
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

10

Clustering Parallel Data Streams

Yixin Chen
Department of Computer Science,

Washington University
St. Louis, Missouri

1. Introduction

Massive volumes of data streams can be found in numerous applications such as network
intrusion detection, financial transaction flows, telephone call records, sensor streams, and
meteorological data. In recent years, there are increasing demands for mining data streams.
Unlike the finite, statically stored data sets, stream data are massive, continuous, temporally
ordered, dynamically changing, and potentially infinite [5]. For example, Cortes et al. report
that AT&T long distance call records consist of 300 million records per day for 100 million
customers. For the stream data applications, the volume of data is usually too huge to be
stored or to be scanned for more than once. Further, in data streams, the data points can
only be sequentially accessed. Random access to data is not allowed.
Extensive research has been done for mining data streams, including those on the stream
data classification [3, 20], mining frequent patterns [9, 17, 18], and clustering stream data [1,
2, 8, 9, 10, 11, 12, 13, 14, 16, 19].
In this paper, we study the clustering of multiple and parallel data streams. Our study
should be differentiated from some previous studies on clustering stream data [19, 1]. Our
goal is to group multiple streams with similar behavior and trend together, instead of to
cluster the data records within one data stream.
There are various applications where it is desirable to cluster the streams themselves rather
than the individual data records within them. For example, the price of a stock may rise and
fall from time to time. To reduce the financial risk, an investor may prefer to spread his
investment over a number of stocks which may exhibit different behaviors. As another
application, in meteorological study and disaster prediction, it is useful to cluster
meteorological data streams from different geographical regions of similar curvature trends
in order to identify regions with similar meteorological behaviors. Yet another example is
that a super market may record sales on different merchandizes. There may be some
relationship among the sales of different merchandizes and thus the merchant can make use
of the correlation to manipulate the prices to maximize the profit.
Clustering refers to partition a data set into clusters such that members within the same
cluster are similar in a certain sense and members of different clusters are dissimilar.
Current clustering techniques can be broadly classified into several categories: partitioning
methods (e.g., k-means and k-medoids), hierarchical methods (e.g. BIRCH [22]), density-
based methods (e.g. DBSCAN [15]), and grid-based methods (e.g. CLIQUE [4]). However,
these methods are designed only for static data sets and can not be directly applied to data
streams. O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.in
te

ch
w

eb
.o

rg

Source: Data Mining and Knowledge Discovery in Real Life Applications, Book edited by: Julio Ponce and Adem Karahoca,
 ISBN 978-3-902613-53-0, pp. 438, February 2009, I-Tech, Vienna, Austria

www.intechopen.com

 Data Mining and Knowledge Discovery in Real Life Applications

168

An abundant body of researches on clustering data in one data stream has emerged.
O’Callaghan et al. [19] provided an algorithm called STREAM based on k-means, which
adopts a divide-and-conquer technique to deal with buckets to get clusters. CluStream [1] is
an algorithm for the clustering of evolving data streams based on user-specified, on-line
clustering queries. It divides the clustering process into on-line and off-line components.
The online component computes and stores summary statistics about the data stream using
micro-clustering, while the offline component does macro-clustering and answers various
user questions using the stored summary statistics. In these works, the problem refers to
cluster the elements of one individual data stream. These works motivate the online
compression and offline computation framework used in the paper but are obviously not
applicable to our problem.
Euclidean Distance vs. Correlation Distance The problem of clustering multiple data
streams views each data stream as an element to be clustered, which pays attention to the
similarity between streams. There are several previous works on this problem. Yang [21]
uses the weighted aggregation of snapshot deviations as the distance measure between two
streams, which can observe the similarity of data values but ignore the trends of streams.
Beringer et al. [6] proposed a preprocessing step which uses a discrete Fourier transforms
(DFT) approximation of the original data, uses the few low-frequency (instead of all)
coefficients to compute the distance between two streams, and applies an online version of
the k-means algorithm. Such a method acts like a low-pass filter to smooth the data stream.
The DFT transformation preserves the Euclidean distances. Thus, the DFT distance is
equivalent to the Euclidean distance of the smoothed data streams.
A serious limitation of the above previous works is that they are based on the Euclidean
distance of data records, but important trend information contained in data streams is
typically discarded by clustering methods based on Euclidean distance. This is true because
data streams with similar trends may not be close in their Euclidean distance. For example,
in stock markets, the absolute prices of stocks from similar area or similar industry can be
very different but their trends are close. To capture such similarity, it is more appropriate to
use correlation analysis, a statistical methods on time series, which measures the
resemblance of the trends of multiple data streams.
As an illustration, Figure 1 shows the trends of three stocks on Nylon, chemical fiber, and
CPU chip, respectively. Although the two stocks on CPU chip and chemical fiber are closer
in their data values and thus their Euclidean distance, the trends of the two stocks on Nylon
and Chemical fiber are clearly more close, which can be suggested by their higher
correlation coefficient. If using Euclidean distance, we may conclude that the two stocks on
CPU chips and chemical fiber are more similar, which does not properly reflect the more
interesting trend similarity between nylon and chemical fiber.

