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Abstract

Asthma is a very heterogeneous disease, with two major asthma phenotypes, the aller-
gic and the late onset asthma, differentiated by the triggers, the cellular dominance, 
the Th1/Th2 inflammation pattern and the local and serological markers. As there 
were many overlapping biological markers between these two phenotypes, different 
types of tentative classification followed. A clinical one makes a difference between 
the predominant eosinophilic one (with better response to glucocorticoid) and the pre-
dominant neutrophilic one with more severe evolution and low rate of therapeutical 
improvement. Another approach was based on cluster analysis of asthma characteris-
tics (onset, atopic status, and body mass index (BMI)), sensitivity to methacholine test, 
peak flow variability, bronchodilatation response, postbronchodilator level of FEV1, 
sputum eosinophil and neutrophil count, FeNO test, clinical symptom scores, treat-
ment scheme to control symptoms, exacerbations, and severity. Emerging data sug-
gest a distinct late onset obese-asthma phenotype, with a specific pathophysiology, 
comorbidities, and clinical evolution. This chapter reviews the main characteristics of 
this phenotype: the specific lung function impairment, the underlying inflammation, 
the adipokine profile, the comorbidities and the therapeutical approach. The mutual 
influence between obesity and asthma will be illustrated, whenever scientific data are 
available.

Keywords: asthma-obese phenotype, metabolic changes in asthma, inflammation in 
asthma, asthma biomarkers

1. Introduction

Obesity became in recent years a recurrence and one of the major concerns in asthma research. 
This chapter presents the relation between obesity and asthma, underlining the influences 
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on pathological mechanisms, evolution, and treatment, in order to give an overview of the 

current knowledge about the asthma-obese phenotype (AOP). Inside the AOP, two distinct 
forms have been described: an early onset, atopic asthma with no gender differences in inci-
dence and a late onset, non-atopic asthma predominantly in women [1]. We interpret the first 
as an atopic asthma aggravated by obesity and the second as a form of asthma favored by 
obesity. They have common characteristics related to the pathological consequences of obe-

sity, the subject of our review.

2. Incidence

Worldwide, 15–20% of the population suffers from asthma [2, 3]. The prevalence have differ-

ent slopes in different countries, with higher incidence in developing countries [4] and appar-

ently constant rate in recent years or even with a tendency of reduction in current wheezing 

in countries with previous higher prevalence [2].

The trends of incidence of asthma and obesity are similar: a flat curve of high prevalence in 
developed countries and an increasing prevalence in less developed countries [2, 5]. However, 
the recently published analysis from the US national survey, comparing the 8.5% popula-

tion attributable fraction for overweight/obesity between 1988 and 1994 with the 11.9% one, 
in 2011–2014, found this increase statistically non-significant [6]. Studies from developing 
countries, in prospective cohorts, confirmed the parallel increase in incidence of obesity and 
asthma, [7], particularly in obese women [8].

The AOP could be, in fact, related not to obesity but to the metabolic syndrome. A 
Norway study confirmed, but another large longitudinal study with 25 years of follow-
up contradicted this assumption and found that independent factors to the metabolic 
syndrome play significant roles in the association of asthma with obesity [9]. Waist 
circumference was negatively associated with eosinophilia [10] and gave an odds ratio 

(OR) = 1.46 for asthma in females [11]. The relation between asthma and metabolic 
syndrome seems to be reciprocal, as asthma increases the risk for metabolic syndrome 
[12] and for obesity [13].

High BMI is also associated with the severity of asthma, particularly in women [14], with a 

reduced FEV1 %, a higher readmission rate and longer hospitalization stay [15]. In a large 
cross-sectional Israeli study, obesity was associated with mild and moderate to severe asthma 
in male, and to moderate to severe asthma in females [16]. Differences in severity between 
obese and non-obese were maintained after adjustment for demographics, smoking status, 
medication or gastroesophageal reflux [17].

Genomic studies also support this association. A twin-based research concluded that 8% of 
the genetic component of the obesity is shared with asthma [18]. A large case control sample 
of population with European origin revealed a protection for asthma-obesity co-occurrence 
with the 16p11.2 inversion [19]. Several gene polymorphisms (TNF-α, -β or leptin receptors) 
with interrelated physiopathological mechanisms for the AOP seem to be involved in risk 
and/or the therapeutical response [20–23].
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3. Pathogenic pathways

Impressive research data have been accumulated to explain the relationship between obesity 
and asthma. Among them, two pathogenic processes draw special attention: the lung function 
impairment and the specific airways inflammation.

