-flow rate, applying pulsed flow [17] and employing 

air scouring [18]). For this reason, most researchers suggest AL-FS orientation in the FO pro-

cess to prevent undesired internal fouling, even though the ICP in AL-FS is more severe than 
in AL-DS mode [13, 19]. However, external fouling is more reversible in FO membranes, as 
there is no such matter as compaction of pollution due to hydraulic pressure in the RO mem-

brane [20]. On the other hand, the internal fouling within the porous support layer functions 
as an unmixed layer. Internal pollution is less reversible than external pollution, as it is more 
difficult to control the optimization of hydrodynamic conditions [21]. Internal fouling usually 
occurs in PRO membranes operating in AL-DS mode [22]. Although the osmotic backwash 
method has been developed to clean contaminants in the support layer [21], the development 

Figure 3. Fouling types in FO membranes (a) FO mode, (b) PRO mode (adapted from [14]).
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of more effective strategies for internal pollution control will still be an important research 
topic in the future.

Classification and interaction of foulants in osmotic pressure-driven membrane processes 
[22] can be grouped into four main classes: (i) colloidal fouling by accumulation of col-

loidal particles on the membrane, (ii) organic fouling by deposition and adsorption of the 
macromolecular organic compounds on the membrane surface, (iii) inorganic scaling by 
precipitation or crystallization of inorganic compounds that are poorly soluble on the mem-

brane surface, and (iv) biofouling by adhesion and accumulation of the microorganisms to 
the membrane surface and eventually biofilm development. The specific pollutants in the 
different groups are closely related to the characteristics of the feedwater. Contaminants 
specifically present in raw and treated wastewaters are particles, colloids, and organic mac-

romolecules such as polysaccharides, humic substances, and proteins [23]. In addition, 
these substances are also commonly found in natural waters such as rivers, seawater, and 
ground waters [13]. Zhou et al. [23] used gas chromatography-mass spectrometry (GC–MS) 
to identify soluble microbial products (SMPs) containing a large portion of polysaccharides, 
proteins and humic substances in raw and wastewater. Recently, organic carbon detection-
organic nitrogen detection (LC-OCD-OND) has become increasingly popular for the iden-

tification of these pollutants [24]. Organic contaminants deposited on the membrane can be 

identified by Fourier transform infrared (FTIR) spectroscopy, solid-state 13C-nuclear mag-

netic resonance (NMR) spectroscopy, and high performance size exclusion chromatogra-

phy (HP-SEC) [25]. Total organic carbon (TOC) measurement and UV analysis were also 
performed to determine the density of organic foulant deposition on the membrane [26]. 

Transparent exopolymer particles (TEPs) are another important organic pollutant typically 
found in natural waters. TEP in the feedwater is determined by two methods: microscopic 
counting and colorimetric detection [27].

Silica is a major inorganic foulant and is usually present in dissolved form or as colloidal par-

ticles in sea water, brackish water, and wastewater [24]. In addition, other inorganic contami-
nants are dissolved salts such as calcium carbonate, calcium sulfate, and calcium phosphate 
[28]. These inorganic contaminants deposited on the membrane surface can be extensively 
characterized by scanning electron microscopy-energy dispersive X-ray diffraction (SEM-
EDX) [28] and X-ray diffraction (XRD) [29]. Microorganisms are mainly found in activated 
sludge in membrane bioreactors (MBR) as biofoulants [28]. These microorganisms can also be 

found in natural waters and cause biofouling in seawater and brackish water desalination [24]. 

Microbial populations within the biofilm can be characterized by analysis of DNA extracted 
from living cells using microbiological methods such as polymerase chain reaction denaturing 
gradient gel electrophoresis (PCR-DGGE) and fluorescent in situ hybridization (FISH) [23].