Fig. 1. Price of stocks on nylon, chemical fiber, and CPU chips.

www.intechopen.com

Clustering Parallel Data Streams

169

In this paper, we propose an algorithm for clustering multiple data streams based on
correlation analysis. Performing correlation analysis on data streams under the one-scan
requirement poses significant technical challenges since we cannot not store the raw data. In
this paper, we develop a novel scheme that compresses the data online and stores only the
compressed measures, called the synopsis, in the offline system. We propose a new theory
that facilitate efficient computation of correlation coefficients based on the compressed
measures. The correlation coefficients are used to define distances between streams which
are in turn used by a k-means algorithm to generate the clustering results. An attenuate
coefficient is also introduced to allow the algorithm to discover the evolving behaviors of
data streams and adjust the clusters dynamically.
Clustering on Demand (COD) More recently, a clustering on demand (COD) framework [7] is
proposed to give approximative answers to user queries for clustering sub-streams within
certain time window. The framework consists of two components, including the online
maintenance phase and the offline clustering phase. The online maintenance phase provides
an efficient mechanism to maintain summary hierarchies of data streams with multiple
resolutions. The offline phase uses an adaptive clustering algorithm to retrieve approximations
of desired sub-streams from summary hierarchies according to clustering queries.
In this paper, we also extend our clustering algorithm to support real-time COD. We
propose an innovative scheme to partition the time horizon into segments and store
statistical information for each time segment. We prove that the scheme enables us to
accurately approximate the correlation coefficients for an arbitrary time duration, and thus
allows the users to obtain clusters for data streams within the requested time window.
The paper is organized as follows. After introducing the basic concepts and problem

definitions in Section 2, we propose our algorithm in Section 3. We then discuss the

extension to COD in Section 4. In Section 5, we show experiment results on synthetic data

sets and real data sets which demonstrate the high accuracy, efficiency, and scalability of

our algorithm compared with others. We conclude the paper in Section 6.

2. Background

In this section, we introduce the background of the work and several basic concepts.

2.1 Clustering data streams
A data stream X is a sequence of data items x1, . . . , xk arriving at discrete time steps t1, ..., tk.

We assume that there are n data streams {X1, . . .,Xn} at each time step m, where Xi = {xi1, . . . ,

xik} , 1 ≤ i ≤ n, and xij (j = 1, . . .,m) is the value of stream Xi at time j.

The problem of clustering multiple data streams is defined as follows. Given the time

horizon for clustering L and the number of clusters k, the clustering algorithm partitions n

data streams into k clusters C(L) = {C1(L), . . . ,Ck(L)} that minimizes some objective function

measuring the quality of clustering in the period [t − L + 1, t], where t is the time when the

analysis is performed. The given clusters Cj(L), j = 1, . . . , k, should satisfy:

where Xi(L) = {xi(t−L+1), . . . , xit}, i = 1, . . . , n.

www.intechopen.com

 Data Mining and Knowledge Discovery in Real Life Applications

170

2.2 Attenuation coefficient
In stream data analysis, in order to recognize the evolving characteristics of data streams,

newer data records are often given more weights than older ones. Therefore, we use an

attenuation coefficient λ ∈ [0, 1] to gradually lessen the significance of each data record over

time. Suppose t is the current time and a data point xi is received at time i, then, in our

analysis, we replace the original value of xi with

 (1)