3.1. Lung function impairment

3.1.1. Structural changes

In normal obese, forced vital capacity (FVC) is smaller than slow vital capacity (SVC), and this 
points to the possibility of even underdiagnosis obstruction, when using FEV1/FVC data [24].
Reduced SVC and total lung capacity (TLC), increased inspiratory reserve volume, decreased 
expiratory reserve volume (ERV) and maximal voluntary ventilation volume (MVV) was 
found in severe obesity [25]. The reduction in FVC%, FEV1%, MVV% was parallel with the 
BMI increase [26]. The reduction in the functional residual capacity (FRC) was more pro-

nounced than of the TLC until BMI exceeded 35 kg/m2, after which the decrease was propor-

tionate [27]. While VC and TLC are markers of restriction, the MVV integrates the endurance 
and strength of the respiratory muscles with the airway diameter and resistance and is inter-

preted as an obstructive dysfunction. Another argument against a pure restrictive pattern in 
obesity is that the FRC reduction is due to the ERV reduction, with normal or even increased 
RV and reflects a lower airways caliber [28]. The volume of FRC is the expression of the equi-
librium between the inward elastic recoil of the lung and outward elastic recoil of the chest 
wall. Obesity, particularly the abdominal one, reduces the expansion of the diaphragm and of 
the excursions of the thoracic cage, limiting the elastic recoil of the lung. Ventilation occurs at 
lower lung volumes, the transpulmonary pressure is lower. These changes affect the retrac-

tive forces of the lung parenchyma and the airways caliber and unload the airway smooth 
muscle (ASM); as consequence, the ASM shortens more in response to external stimuli. Even 
more, due to the decreased expansion of the airways, actin and myosin attach closer and are 
more difficult to detach during relaxation. A confirmation of these mechanisms is obtaining 
no difference in the fall of FEV1 after methacholine test with or without a previous avoidance 
of deep inspiration in nonasthmatic obese (NAO) persons [29].

3.1.2. Metabolic changes

Obesity increases the respiratory demand, with greater energy expenditure for breathing. 
Obesity-related inflammatory cytokines (such as TNF-α or leptin) and hormones (insulin) 
increase the ASM contractility. The insulin growth factor 1 stimulates the proliferation of the 
ASM. Insulin raises the expression of β1-containing laminins, promoting contractility [30].

Successful weight loss programs reverse the lung function changes and have an important 
role in asthma management in these patients. Weight loss reduces airway resistance, airways 
obstruction, improves peak expiratory flow (PEF) variability, and increases FRC and ERV [31].

Weight loss in obese asthmatics (OA) with high IgE and dominant Th2 inflammation improved 
the resting respiratory system mechanics, assessed by oscillometry, but had no effect on the 
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sensitivity of air closure during the methacholine test, reflected by FVC % reduction. Certain 
differences in response, according to the underlying inflammation of the AOP subtypes, have 
been noticed [32] serving as argument that weight loss cumulates the benefit of the structural, 
the metabolic, and of the inflammatory improvement in OA.

3.2. Influences of the obesity inflammation pattern on asthma

Obesity generates a low-grade inflammation, switches blood monocytes and tissue macro-

phages to the M1 activation pathway, and impairs the ratio between regulatory T-lymphocytes 
(Treg) and Th17. Changes from the lean to obese pattern involve the switch of macrophages 
from M2 to M1 domination, switch from Th2 to Th1 cells, and switch from the Treg cells and 
NKT to B cells, mast cells and neutrophils. Together with the adipokine profile modification, 
a pro-inflammatory pattern develops (Figure 1).

3.2.1. Polarization of the macrophages

Macrophages are polarized to the M1 state by interferon-γ and by inducers of TNF-α, such as 
lipopolysaccharides (LPS). M1 macrophages upregulate pro-inflammatory cytokines as TNF-α, 
interleukin IL-1β, IL-6, IL-12, IL-15, and IL-23 and oxidative stress.