She et al. [15] indicated that membranes in osmotic pressure-driven membrane processes 
are contaminated by natural or industrial waters and wastewaters, and membrane fouling 
involves the combination of the four fouling categories above [24]. The understanding of 

mixed pollution mechanisms is difficult because of the various and numerous pollutants. 
Many studies to understand these fouling mechanisms are generally based on the consider-

ation of a single foulant and the use of a synthetic FS [13, 19]. Meanwhile, the number of stud-

ies on fouling of FO membranes is also increasing. In particular, osmotic MBR studies have the 
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potential to conduct research with more complex wastewaters [28, 30]. Working with a single 
model of foulant is more advantageous in terms of easier control of the selected foulant and 
understanding of the foulant-foulant or foulant-membrane interactions. The physicochemical 

properties are also important factors affecting the stability of contaminants in the FS, as well 
as information on the tendency to contaminate the membrane [31]. With the understanding of 

the fouling mechanisms in a single foulant system, future studies may focus on the study of 
the fouling mechanisms for mixed foulant systems, which may lead to a better understanding 
of the membrane fouling mechanisms.

Colloidal and organic fouling with highly complex mechanisms in FO membranes is affected 
by a number of physical and chemical factors, and in general, these factors can be divided into 
five groups: (i) operating conditions such as initial water flow, cross-flow rate, spacer features, 
ventilation, and temperature; (ii) feedwater characteristics such as foulant type, concentra-

tion, pH, temperature, ionic strength, and ionic composition; (iii) DS properties such as solute 
type and concentration; (iv) Membrane properties such as structural and surface characteris-

tics; (iv) membrane orientation as AL-FS and AL-DS [31].

The composition of the FS is one of the most important factors affecting membrane fouling. 
The effect of the feedwater composition on FO membrane fouling is similar to that of pressure-
based membrane processes, and recently some investigations have been conducted on this 
topic [13, 32]. Generally, the degree and rate of fouling are strongly dependent on the proper-

ties and concentration of pollutants in the feedwater. In addition, since the FS chemistry sig-

nificantly affects the physico-chemical properties of the contaminant [22, 33], it will also play 
a role in foulant-foulant and foulant-membrane interactions and determine the membrane’s 

fouling behavior.

The composition and concentration of the DS, the main source of osmotic pressure in the FO 
process, not only affects water and salt flux but also plays a role on the membrane fouling. 
In general, as the DS concentration increases, the initial water flux increases and exacerbates 
membrane fouling. Studies in the literature have reported membrane fouling increases with 
increasing DS concentration [13, 19, 34]. The high hydraulic drag force caused by the high 

flux also leads to the accumulation of foulant on the surface of the membrane. In this context, 
the change in DS concentration leads mainly to changes in hydrodynamic conditions. For this 

reason, pollution behavior due to DS concentration can be well explained by the flux-depen-

dent fouling mechanism in which hydrodynamic conditions play a dominant role.

Membrane material and properties may also affect membrane fouling behavior. Membranes 
used in osmotic processes are generally originated from a nonporous active layer formed on 
a porous support layer [35–37]. The intrinsic separation properties of the active layer and the 
structural properties of the support layer govern the transport of water and solutes, which 
may affect membrane fouling behavior. Membranes with superior separation properties and 
structural properties (i.e., more water permeability, high selectivity, and membranes with 
smaller structural parameters) can provide higher water flux. However, the increased hydro-

dynamic drag force due to increased water flow will also increase the membrane fouling 
potential. On the other hand, membranes with low separation and selectivity properties may 
increase the risk of membrane fouling as there may be more solute transfer between DS and 
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FS. When designing or selecting membranes for FO applications in the future, the separation 
and structural properties of the membranes should be considered not only in terms of water 

flow performance but also in terms of the fouling behavior [15].