Applying this adjustment to every element in the data streams in the time horizon [t − L + 1,
t], we replace the original values by

(2)

2.3 Time segment
We first consider fixed-length clustering and then extend the algorithm for arbitrary-length
clustering in COD in Section 4. Given a fixed length, at any time t, we report in real time the
clustering results for the data streams in the time horizon [t − L + 1, t]. To support efficient
processing, we partition the data streams of length L into m time segments of equal length l =
L/m. Whenever a new segment of length l accumulates (Figure 2), we re-compute the
clustering results.

Fig. 2. A fixed length L is divided into m segments of size l.

3. The CORREL-cluster algorithm

In the following, we propose a general framework called CORREL-cluster, a correlation-
based clustering algorithm for data streams. Unlike the widely-used Euclidean distance
which only measures the discrepancy of the data values, our correlation-based distance
considers two data streams with similar trends to be close to each other.
We first overview the overall framework of the proposed CORREL-cluster algorithm. The
framework of the algorithm is in Figure 3.
CORREL-cluster continuously receives new data records from all the data streams at each
time step (Line 5 in Figure 3). It keeps outputing the clusters for the most recent data
streams of fixed length L. For every l time steps, it first computes a compressed
representation of the data streams for the time segment [t − l + 1, t] (Line 7), discards the raw
data, and updates the compressed representation of the data streams for the target

www.intechopen.com

Clustering Parallel Data Streams

171

clustering time [t−L+1, t] (Lines 9-10). It then calls a correlation-based k-means algorithm
(Line 11) to compute the clustering results. Since the number of clusters k may be changing,
CORRELcluster also employs a new algorithm to dynamically adjust k in order to recognize
the evolving behaviors of the data streams (Line 12). The algorithm is schematically shown
in Figure 4.

Fig. 3. The overall process of CORREL-cluster.

Fig. 4. Illustration of CORREL-cluster.

www.intechopen.com

 Data Mining and Knowledge Discovery in Real Life Applications

172

3.1 Correlation analysis of data streams
Before describing the details of our algorithm, we first overview the concepts of correlation
analysis.
We first define the correlation coefficients for two data streams. For two data streams X =
(x1, . . . , xn) and Y = (y1, . . . , yn), the correlation coefficient between them is defined as

(3)

where

From the definition, we can see that |ρXY| ≤ 1. A large value of |ρXY | indicates strong
correlation between streams X and Y , and ρXY = 0 means X and Y are uncorrelated.
Since it is often impossible to store all the past raw data in the stream, we need to compress
the raw data and only retain a synopsis for each time segment of each data stream.
The following theorem shows that, to compute the correlation coefficient we only need to

save Σi xi, Σi x for each stream X and Σi xiyi between any two streams to compute the

correlation coefficients between any two streams.
Theorem 3.1 Correlation coefficient ρXY between two sequences X and Y can be calculated using the

information Σi xi, Σi x , Σi yi, Σi y , and Σi xiyi.

Proof. In (3), the numerator can be rewritten as:

(4)

And in the denominator, we have

(5)

www.intechopen.com

Clustering Parallel Data Streams

173

Similarly, we have

(6)

Therefore, we can compute both the numerator and denominator in (3) using Σi xi, Σi x , Σi

yi, Σi y ,and Σi xiyi.

Based on the above result, in CORREL-cluster, for any time segment, we store a compressed
synopsis for the parallel data streams instead of the raw data.
Definition 3.1 (Compressed Correlation Representation (CCR)) Given n data streams X1, . .
. ,Xn, suppose the current time is t, the time segment length is l, then the we store the

following quantities in CCR = (,C, t), where the components of the vectors and

matrix C are defined as:

Based on Theorem 3.1, CCR provides enough information to compute the correlation
coefficients between any two streams in n data streams X1, . . . ,Xn.
Theorem 3.2 For two streams Xi and Xj , i, j = 1..n, their correlation coefficients can be computed as

The theorem can be seen from equations (3), (4), (5), and (6).