Figure 1. Obesity-related inflammation in asthma. ASM = airway smooth muscle; FA = fatty acids;  IL1β = interleukin 1β, 

IL6 = interleukin 6; M1Mφ = M1 macrophage; M2Mφ = M2 macrophage; Th17 = T helper 17 cells; TNFα = tumor necrosis 
factor α; Treg = regulatory T cells.
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Lung macrophages are a heterogeneous population divided into alveolar and interstitial mac-

rophages. In non-allergic asthma, M1 macrophages are increased and pathogenic, while in 
allergic forms, they seem to be protective. Due to their defense capacity against pathogens, they 
have a role in preventing the asthma exacerbation. The most extensively investigated nega-

tive effects of the M1 polarization specific cytokine signature are TNF-α and IL-1β in asthma. 
Exogenous administration of recombinant TNF-α shifts to the left the curve of responsiveness 
to methacholine in normal subjects [33]. In asthma patients, high levels of TNF-α in bronchoal-
veolar lavage or bronchial biopsies are associated with severity [34]. How TNF-α induces air-

ways hypersensitivity is not completely understood, but experimental research showed that 
TNF-α increases ASM contractility by intracellular calcium increase. The intimate process 
involves a variety of G-protein coupled agonists (methacholine, histamine and serotonine). 
After binding to TNF receptor 2, TNF-α increases the Th17 differentiation and induces vascular 
modifications through endothelin and neurotrophic tyrosine kinase receptor type 2. Of interest 
for obesity, a condition associated with low ghrelin levels is that the raise of TNF-α level in the 
bronchoalveolar lavage after ovalbumin challenge is attenuated by this orexigenic factor [35].

The IL-1β is a pro-inflammatory cytokine with special interest for bronchoconstriction, par-

ticularly if primed by IL-5. IL-1β is a result of activation of numerous lung cells, including 
lymphocytes, macrophages, mastocytes and even ASM. IL-1β could be the link between toll-
like receptors (TLR) and nucleotide-binding oligomerization domain-like receptors (NLR), 
the NLRP3 inflammasome and the activation of the TH17 cells, as both TLR and NLR that 
sense the external signals promote IL-1β secretion [36]. From macrophages cytoplasm, IL-1 
is secreted through lipid pores requiring the presence of gasdermin D (GSDMD), a protein 
identified from genomic-wide studies as a possible asthma marker [37]. Experimental data 
showed that GSDMD expression regulates cell growth of ASM and promotes fibrosis with 
remodeling of airways [38]. Cellular stress-related inflammation, with high extracellular 
release of adenosine triphosphate (ATP), uric acid crystals, and cholesterol also involve the 

IL-1β signal [39]. The expression of IL-1β is upregulated by prolonged hyperglycemic state 
[40], with possible impact on AOP.

3.2.2. The predominant Th1/Th17 activation

The level of Th17 increases in obese, if a certain threshold of the BMI is achieved, in absence of 
an acute or chronic inflammation [41]. An inhibition effect on adipogenesis in mesenchymal 
cells and on the adipocyte differentiation raised the hypothesis that IL-17 could be a regula-

tory cytokine of obesity itself, providing a negative feedback on the adipose tissue expansion 
[42]. Several mechanisms have been proposed to explain how Th17 increases in obesity. The 
higher metabolic activity related to nutrients intake raises the ATP level and the release of 
ATP molecules to the extracellular space; ATP binds to P2X7, a purinergic receptor, capable 
of driving Th17 responses during inflammation and secretion of pro-inflammatory cytokines 
[43]. Unhealthy diet, with high pro-inflammatory, long chain, saturated free fatty acid (FFA), 
and low anti-inflammatory ω3- polyunsaturated fatty acids (PUFAs) and monounsaturated 
fatty acids (MUFA) activates the TLR in adipocytes and macrophages, and the Th1/Th17 path-

ways in dendritic cells [44]. Micronutrient deficiencies, such as low levels of vitamin D, are 
also frequent in obese persons. The enhanced infection susceptibility is due to the decreased 
levels of cathelicidin in the primary defense cells, aggravating the clinical evolution.
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In obesity, the adipocytes have a significant contribution to the circulating IL-6, promoting 
the differentiation of TH17 and naive CD4 T-cells. Leptin, another cytokine of the IL-6 fam-

ily, is also increased, with many pathological implications for asthma. Among these, leptin 
modulates Th17 response by conditioning the signal transducer and activator of transcription 
3 (STAT3) expression and phosphorylation in CD4 cells [45]. Th1 and Th17 differentiation 
require mammalian Target of Rapamycin 1 (mTORC1) signals [46], which are known to be 
activated by growth factors, amino acids or insulin, all being raised at obesity.