Membrane fouling and CP behave differently in different orientations of membrane (AL-FS 
or AL-DS) in osmotic pressure-driven membranes (Figure 4). Therefore, fouling and CP are 
defined as cake-enhanced external concentration polarization (CE-ECP) in the AL-FS mode 
[38], while in the AL-DS mode, it is defined as pore clogging-enhanced internal concentration 
polarization (PCE-ICP) [19]. It is reported that the main factor that dominates water flux in 
osmotic pressure-driven membranes is ICP and PCE-ICP presumably plays a leading role in the 
flux declining. Furthermore, while CE-ECP is very effective in AL-FS mode membrane fouling, 
a strong ICP effect can moderate flux decline rate. On the other hand, PCE-ICP can cause much 
more severe flux declines. However, systematic studies are still needed to explore the effects of 
CE-ECP and PCE-ICP on membrane clogging in osmotic pressure-driven membranes.

As shown in Figure 5, membrane fouling, CP (both ICP and ECP), and RSD are closely 
interrelated and can be modeled using the osmotic-resistance filtration model. Factors and 
mechanisms affecting FO membrane fouling such as hydrodynamic conditions, feedwater com-

position, membrane properties, and cake-enhanced concentration polarization (CE-CP) are also 
applicable for NF/RO processes. Osmotic pressure is the indispensable parameter for osmoti-
cally driven membrane processes. The composition and concentration of this solution may also 
affect other factors by means of membrane fouling. This is the point where osmotically driven  

Figure 4. Schematic illustration of concentration profile across the membrane due to fouling-enhanced concentration 
polarization (a) fouling-enhanced ECP in AL-FS orientation. (b) Fouling-enhanced ICP in AL-DS orientation (adapted 
from [14]).
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membranes are separated mainly from hydraulic pressure-driven membranes in terms of the 
fouling mechanism. Membrane orientation (AL-FS/AL-DS or FO/PRO) is another factor affect-
ing membrane fouling, and FO mode is more preferred as it is less prone to fouling and pro-

vides a more stable water flux. However, PRO mode can also be preferred for strong membrane 
stability under high pressure and fewer ICPs. However, this mode has a tendency for internal 
fouling, which is less reversible. Both the size exclusion mechanism and CE-CP can affect mem-

brane fouling, which can increase or decrease the rejection of contaminants. Modification of the 
membrane may be a strategy to reduce the fouling of the membrane and to increase reversibility 
of membrane fouling, which facilitates membrane cleaning [14].

4. Application areas of forward osmosis membranes

FO can be applied for the treatment of various kind of wastewaters including strong indus-

trial effluents, i.e., from textile processes, oil and gas well fracturing waste streams, landfill 
leachates, nutrient-rich liquids, activated sludge, municipal wastewater, and even nuclear-
origin wastewaters have been mentioned [39]. The applications of FO process can be classi-

fied as in Figure 6. The FO membrane rejects particles, pathogens, and emerging substances 
with an average porosity of 0.25–0.37 nm [40]. FO is also able to reject high levels of salt 
that cannot be achieved by normal treatment systems, and the total dissolved solids (TDS) 
from complex water can effectively be removed [41]. FO is no required for pretreatment 
of feedwaters (wastewaters) with complex contents. Conversely, RO and NF processes are 
more susceptible to fouling. Pretreatment is required to increase membrane lifetime and 
reduce costs [42]. FO can also be used for dewatering applications [43], useful for an effi-

cient anaerobic digestion of wastewater, and is simpler and more environmentally friendly 
than classical dewatering processes [11]. High saline currents can be processed by the FO, 
not by the RO [44].

Figure 5. The intrinsic interrelationship among membrane fouling: CP (concentration polarization) and RSD (reverse salt 
diffusion) (adapted from [14]).
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4.1. Water/wastewater treatment

According to FO literature in the last 10 years, about 7% of the studies have used complex 
water. However, the number of studies on wastewater is also increasing. The advantages 
of FO observed in these studies encourage they prefer FO instead of current technologies in 
future studies [45].

In municipal wastewater treatment processes, integrated FO-membrane distillation (MD) 
system is applied for sewer mining. In a continuous operating period, a stable water flux 
has been achieved at a recovery rate of up to 80% [46]. FO rejects most organic pollutants 
at a moderate level, whereas MD rejects almost the entire residue. Recovery of clean water 
from secondary wastewater was performed by FO electro dialysis (FOeED)-integrated sys-

tem powered by photovoltaic energy source. This process removed total organic carbon from 
wastewater and produced fresh water [47]. Utilizing natural energies (osmotic pressure and 
solar energy), this hybrid system is a convenient process for potable water supply in isolated 
areas, remote areas, and islands.