3.2 Update of the CCR synopsis
For a given time segment, at the current time tc, the CCR for the n streams is

Then at any time t > tc, the data values are updated to {xik(t)} instead of {xik(tc)}. To perform

online clustering analysis, we also need to update the CCR.

Let t − tc = Δt and λ be the attenuation coefficient, then

Therefore, we can update the saved information as follows.

www.intechopen.com

 Data Mining and Knowledge Discovery in Real Life Applications

174

(7)

(8)

(9)

We note that such an update happens not at every time step, but every l steps (Line 8 in
Figure 3). Whenever a new time segment comes in, we compute the new CCR. Also, there
are m = L/l existing segments and thus m CCRs. We discard the oldest CCR, and update the
other m−1 segments according to the above formulae.

3.3 Aggregating CCR to CCRL

In CORREL-cluster, for a user specified clustering length L, we need to cluster streams
within the time [t − L + 1, t]. Therefore, for each pair of streams (X, Y), we need to compute
the correlation coefficients for X[t − L + 1, t] and Y [t − L + 1, t]. Since we compute for each
time segment with length l a CCR, we need to combine them into CCRL, the CCR for the
time window [t − L + 1, t].
To formalize the problem, we have m time segments and m CCRs. Let CCR(v) be the CCR
for time segment [t − vl + 1, t − (v − 1)l], for v = 1..m, we denote the components of CCR(v) as

 (10)

and CCRL as

 (11)

We have, at time t:

(12)

www.intechopen.com

Clustering Parallel Data Streams

175

which can be compactly written as

(13)

Similarly, we have:

(14)

We use the above equations to compute CCRL when we receive the first m time segments
(Line 9 of Figure 3).
For later updates (Line 10), we do not need to redo the summation. In fact, we can
incrementally update CCRL. Given the existing m CCRs: CCR(i), i = 1, ...,m, and the newly

generated CCR(new) = ((new), (new),C(new)). We update the CCRL as:

 (15)

 (16)

 (17)

We also update the saved CCRs by

 (18)

 (19)

3.4 Dynamic k-means algorithm
We use a k-means clustering algorithm to generate the cluster for data streams in the user-
specified window [t−L+1, t]. In the k-means algorithm, the distance d(X, Y) between two
data streams X and Y is measure using the reciprocal of the correlation coefficient:

 (20)

The clustering quality is measured by an objective function

(21)

where ρXjCi is the correlation coefficient between data stream Xj and cluster center Ci, which
is a stream from X1 to Xn.
Let n be the number of streams to be clustered. The correlation-based k-means algorithm is
shown in Figure 5.
In practice, a major advantage of the algorithm is that it typically takes very few steps to
converge. This is due to the fact that the clusters are not changing very fast over a time gap l.

www.intechopen.com

 Data Mining and Knowledge Discovery in Real Life Applications

176

Consider two consecutive clustering calls at time t and t+l, then the time windows for
clustering, [t−L+1, t] and [t+l−L+1, t+l], significantly overlap with each other. As a result,
each clustering often converges in a few steps if we start from the previous clustering result.
As the data streams change over time, new clusters may emerge and existing clusters may
disappear. A drawback of the conventional k-means algorithm is that the user needs to
specify the number of clusters k.
To capture this dynamic evolution of data streams, we continuously update the number of
clusters k every time a new time segment with length l is received. We assume that when k is
updated regularly and frequently, it will not change abruptly. Therefore, if the number of
clusters given by the previous clustering is k, we will only consider k − 1, k or k + 1 to be the
current number of clusters k’. Then we choose k’ as the one that produces the smallest
objective function G. That is,

Fig. 5. The algorithm for clustering.

When considering k’ = k − 1, we initialize the clusters by merging the two clusters that are
closest in their centers; when considering k’ = k +1, we initialize the clusters by forming a
new cluster as the stream in existing clusters that is the farthest from the its cluster center.
After the initial clustering is given, we run k-means until it converges in order to measure
the quality of the adjusted clusters. The adjust k algorithm is shown in Figure 6.