Through IL-17 secretion, Th17 cells recruit and activate neutrophils to produce pro-inflam-

matory cytokines (IL-6, IL-8) [41], chemokines, and adhesion molecules. IL-17 upregulates 
IL-8 secretion in airway epithelial cells and initiates airway remodeling, increasing the levels 
of fibroblast-derived inflammatory mediators, such as the α-chemokines, IL-8, and growth-
related oncogene-α [41]. Pathogenic Th17 cells express IL-1R1, a type of IL-1β receptor, with 
bronchoconstriction effect [47].

Epigenetic markers, such as promoter methylation of transcription factors associated with 
increased Th1 differentiation, were found in OA preadolescent compared to non obese asth-

matic patients (NOA) [48].

3.2.3. Reduction of Treg

Tregs have a significant role in suppression of allergy and asthma, as they are sources of anti-
inflammatory cytokines (IL-10, TGFβ1 and IL-35) and have suppressor function on a variety 
of immune cells (B cells, NK cells, CD4+, CD8+) and dendritic cells. Tregs are even able to kill 
effector lymphocytes in a perforin-dependent manner. The number of studies related to the 
Treg number and function in asthma is increasing but are far from being conclusive: in aller-

gic inflammation, Tregs are generally low and less able to control the inflammation process. 
An increased number of Tregs were found in more severe asthma, an effect that could be also 
due to the inhaled corticoids [49].

Concerning AOP, a reduction of Treg is present in insulin resistance OA [50]. Particularly 
with high amount of abdominal fat, Treg is reduced, contributing to the low-grade inflam-

mation and insulin resistance development. Leptin has similar inhibitory effect on Treg [51]. 
Treg expresses the insulin receptor, and hyperinsulinemia affects their IL-10 production 
and the suppressor functionality [52]. As insulin levels are frequently elevated in obese sub-

jects, the insulin effect on Treg could be a part of the explanation of the severity of asthma 
of the AOP.

3.2.4. The adipokine profile

The inflammation pattern in obesity is closely related to the adipokine profile. A meta-anal-
ysis of 13 studies with 3642 patients concluded that the high leptin and low adiponectin are 

associated with the diagnosis of asthma [53].

The leptin receptor is constitutively expressed in epithelial lung cells but also on immune 
cells. Leptin directly stimulates respiratory centers, increases frequency, minute and tidal 
volume. These positive effects on the respiratory function are lost in obesity, a state of leptin 
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resistance, but high dose of leptin administered to obese mice was able to restore the breath-

ing pattern and the arterial CO
2
 [54].

Compared to obese non-asthmatic, leptin levels are increased in OA [55]. The difference is 
higher in women [56] and in patients with lung neutrophilia [57]. High leptin level upregu-

lates the expression of inflammatory proteins, such as cPLA2-α [58] or phospholipase D1 [59], 

raises leukotrienes (LT) production [60] and bronchial responsiveness. Again, the effect was 
manifest particularly in obese women [61]. LT synthesis in neutrophils depends on circula-

tory arachidonic acid, on nuclear localization of the 5-lipooxigenase [62], and on the level of 

extracellular signal regulated kinases (ERK) activity, significantly influenced by androgens. 
This might contribute to the gender differences in AOP.

Attenuation of the constitutive muscarinic activation of the ASM cells via the central nervous 
system (a normal dilatator effect and leptin) has been proposed as part of leptin resistance 
[63]. Leptin resistance seems to be selective, as the pro-inflammatory effects are maintained 
in obesity. Leptin effects on airway remodeling could be related to reduction in α1-antitripsin 
expression, enhanced intercellular adhesion molecule 1 (ICAM-1) expression and increase in 
the CCL11, G-CSF, VEGF, and IL-6 production [64].

The circadian secretion of leptin is the highest at midnight; in obese subjects, the basal and 
the evening increase is higher than in lean subjects [65]. This could be an influencer of the 
nocturnal asthma attacks and of the overall severity of asthma.