MBR, which contains both activated sludge process and membrane filtration, has become 
one of the most widely applied technologies in wastewater treatment. The integration of 

the biological system with the FO membrane (FO-MBR or OMBR) can reduce energy con-

sumption in conventional MBR. In recent years, studies on FO-MBR have been increasing 
[48–50]. This process not only reduces the cost of MBRs used by UF or MF but also pro-

vides fouling control through air cleaning in conventional MBR; at the same time, a more 
stable flux is obtained. Thus, with the help of the FO membrane in the MBR, more efficient 
removal efficiency is obtained with less fouling tendency without the need for hydraulic 
pressure [45].

FO was tested for dewatering of the nutrient-rich anaerobic digester concentration [51] in 

which organic compounds are rejected by FO membrane, and an RO membrane can be used 
to recover fresh water from a clean and diluted DS. The FO membrane was also used for acti-
vated sludge dewatering [52]. The EDTA sodium salt has been tested as DS for dewatering 
of activated sludge with high nutrient content. The nutrients in the sludge were successfully 
removed by means of FO membrane. The macromolecular DS can be posttreated with an NF 
process for the recovery of freshwater. Alternatively, the concentration of the RO membrane 

Figure 6. Forward osmosis applications (adapted from [45]).
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was used as DS in Zhu’s investigation and an effective sludge thickening was obtained. Thus, 
RO concentration is also osmotically diluted and safe disposal is possible while the volume of 
sludge is reduced by that study.

Another important source of pollution for wastewater treatment plants is industrial waste-

water. In the US, a company has installed a pilot FO plant for the recycling of dye containing 
wastewater from textile and carpet mill processes [53]. In another study, the FO process was 
used to recover heavy metals from industrial wastewaters [54]. The effects of hydrodynamic 
conditions, organic pollution, temperature, and FS and DS properties on the separation effi-

ciency were investigated. It has been reported that almost all metals such as Pb, Zn, Cu, and 
Cd have been removed in the study and that the FO process has the potential to be an effective 
and economical process for the treatment of industrial wastewater.

Linares et al. [45] expressed that, today, most FO applications for industrial wastewater treatment 
are devoted to the treatment and recovery of wastewater from the oil and gas (O&G) industry. 
In these applications, capacity for the treatment of emulsifier oil waters with FO has been stated 
[55]. Fresh water was recovered from wastewater by FO membrane containing up to 200,000 ppm 
of oil and a reasonable water flux value about 12 LMH was obtained. Many studies at the labora-

tory or commercial scale have been directly applied to the real wastewater of the O&G industry. 
Combined with RO in a closed loop, FO was used for drilling wastewater treatment from the 
gas exploration process [56]. The wastewater recovery capacity of the plant is 242,000 gallons 
of water per day, reducing the need for additional fresh water. Similar studies and applications 
have been performed by different companies and research groups using different membrane 
materials, modules, DS, and process configurations [57–59]. In these studies, it was reported that 
the volume of wastewater was greatly reduced, the need for fresh water was reduced, and a well-
designed FO process could be a much more advantageous option than RO [60].

4.2. Desalination

Conventional desalination technologies include membrane-based separation processes such as 
RO, NF, and electrodialysis and thermal desalination technologies such as multieffect distilla-

tion (MED), multistage flash (MSF), and mechanical vapor compression (MVC). Pretreatment 
of feedwater has critical precaution to prevent the physical equipment of conventional pro-

cesses from being damaged by wastewater components and to facilitate their performance by 

maintaining the consistent quality of the pretreated feedwater. Today, pretreatment technolo-

gies for desalination are designed to reduce the potential for contamination of feedwater by 

removing natural organic matter and suspended solids. However, pretreatment technologies 
are typically not designed to remove dissolved solids [61]. Inorganic scaling in membrane and 
thermal desalination processes caused by low solubility dissolved salts in food water limits 
operating conditions and system performance. In MED and MSF, scaling reduces heat trans-

fer efficiency and system recovery rates and limits operating temperatures [62–65].