4. Clustering on demand

Our above discussion only considers clustering data streams over a time period of fixed
length L. In some applications, the length of the time period depends on users’ demands.
Here, we extend our clustering algorithm to support clustering on demand (COD), i.e.
clustering over any time horizon at user’s request [7]. We call the extended algorithm
CORREL-COD. The CORREL-COD algorithm has an online component and an offline
component. The online component calculates the summary information in CCRs, whereas
the offline part performs clustering.

www.intechopen.com

Clustering Parallel Data Streams

177

Fig. 6. The algorithm for adjusting k.

We assume that the maximum time horizon over which the user will demand is L. Namely,
we only need to preserve information for time period [t − L + 1, t].
We perform k-means clustering in the offline part to meet the user’s demands. The offline
part first receives summary information from the online processor and calculates correlation
coefficients and distances between streams, then performs the k-means algorithm to cluster
the data streams. Since we cannot afford to store the raw data, we divide the time horizon
into multiple segments and store the CCR synopsis for each segment. Therefore, for an
arbitrary time horizon, it is often impossible to extract information over the exact horizon.
We assemble a combination of partitioned time segments in such a way that minimizes the
difference between the user-specified time horizon w and the best approximative time
horizon w’ over which we can get CCR synopsis.
Let L = 2l and m be the maximum number of segments the memory can store. We need to
design appropriate partitioning scheme on the lengths of segments. One way is to divide L
into m parts of equal length L/m. The maximum difference between w and w’ will be L/m.
Since all segments have the same length, there may be excessive loss for the recent segments
that contain newer, and hence more interesting and valuable, information. Another way is
to assign segment lengths as 1, 2, 22, 23, . . . , 2l−1, which means that we store CCRs for time
segments [t − 1, t], [t − 4, t − 2], [t − 8, t − 5], ..., [t − L + 1, t − L/2]. The segments containing
newer data will have shorter lengths, leading to higher clustering accuracy for newer data.
However, in this way, the maximum difference between w and w’ is will be L/2, which is
excessively large.
We propose a new scheme that places more weights on recent data while making the
difference |w − w’| as small as possible. We assume m > log L. In our scheme, we arrange

www.intechopen.com

 Data Mining and Knowledge Discovery in Real Life Applications

178

segments with lengths of 1, 2, 22, 23, . . . , 2l−1, respectively. Let m’ = m−log L = m−l, and Si

denote the segment with length 2i. For the m’ unassigned segments, we assign them
according to the following rule.
We first remove Sl−1, replace the region covered by Sl−1 by two more Sl−2, and then reduce m’
by one. If m’ > 0, we will keep splitting a larger segment into two smaller segments. When
there are still Sl−2 segments, we split the most recent Sl−2 into two Sl−3, and then reduce m’ by
one, until all Sl−2 segments are removed or m’ = 0. If all Sl−2 segments are removed and m’ >
0, we will split the most recent Sl−3 into two Sl−4 and reduce m’ by one. We repeat this process
until m’ = 0.
Given L, m, and m’ = m−log L, it is easy to show that using our scheme, the maximum length
of any segment is 2k, where

 (22)

where

 (23)

Let Ti the number of segments of type Si, we can prove that (the proof is omitted):

 (24)

 (25)

 (26)

 (27)

Example: Suppose L = 1024, m = 20, l = 10. Then m’ = m − log L = 10. By (23), we get C9 = 3, C8 =
10, C7 = 25. This gives k = 7 since argmaxi(m’ ≤ Ci) = 8. Then by (24), (25), and (26), we get

and

Theorem 4.1 Using the above partitioning scheme, we have m segments in total.
Proof. The number of segments is

Theorem 4.2 Using the above partitioning scheme, the total length of the m segments is L − 1.
Proof. The total length of all segments is

www.intechopen.com

Clustering Parallel Data Streams

179

Theorem 4.3 Suppose that the user demands a query for segments of length r ≤ L. Using the above
partitioning scheme, suppose r’ is the total length of a set of selected segments that is closest to r.
Then r’ − r ≤ 2k, where k = argmaxi(m_ ≤ Ci) − 1.
Proof. To form a set of the most recent segments with a total length closest to r, we can
incrementally add S1, S2, ... to the set until the total length of the selected segments r’ is
larger than r. Suppose the longest segment in the resulting set is Sg, Since r < Lwe have g ≤ k,
and r’ − r ≤ 2g ≤ 2k.
The above results show that our partitioning schemes achieves two goals. First, we assign
shorter segments to newer data and thus give newer data higher precision. Second, the
largest possible difference between the length of the approximative combination of
segments and the user requested length is lowered to 2k, which is much smaller than L/2.