In contrast with leptin increase, plasma adiponectin is decreased in asthma [66], indepen-

dent of the BMI [67]. The adiponectin is correlated with the FEV1 decline, and with the high 
serum and sputum IgE [68]. Adiponectin is able to polarize the macrophages to an M2 state 
[69], switches the balance by inhibition of pro-inflammatory cytokines (TNFα), stimulates the 
anti-inflammatory ones (IL10), diminishes Nf-Kb activation, and negatively correlates with 
protein C and IL6. Despite experimental data to confirm these actions, adiponectin’s role in 
predicting asthma severity remains controversial.

Adiponectin circulates as trimer (the low molecular weight form) or hexamers (the high 
molecular weight form), and the inconsistent findings of these studies could be explained 
by different serum adiponectin components that were measured, as only high low-molec-

ular-weight isoform was strongly associated with the asthma risk and lung function 
decrease [70].

4. Clinical and therapeutic particularities of OA

4.1. Biomarkers

The specific physiopathology of the AOP was translated in different attempts to define bio-

markers. Particular biomarkers or different cut points for predicting airway inflammation 
were proposed. Classification and relevant examples of proposed biomarkers are summa-

rized in Table 1. Most of these studies were not reproduced on larger scales, and currently 
there are no guidelines on their clinical utilization.
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Category Biological 

sample

Type Comments

Inflammatory 
biomarkers

Sputum High MMP1, MMP2, and MMP8 Study design primarily for asthma 
severity: these MMP not found in other 
clusters [71]

IL-5 Comparison between OA and LA inside 
the group of severe asthma [72]

14 differentially expressed genes 
encoding proteins related to 

the cell cycle and growth factor 

regulating pathways (MAPK1, 
E2F1, and SPRY2) and to the 
interferon signaling pathway 

(OASL, OAS3 and TRIM14)

Study design for cluster identification; 
the results selected refer to the 

comparison between late onset 
asthma, severe, high proportion 

of atopic, nonsmokers and obese 
female asthmatics, high frequency of 
exacerbations despite near normal lung 
function, 73.6% atopy. [73]

Gene expression of calcium 
signal transmission (S100P, 

S100A16), lymphocyte 

differentiation (MAL), and mucin 

(MUC1) increase

Comparison of diet (high fat meal)-
induced metabolism in asthma and 
healthy controls. No specific analysis 
related to BMI, but mean BMI was in 
the obesity range in asthma and in 
overweight range in controls [74]

Exhaled breath 
condensate

Increase in glucose, n-valerate, 
acetoin, isovalerate, and 

1,2-propanediol levels and a 

decrease in formate, ethanol, 

methanol, acetone, propionate, 

acetate, lactate, and saturated 

fatty acid levels

Relatively small cross-sectional study, 
well designed to differentiate AOP from 
obese-non asthma and lean-asthma, 
strong statistical power of correlation 

[75]

Bronchial 
submucosa

Increased eosinophil count In a severe asthma population, 
eosinophil number in submucosa 
correlated with BMI [72]

Bronchial 
submucosa

No increase in eosinophil count In mild to moderate OA, eosinophil 
number in submucosa not different from 
obese without asthma [76]

Blood Low periostin l Study design primarily for asthma 
severity: low levels found also in other 

clusters, no difference between OAP and 
other cluster presented [71]

Blood CCL17, IL-4, IL-13 Cross-sectional study. Comparison of 
lean asthma and obese asthma [77]

Expired air FeNO test Large cross-sectional study; low FeNO 
associated with adiposity indicators; in 
high FeNO group, adiposity indicators 
associated with worse asthma severity or 

control [78]

Adipokine profile Blood Leptin Cross-sectional study, comparison to 
lean asthma AO, leptin mediates asthma 
control [77]
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4.2. Comorbidities

The clinical manifestations and the treatment response appear to be influenced by comor-

bidities. They can be summarized as allergic (rhinitis, eczema), smoking-related, psychogenic 
(hyperventilation, depression, and anxiety disorders), metabolic syndrome, gastroesopha-

geal reflux disease and obstructive sleep apnea [83]. Comorbidities become significant when 
there is reciprocal impact. As a disease is the expression of a certain number of dysregulated 
functional mechanisms, comorbidities, by cumulating more abnormalities, will always have a 
potential negative impact. Comorbidities might share co-determination factors or potentiate 
mechanisms for the related comorbidity. The asthma-obesity relation suits very well in these 
last categories.