Shaffer et al. [65] notified that to prevent the harmful effects of the scaling, the FO pretreat-
ment can act to remove dissolved organic material and dissolved inorganic scalants in addi-
tion to suspended solids from the FS. When the FO process is used for pretreatment, the 
traditional desalination process used for recovery of the DS is only affected by NaCl solution 
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or an ammonia-carbon dioxide solution with negligible fouling and scaling potential of these 

engineered DS. The reversibility of the FO fouling shows that it can maintain the flow and 
performance of the FO membranes when they come in contact with raw feedwater with high 

fouling potential, under proper hydrodynamic conditions. A schematic view of the FO pro-

cess applied for pretreatment prior to a classical membrane or thermal desalination process 

is presented in Figure 7.

The use of the FO process as pretreatment can improve the performance of conventional 
desalination processes by removing the small amounts of scalants present in the feedwater. 
The combined desalination processes can be operated at higher pressures or temperatures 

without the risk of scaling, resulting in higher system recovery. Testing the process model-
ing of an FO-RO system [66] and testing both bench-scale FO-RO [67] and FO-NF [68] sys-

tems proved the feasibility of pretreatment of the FO process. Furthermore, when FO is used 
instead of processes such as ion exchange and NF in the pretreatment, there is also the advan-

tage that not only specific cations or anions but also all ions in the feedwater can be removed, 
in addition to the low membrane fouling tendency [45].

Linares et al. [45] notified that the direct use of FO for desalination is similar to the use of RO 
and NF processes conventionally used to obtain fresh water from sea water directly. This pro-

cess uses seawater as FS, while nonvolatile NaCl or volatile ammonia-carbon dioxide is used 
as the DS [69]. However, in this process, an additional operation is required to recover the DS 

Figure 7. Schematic of FO pretreatment for a conventional membrane desalination process [65].
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from the diluted DS solution to obtain fresh water [70]. One of the most common desalination 

studies is the use of ammonia-carbon dioxide solution as a DS and recovering fresh water 
with a thermal process and regenerating the osmotic agent [2, 71]. In another study, it was 
reported that the total equivalent work requirement of this process was less than the con-

ventional desalination process, such as RO, and achieved energy savings of up to 85% when 
expressed in terms of energy [72]. Researchers have investigated the CP in the direct desalina-

tion FO process in which ammonium bicarbonate is used as a DS and have concluded that 
recovery of fresh water from saline water by FO is a fairly feasible method [73]. There are also 

different and new DS solution searches to perform an easier and more sustainable DS regen-

eration in direct FO desalination studies. Generally, an ideal DS should be easy to recover and 
reusable with high osmotic pressure and high resolution, not toxic, easily available, and inex-

pensive [70]. In a study where hydrophilic nanoparticles were used as FS for DS and synthetic 
seawater, about 93% of salt recovery was obtained with flux and UF at around 6 LMH [74]. In 
a study where divalent salts such as Na

2
S04 were used as DS and brackish water as FS, 98% 

of the DS was rejected using NF, while 8–10 LMH flux was obtained [68]. Most DSs investi-
gated for direct FO desalination were not commercially viable due to their high cost, limited 
maximum water flux they could produce, or low recovery of DS efficiencies. The world’s only 
commercial FO facility for direct sea water treatment, was established in Al Najdah, Oman. 
This plant is still in operation and has reduced chemical consumption and provides longer 
membrane life and lower carbon footprint [75] compared to competing technologies such as 

traditional high-pressure RO membrane systems, saving significant operational and capital 
costs. These advantages have been associated with the reduction of RO membrane fouling 
due to the use of FO as a pretreatment step. In the direct FO desalination, similar to the RO 
desalination, a pretreatment process may be required. Currently, there are very few studies 
using natural seawater in direct FO desalination. For this reason, the fouling tendency of the 
FO membrane in these conditions has not been adequately investigated. However, Li et al. 
[24] reported that a foulant matrix containing natural organic matter and polymerized silica 
was formed on the membrane when natural seawater was used as feedwater.