5. Experimental results

To evaluate the performance of our algorithms, we test it using both synthetic data and real
data on a PC with 1.7GHz CPU and 512 MB memory running Window XP. The systems are
implemented using Visual C++ 6.0.

5.1 Testing data
We generate the synthetic data in the same way as in [6]. For each cluster, we first define a
prototype p(·) which is a stochastic process defined by a second-order difference equation:

where u(t) are independent random variables uniformly distributed in an interval [−a, a].
The data streams in the cluster are then generated by “distorting” the prototype, both
horizontally (by stretching the time axis) and vertically (by adding noise). The formulation
for a data stream x(·) is defined as:

where h(·) and g(·) are stochastic processes generated in the same way as the prototype
p(·). The constant a that determines the smoothness of a process can be different for p(·),
h(·), and g(·), such as 0.04, 0.04, 0.5, respectively.
We can then generate different clusters by generating different prototype function p(·). For
each prototype function, we randomly distort the prototype to general multiple data
streams in that cluster.
The real data set (Figure 7) that we use contains average daily temperatures of 169 cities

around the world, recorded since January 1, 1995 to present. Each city is regarded as a data

stream and each stream has 3,416 points.

www.intechopen.com

 Data Mining and Knowledge Discovery in Real Life Applications

180

Fig. 7. Daily temperatures for 169 cities around the world.

5.2 Performance analysis on CORREL-cluster
5.2.1 Clustering results
We ran CORREL-cluster on the real data set to cluster cities based on the recorded daily

temperatures. We set L = 360 and l = 30. The input of the algorithm is the daily temperatures

of cities around the world. CORREL-cluster gave five clusters each of which contains cities

mostly in the same continent and belonging to the same temperature zone. The correct rate

is around 85% to 89%. The results are shown in Figures 8-12, where each graph shows one

cluster.

Fig. 8. Cluster 1: cities in Asia

5.2.2 Quality
We evaluate the quality of the clustering from CORREL-cluster by comparing with that
from DFT-cluster [6] (30 DFT coefficients). Figure 13 shows a comparison of the quality of
clustering on the real city-temperature data set by CORREL-cluster and DFT-cluster for
various number of segments. The quality is measured by correct rate, the ratio of the
number of cities that are correctly labelled to the total number of cities.

www.intechopen.com

Clustering Parallel Data Streams

181

Fig. 9. Cluster 2: cities in Europe.

Fig. 10. Cluster 3: cities in Oceania.
Since we use a fixed time horizon L = 360, the larger the number of segments is, the more
frequently clustering is executed. Thus, for both algorithms, the quality improves when the
number of segments increases. However, as we can see from Figure 13, CORREL-cluster
always has a better quality than DFTcluster.

5.2.3 Speed
Since the clustering on the real data set is too fast, we use synthetic data sets to test the
processing speed of CORREL-cluster. We generate 6 synthetic data sets each containing 100
data streams. Each data stream has 65,536 data elements. Again, we compare with DFT-
cluster (250 DFT coefficients). The experimental results show that the executing time for
CORREL-cluster is shorter than that of DFT-cluster for every synthetic data set. Figure 14
shows that, the average processing time per segment for CORREL-cluster isn 0.928 seconds
whereas 1.2 seconds for DFT-cluster using 250 DFT coefficients. DFT-cluster needs even

www.intechopen.com

 Data Mining and Knowledge Discovery in Real Life Applications

182

longer processing time when more coefficients are used. When using 1500 DFT coefficients,
DFT-cluster takes in average over 7 seconds. Reducing the number of DFT coefficients can
save time but will lead to worse quality. As we see in Figure 15, DFT-cluster with 250 DFT
coefficients has much worse quality than CORREL-cluster on these synthetic data sets.

Fig. 11. Cluster 4: cities in Africa.

Fig. 12. Cluster 5: cities in South America.