In terms of co-determination factors, the chronic asthma inflammation is influenced by the 
metabolic inflammation, as previously described. Certain comorbidities, such as the gastro-

esophageal reflux disease (GERD) and obstructive sleep apnea (OSA) have an independent 
high prevalence in asthma and in obesity but aggravate each other when they coexist.

4.2.1. Gastroesophageal reflux disease

To evaluate prevalence, different definitions of Gastroesophageal reflux disease (GERD) are 
used in the epidemiological studies: the presence of the reflux symptoms, the pH measure-

ment, the endoscopic findings of the gastroesophageal mucosal disease or presence of the 
hiatal hernia. Despite the variation in methodology, the incidence was significantly higher 
than in the non-asthmatic population no matter what criteria were used. On the obesity side, a 
meta-analysis showed that the risk for GERD progressively increases with the increase in BMI 

Category Biological 

sample

Type Comments

Blood Adiponectin Review of the controversial 
epidemiological results in human studies 

mainly to heterogeneity of the design of 

these studies [79]

Blood Resistin Post-weight management intervention Δ 
resistin negatively associated to Δ FRC 
and Δ RV [80]

Functional test 
(bronchial reactivity)

Challenge test with ozone Comparison between obese and non-
obese; post-exposure decrease of FVC in 
obese, similar bronchial reactivity and 
IL-6 increase [81]

Challenge test with mannitol Airway hyper-responsiveness to 

mannitol in obese non-asthmatic without 
asthma comparative to non-obese 
subjects [82]

Table 1. Asthma-obese phenotype biomarkers.
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[84]. The asthma-GERD relation is bilateral. GERD is the cause for the abnormal acid reflux 
that leads to microaspiration into the airways, initiating reflex cough and bronchoconstriction 
via vago-vagal reflexes. Asthma bronchoconstriction triggers acid reflux, as happens in some 
patients during the methacholine test. Theophylline increases gastric acid secretion and low-

ers low esophagus sphincter tone [85]. Both obesity and asthma increase the transdiaphrag-

matic and intragastric pressures and favor hiatal hernia.

Despite common agreement that GERD was associated with more severe asthma symptoms, 
apparently, no association between GERD and the severity of asthma was found in a subpopu-

lation of OA [86]. This emphasizes the need for dedicated studies to this particular phenotype.

Indirect arguments that asthma control might have positive influence on GERD are the pres-

ence of the silent reflux in asthma patients and the relative risk of development of GERD [87], 

but there are no published data to confirm this hypothesis.

GERD influences also obesity, by changing type and frequency of meals. Reduction in weight 
has favorable effects on GERD-related symptoms.

Due to the presence of the increased cholinergic tone in both asthma and GERD, the use of 
anticholinergic medication might be of interest.

4.2.2. Obstructive sleep apnea

Obstructive sleep apnea (OSA) has a higher prevalence in men, while OA is more prevalent 
in women. Due to the high association rate between OSA and asthma [86] and the worse 

asthma control in the presence of OSA, an overlap asthma-OSA syndrome was proposed 
[88]. As with the GERD, asthma increases the risk of the new-onset OSA [89]. Obesity is 
the major risk factor for OSA, but OSA also leads to obesity: impaired sleep architecture 
changes leptin signal with a reduction in satiety along with craving for high energy foods 

[90], modifies transcriptional networks in visceral fat, and reduces secretion of growth hor-

mone. The excessive daytime sleepiness reduces physical activity, increases the proportion 
of the fat mass compared to the free fat mass and makes weight loss programs more difficult 
to succeed.

OSA has negative impact on asthma. During apnea episodes, the upper way vibration and suc-

tion collapse, activate vagal tone, and induce reflex bronchoconstriction. The more negative 
intrathoracic pressure developed during apnea increases the pulmonary capillary volume. 
These pathological processes trigger asthma attacks. Repeated mechanical trauma is associ-
ated with upper and lower airway inflammation [91]. OSA aggravates nocturnal asthma, low-

ers the quality of life, and leads to more frequent exacerbations.