In the indirect FO desalination, there is a degraded matrix, such as wastewater or urban storm-

water runoff, on the FS side, while DS is using high salinity solution [54, 76]. Potential DS in 
indirect FO desalination is seawater and brackish water. In addition to being free of charge 
DS, the main attraction is fresh water recovery through free osmotic energy from the FS, and 
then a partial dewatered water (diluted DS) that can be desalinated by a low-pressure RO 

[77]. Thus, the cost of the entire desalination process is also reduced. These studies show that 
FO desalination integrates fresh water treatment operations from wastewater treatment and 

seawater, providing a water-energy nexus for coastal cities and a promising process [54, 76].

These studies, in particular the use of primary wastewater as FS for FO, have introduced a 
concept of the feasibility of FO membrane, which can avoid high-cost treatment of wastewater 
by conventional treatment processes. For example, an anaerobic process that can be used to 
treat concentrated primary wastewater (concentrated FS) will provide both biogas production 
and reduced wastewater treatment costs [78]. Indirect desalination experiments have dem-

onstrated the ability of FO membranes to reject waste water nutrients, especially COD and 
phosphate and moderately nitrogen. In addition, Linares et al. [76] could adapt the system 
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to the primary clarifier tank using a submerged membrane module, in partial desalination of 
seawater. This study also showed that FO membranes could reject up to 98% of heavy metals 
in wastewater. Direct and indirect layouts of desalination systems employing FO membrane 

are shown in Figure 8.

According to a fractional organic carbon analysis carried out in the fouling layer of the FO 
membrane, it has been reported that this fouling is mainly composed of biopolymers and pro-

tein-like substances. A similar result was observed in the FO membrane in the osmotic MBR 
that was used for municipal wastewater treatment [28]. When the FO system is combined 

with a low-pressure RO system, this hybrid process has been found to function as a double 
barrier against selected microcontaminants including pharmaceutically active compounds, 
hormones, and other organic micropollutants [79]. In practice, most of the micropollutants are 
rejected by FO membrane using secondary municipal wastewater as FS and sea water as DS, 
and removal rates were 44–95% for hydrophilic neutral compounds, 48–92% for hydrophilic 
neutral contaminants, and 96–99% for hydrophilic ionic microcontaminants.

In the FO process coupled with low-pressure RO, the removal of low molecular weight 
hydrophilic neutral micropollutants was effective (>89%) and the removal of the remain-

ing compounds was over 99% [80]. A membrane cleaning protocol was investigated in the 
FO application in which municipal secondary wastewater was used as FS and sea water was 

employed as DS for removing of NOM-fouling through the active layer and removing of trans-

parent exopolymeric particles from the support layer by reporting many cleaning procedures. 

Osmotic backwashing did not seem to help the recovery of water flux. However, when air 
was scoured in concentrated wastewater for 15 minutes as a cleaning technique, 89.5% flux 
recovery was achieved. Cleaning of the active layer with Alconox and EDTA chemistry slightly 
increased pollution reversibility (93.6%). The chemical cleaning of the support layer removed 
the reversible pollution of SL up to 94.5%. The irreversible pollution rate in these experiments 
was 5.5% and it was attributed to biopolymers and trace TEP that cannot be removed from the 

Figure 8. Layout of the two FO processes for desalination (a) direct, (b) indirect (adapted from [45]).
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membrane surface [18]. It has been reported that the source of irreversible contaminants on the 
membrane surface after chemical cleaning and at negligible level is the minimal compaction 
and of the nature of the FO membrane [45, 79].