5.2.4 Dynamic number of clusters
CORREL-cluster requires an initial value k for the number of clusters. We study its
sensitivity to k by trying different values of k. Figure 16 shows the clustering results of
CORREL-cluster on a synthetic data set with three clusters for different initial values of k,
including 2, 3, 4, 6, 8, 10 and 20. We see that the number of clusters given by CORREL-

www.intechopen.com

Clustering Parallel Data Streams

183

cluster soon becomes the same regardless the initial value, which indicates that the initial
value of k has little influence on the clustering performance. This stability is due to our
adjust k() algorithm that adaptively changes the number of clusters in the process of
clustering. This adaptiveness can be seen in Figure 16. For example, five clusters are found
at time 32, four at time 38, and three at 52.

Fig. 13. Clustering quality of CORREL-cluster and DFT-cluster on real data.

Fig. 14. Computation time of CORREL-cluster and DFT-cluster on synthetic data.

Fig. 15. Quality of CORREL-cluster and DFT-cluster on synthetic data.

www.intechopen.com

 Data Mining and Knowledge Discovery in Real Life Applications

184

Fig. 16. Number of clusters found by CORREL-cluster for different initial values of k.

5.3 Performance analysis on CORREL-COD
5.3.1 Scalability
To evaluate the scalability of the online processing, we test our CORREL-COD algorithm
and ADAPTIVEcluster [7] using several randomly generated synthetic data sets of sizes
varying from 1,000 to 10,000. As we see in Figure 17, the execution time for both algorithms
increases linearly with the number of data points, but CORREL-COD is always more
efficient than ADAPTIVE-cluster.

Fig. 17. Comparison of the scalability of CORRL-COD and ADAPTIVE-cluster.

5.3.2 Quality
We measure the quality of clustering using Grawdata/GCOD, where Grawdata denotes the objective

function obtained by clustering the raw data directly without segmentation and GCOD

denotes the objective function by clustering based on the summary information retrieved by

the online processor.

www.intechopen.com

Clustering Parallel Data Streams

185

Figure 18 shows the quality of clustering on two simulated data sets for different number of
segments. We see that the larger the number of segment is, the more precise our algorithm
achieves. This is because the difference between the user specified length and the length of
the approximated statistical information becomes smaller when the number of segments
increases. From Figure 8, we can see the clustering quality is always above 95%, which
means that results by our COD algorithm are close to the optimal results that can be
obtained from raw data.

Fig. 18. Clustering quality for different numbers of segments.

6. Conclusions

When our aim is to mine the similarity on the trends of data streams, correlation coefficient
is a more appropriate measure for similarity between data streams than Euclidean distance
used by previous data stream clustering methods. In this paper, we have developed
algorithms CORREL-cluster and CORRELCOD for clustering multiple data streams based
on correlation coefficients, which supports online clustering analysis over both fixed and
flexible time horizons. Since data streams have high speed and massive volume, we can not
retain the raw data to perform correlation analysis. We have proposed a compression
scheme that supports an one-scan algorithm for computing the correlation coefficients for.
We have developed an adaptive algorithm to dynamically determine the number of clusters
so that CORREL-cluster can adjust to the evolving behaviors of data streams. Moreover, we
have developed a novel partitioning algorithm to support clustering of arbitrary length per
user’s request. Experimental results on real and synthetic data sets show that our algorithms
have high clustering quality, efficiency, and scalability.

7. References

[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for clustering evolving data
streams. In Proc. of conference of very large databases, pages 81–92, 2003.

[2] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A Framework for projected clustering of
high dimensional data streams. In Proc. of conference of very large databases, pages
852–863, 2004.

[3] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. On-Demand Classification of Evolving
Data streams. In Proc. Of International Conference on Knowledge Discovery and Data
Mining, 2004.

www.intechopen.com

 Data Mining and Knowledge Discovery in Real Life Applications

186

[4] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering
of high dimensional data for data mining applications. In Proc. of the ACM SIGMOD
Conference, pages 94–105, Seattle, WA, 1998.

[5] B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan. Maintaining variance and k-
medians over data stream windows. In Proceedings of the twenty-second ACM
symposium on Principles of database systems, pages 234–243, 2003.