Asthma has negative effects on OSA. In asthma patients, OSA is more severe, with lower 
apnea-hypopnea index (AHI). Sleep efficiency and arousal index were higher in severe asthma 
compared to moderate asthma, but apparently no correlation have been found between OSA 
severity and measures of the asthma severity evaluated by FEV1 or with the asthma quality of 
life score [92]. High dose, long-term corticosteroid treatment, particularly in poorly controlled 
asthma could be a contributing factor to obesity and OSA [93].
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Nocturnal GERD links asthma, GERD, and OSA under a common aggravating factor. The 
increase of the respiratory effort exacerbates asthma and OSA symptoms and is associated 
with higher AHI and inflammation in the exhaled breath condensate [94].

4.2.3. Metabolic syndrome-related comorbidities

Increased incidence of type 2 diabetes and cardiovascular events (hypertension, ischemic 
heart disease, cerebrovascular disease) is also expected to happen, as directly influenced by 
obesity. In a very large adult study, elevated waist circumference and triglyceride (TG) and 

low high-density lipoprotein (HDL) were significantly associated with wheezing [95]. In this 
respect, statins represent a potential treatment modality in severe asthma; their anti-inflam-

matory effects and the enhancement of the corticosteroid sensitivity make them good candi-

dates for AO treatment, particularly in cases with metabolic syndrome [96].

4.3. Therapeutical challenges

Current guidelines do not differentiate pharmacotherapy between OA and NOA, but studies 
have confirmed that AO is more severe and more difficult to control, with the regular medica-

tion [83, 97].

AOP benefits from lifestyle changes: weight reduction is a priority goal, but all other gen-

eral asthma interventions should be addressed: smoking cessation, allergen exposure avoid-

ance, occupational risk assessment, and so on. Diet and/or bariatric surgery is correlated with 
reduction of exacerbations and improvements in the lung function, clinical manifestations, 
and quality of life [98, 99]. Successful interventions increase in efficacy of the inhaled cortico-

steroids (ICS) after smoking cessation [100] and after losing weight [98].

Treatment of comorbidities related to overweight directly impacting asthma. Positive effects 
on asthma control have been reported from continuous positive airway pressure (CPAP) ther-

apy of OSA [92]. There is also a benefit on the pulmonary function in OA with diabetes treated 
with dipeptydil-peptidase4 inhibitors related to the correction of the oxidative/antioxidative 
imbalances [101].

Proton pomp inhibitors and histamine H2 receptor improve GERD-related symptoms and 
quality of life but does not influence asthma control [102]. However, improvement of symp-

toms in severe, selected cases was obtained from different surgical procedures [103, 104]. 
However, the common high cholinergic tone in GERD and asthma raised the hypothesis that 
anticholinergic therapy could be a common solution [104]. A Cochrane systematic review 
provided some evidence that long-acting muscarinic antagonists added to ICS show some 
benefits on FEV1 [105], but prospective studies should confirm if there is also benefit in the 
AOP, and if this effect is higher in asthma-GERD association. The anti-inflammatory effect of 
statins in asthma is not consistent across studies [106]. Whether their effect on asthma evolu-

tion is increased in those OA with dyslipidemia remains to be demonstrated.

If standard step-increase asthma medication is not efficient, specific endotype treatment (pre-

cision medicine approach) would be desirable.
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OA is associated with some specific inflammatory pathways activation, one of which is 
5-lipoxygenase pathway inflammation; leukotriene antagonists have similar efficacy with ICS 
in the presence of obesity [107]. Some biological therapies for severe forms of asthma were 
proven beneficial also in OA. For example, in OA patients with raised eosinophils and high 
airways reversibility, Mepolizumab was more efficient in the reduction of exacerbations [108]. 
Nevertheless, the ones that targeted commonly upregulated pathways were not successful. 
For example, a 12 weeks treatment with Brodalumab (a human anti-IL-17 receptor) had no 
clinically meaningful effects [109]. Golimumab, an anti-THF-α humanized antibody, pro-

vided some improvements, but limited use due to the risks associated with this therapy: infec-

tions, congestive heart failure, malignancies, and demyelinating disorders [110]. However, in 
a small selected group of overweight and obese severe asthma patients this treatment reduced 
the oral steroid dose and hospitalizations [111].

5. Conclusions

To conclude, the AOP is supported by epidemiological, pathophysiological, and clinical data. 
There are still many uncertainties about the OAP and even more about the two subtypes, 
described until now only from the epidemiological perspective; further research is needed to 
elucidate common and specific mechanisms and to improve our knowledge about the specific 
biomarkers and the therapeutical approaches for the subtypes of AOP.
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