In some FO applications, the saline water is used as a major DS rather than the FS. The sim-

plest of these applications is FO, which is used as a pretreatment for RO. In this case, seawater 
is used as a DS and freshwater is used as an FS for more favorable RO conditions by pres-

surizing and diluting sea water. Thanks to this pretreatment, the energy required for desali-
nation of the water is greatly reduced. A similar process is pretreatment of RO water using 
wastewater as FS. The benefit of using such water is that the RO feedwater is diluted to more 
favorable operating conditions; thus, concentrated feedwater is more appropriate for effective 
handling. Similarly, a new procedure using ocean water to dewater an algae/nutrient solution 
for the production of algae biofuels is being investigated [45, 81].

In a recent analysis, McGovern and Lienhard [82] compared the specific energy consumption of 
a two-pass RO system with FO for desalination of seawater. At 50% recovery, for desalination of 
seawater containing 35,000 mg/L TDS, the two-pass RO energy consumption has been 3.0 kWh/m3 

including UF (for pretreatment), first- and second- pass RO. The energy consumption for the FO pro-

cess with the dilution and regeneration process of DS consuming 0.10 and 3.48 kWh/m3, respectively, 
for the same conditions was calculated as 3.58 kWh/m3. Therefore, in order for the FO to be able to 
compete with the RO in terms of energy consumption, the regeneration process must be significantly 
more efficient than RO. However, the FO process has the advantage of having less tendency to mem-

brane fouling compared to RO due to the lack of a hydraulic driving pressure. The FO process is also 
suitable for niche applications where the salinity levels of the water to be treated are higher than the 
salinity that can be treated by RO process [83].

4.3. Novel/hybrid processes

In their review on emerging desalination technologies, Subramani and Jacangelo [83] reported 

that the combination of the two technologies (hybrid) has shown that a hybrid technology is 

more effective than single use. Different hybrid configurations are being evaluated for the 
treatment of the hard waste waters of various industrial sources. All these industrial sectors 
require drinking water for various operations and applications. Emerging desalination tech-

nologies not only purify these complex wastewaters but also provide water recovery with low 
operating and maintenance costs and reduce the cost of electricity consumption and mem-

brane cleaning chemicals.

Two hybrid configurations that can be used for the purification of various industrial waste-

waters are shown in Figure 9. An FO system in Figure 9a is combined with an RO system for 

the treatment of highly contaminated wastewaters [59, 83]. Since hydraulic pressure is not 

present in FO, the accumulation of contaminants in the membrane is lower and the pretreat-
ment need is eliminated. Again due to the lack of applied pressure, osmotic cleaning using 
a low salinity solution on the DS side will cause water transport from the DS to the FS [11]. 

This transport will remove loose deposits of foulants from the membrane surface and lead to 
more effective cleaning. The concentration of the DS is carried out using a known RO system. 
Because of the maximum feed pressure limit in RO, the hybrid configuration of FO and RO 
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can only be used for the treatment of feedwater streams with low salinity. For feedwater 

streams with a TDS > 40,000 mg/L, DS recovery can be achieved using a gaseous NH3/CO2 
mixture. In this case, additional energy requirements must be taken into account in order to 
recover the DS using heat or other thermal methods. This configuration is particularly suit-
able for the refining of reflux water in the petroleum and gas industry when reuse of the water 
is desired. Purified water can be reused as feedwater for boilers or irrigation [83].

In Figure 9b, an FO system is combined with an MD system. The MD system is used for the 

concentration of the DS [46]. Depending on the salinity of the feed water, various DSs can 
be used. Since salinity is not a limiting factor for the performance of the MD system, this 
hybrid configuration can be used to treat wastewater with high salinity. A typical applica-

tion involves flowback or processing of produced water in the oil and gas industry [84]. This 

hybrid configuration guarantees a minimum energy requirement when a waste heat source is 
available to heat the drawing solution and to reconcentrate it using MD [83].

Holloway et al. [51] suggested a hybrid FO-RO system for anaerobic digester concentration. 