[6] J. Beringer and E. Hüllermeier. Online-clustering of parallel data streams. Data and
Knowledge Engineering, 58(2):180–204, 2006.

[7] B.R. Dai, J.W. Huang, M.Y. Yeh, and M.S. Chen. Adapative clustering for multiple
evolving streams. IEEE Transaction On Knowledge and data engineering, 18(9), 2006.

[8] P. Domingos and G. Hulten. A general method for scaling up machine learning
algorithms and its application to clustering. In Proc. of the Eighteenth International
Conference on Machine Learning, pages 106–113, 2001.

[9] C. Giannella, J. Han, J. Pei, X. Yan, and P. S. Yu. Mining frequent patterns in data streams
at multiple time granularities. In H. Kargupta, A. Joshi, K. Sivakumar, and Y.
Yesha, editors, Next Generation Data Mining. AAAI/MIT, 2003.

[10] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data streams. In
Annual IEEE Symposium on Foundations of Computer Science, pages 359–366, 2000.

[11] S. Guha, R. Rastogi, and K. Shim. CURE:An effcient Clustering algorithm for large
databases. In ACM SIGMOD Conference, pages 73–84, 1998.

[12] M.R. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams.
Technical report, Digital Systems Research Center, 1998.

[13] G. Hulten, L. Spencer, and P. Domingos. Mining time changing data streams. In Proc. of
ACM SIGKDD, pages 97–106, 2001.

[14] E. Keogh and S. Kasetty. On the need for time series data mining benchmarks: A survey
and empirical demonstration. In 8th ACM SIGKDD Int’l Conference on Knowledge
Discovery and Data Mining, pages 102–111, 2002.

[15] J. Sander X. Xu M. Ester, H.-P. Kriegel. A density-based algorithm for discovering
clusters in large spatial databases with noise. In Int. Conf. on Knowledge Discovery
and Data Mining (KDD’96), Portland, Oregon, 1996. AAAI Press.

[16] S. Madden and M. Franklin. Fjording the stream: an architecture for queries over
streaming sensor data. In Proc. of ICDE, pages 555–566, 2002.

[17] G. Manku and R. Motwani. Approximate Frequency counts over data streams. In
Proceedings of conference of very large databases, 2002.

[18] A. Metwally, D. Agrawal, and A. El Abbadi. Efficient Computation of frequent and top-
k elements in data streams. In Proc. Of International Conference on Database Theory,
2005.

[19] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani. Streaming-data
algorithms for high-quality clustering. In Proc. of 18th International Conference on
Data Engineering, pages 685– 694, 2002.

[20] H. Wang, W. Fan, P. S. Yu, and J. Han. Mining Concept-Drifting data streams using
ensemble classifiers. In Proc. Of International Conference on Knowledge Discovery and
Data Mining, 2003.

[21] J. Yang. On the need for time series data mining benchmarks: A survey and empirical
demonstration. In Proc. of IEEE Int’l Conf. Data Mining, pages 695–697, 2003.

[22] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient data clustering method
for very large databases. In Proc. of ACM SIGMOD international conference on
Management of data, pages 103– 114, 1996.

www.intechopen.com

Data Mining and Knowledge Discovery in Real Life Applications

Edited by Julio Ponce and Adem Karahoca

ISBN 978-3-902613-53-0

Hard cover, 436 pages

Publisher I-Tech Education and Publishing

Published online 01, January, 2009

Published in print edition January, 2009

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book presents four different ways of theoretical and practical advances and applications of data mining in

different promising areas like Industrialist, Biological, and Social. Twenty six chapters cover different special

topics with proposed novel ideas. Each chapter gives an overview of the subjects and some of the chapters

have cases with offered data mining solutions. We hope that this book will be a useful aid in showing a right

way for the students, researchers and practitioners in their studies.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Yixin Chen (2009). Clustering Parallel Data Streams, Data Mining and Knowledge Discovery in Real Life

Applications, Julio Ponce and Adem Karahoca (Ed.), ISBN: 978-3-902613-53-0, InTech, Available from:

http://www.intechopen.com/books/data_mining_and_knowledge_discovery_in_real_life_applications/clustering

_parallel_data_streams

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