The high energy consumption of the RO (~ 4 kWh/m3) has been a major limiting factor for the 
process, although water recovery has been achieved up to 75% with a high concentration of 
DS (70 g/L NaCl). In a further study [85], seawater was used as a DS solution in a two-stage FO 
process for sludge concentration to be used as fertilizer. However, high reverse salt flux and 
membrane fouling due to cake layer formation have been reported as serious problems of the 
system. Hau et al. [52] suggested a hybrid FO-NF system for a sludge dewatering application. 
The results showed that the FO performance was better in terms of water flux and reverse salt 
flux when EDTA was used as DS instead of conventional NaCl or sea water. In addition, FO 
has successfully rejected more than 90% of the nutrients released from the feed sludge. They 
also indicated that the NF recovery of EDTA sodium salts exhibiting high charged compounds 
performed well and had a high salt rejection of 93%. While the water flux was constant during 
the first hours of operation, the FO membrane was then rapidly reduced due to the increased 
buildup of the sludge cake layer in the concentrated feed and diluted DS.

Oasys Water Inc. has operated a pilot scale thermal-based hybrid FO system for water with 
high salinity (>70,000 ppm TDS), which is a product of shale gas industry [41, 60]. The results 

Figure 9. Two hybrid FO applications for wastewater treatment (a) FO-RO, (b) FO-MD [83].
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show that this hybrid system can exhibit feedwater recovery performance (60%) similar to 
evaporative saline concentration technologies and that the final product water meets sur-

face water discharge criteria in terms of TDS, chlorides, barium, and strontium. However, 
although the RO required less specific energy when desalinating waters with lower salinity, it 
was found that this study was not sufficient to purify the challenging feedwater. The hybrid 
FO distillation system can be integrated to provide a zero-liquid discharge (ZLD) facility 
designed as a membrane brine concentrator (MBC). The MBC system is ideal for the oil and 

gas industry and provides up to 85% water recovery while discharging brine with salt con-

centration up to 25%. A summary of the benefits of current hybrid FO systems and direction 
of future research are schematized in Figure 10 [86].

5. Conclusions

FO process has a big potential to be an alternative solution for water/wastewater treatment 
and desalination purposes over conventional membrane processes. To benefit from this poten-

tial at maximum, ICP and low flux challenges should be completely solved or minimized by 
changing operational parameters. Changing membrane orientation (to increase water flux), 
utilizing various DSs (to increase osmotic pressure), and changing sludge retention time (i.e., 
to hinder salt accumulation in FO-MBR) are some of the basic procedures used since former 

FO studies.

Figure 10. Summary of the benefits of current hybrid FO systems and direction for future research (adapted from [86]).
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The use of hybrid systems such as FO-RO and FO-MD even with seawater desalination and 
optimization energy consumption could be more feasible and better alternative than the per-

formance exhibited by the FO process alone for wastewater recovery. However, the indis-

pensable factor affecting the process performance is FO membrane. According to the current 
studies, utilizing novel nanomaterials, substrates, and layer-by-layer assumptions in manu-

facturing of FO membrane undoubtedly enhance the water flux and rejection of the pollutants 
and minimize the membrane fouling but using synthetic wastewater-generally, containing 
one model foulant or DI water as feed solution makes it difficult to predict how FO mem-

branes will act in real wastewaters or harsh environmental conditions. Therefore, working 
with complex foulants and real wastewaters to better understand membrane behaviors and 
using modeling tools for fouling prediction and new cleaning strategies are essential to miti-

gate intrinsic challenges of the FO membranes.

In ongoing researches, the developed new support layers appear to continue increasing water 
flux slightly; however, lower water flux remains as a main challenge of the process when 
compared to the conventional membrane systems. It is also a fact that the diffusion provided 
by draw solution in the process is not effective alone to increase product water volume; there-

fore, some promotive factors such as rehabilitated hydrodynamic behaviors or simultaneous 
filtration could be provided together with diffusion phenomena in further researches.
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