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Japan 

1. Introduction 

As the information processing ability of computers improves, real-world images are 
increasingly used in various data mining applications. Thus, flexible and accurate image 
recognition methods are strongly needed. However, real-world images generally contain a 
wide variety of objects which have complex features (e.g., shapes and textures). Therefore, 
the accurate recognition of real-world objects is difficult because of three main problems. 
Firstly, although an image is generally given as a set of pixels, pixels alone are insufficient 
for the description and recognition of complex objects. Thus, we must construct more 
discriminative features from pixels. Secondly, finding useful features to describe complex 
objects is problematic because appropriate features are dependent on the objects to be 
recognized. Thirdly, real-world images often contain considerable amounts of noise, which 
can make accurate recognition quite difficult. Because of these problems, the recognition 
performance of current recognition systems is far from adequate compared with human 
visual ability. 
In order to solve these problems and facilitate the acquisition of a level of recognition ability 
comparable to that of human visual systems, one effective method consists of introducing 
learning schemes into image understanding frameworks. Based on this idea, visual learning 
has been proposed (Krawiec & Bhanu, 2003). Visual learning is a learning framework which 
can autonomously acquire the knowledge needed to recognize images  using machine 
learning frameworks. In visual learning, given images are statistically or logically analyzed 
and recognition models are constructed in order to recognize unknown images correctly for 
given recognition tasks. Visual learning attempts to emulate the ability of human beings to 
acquire excellent visual recognition ability through observing various objects and 
identifying several features by which to discriminate them.  
The key to the development of an efficient visual learning model resides in features and 
learning models. Image data contain various types of informative features such as color, 
texture, contour, edge, spatial frequency, and so on. However, these features are not 
explicitly specified in input image data. Therefore, feature construction is needed. Feature 
construction is the process of constructing higher-level features by integrating multiple 
lower-level (primitive) features. Appropriate feature construction will greatly contribute to 
recognition performance. In addition, since useful features depend on the given image data, O
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feature selection is also needed to determine appropriate features according to the given 
image data. Thus, we propose both feature construction and feature selection methods to 
develop a better visual learning framework. 
In order to utilize features efficiently, it is necessary to develop an appropriate visual 
learning model. In most existing visual learning models, a single learner based on a single 
learning algorithm is trained using input image data. However, this learning model is 
inefficient compared with human visual models. Human visual systems can be divided into 
multiple modules, accomplishing excellent visual ability through the cooperation of these 
modules (Marr 1982). In other words, introducing modularity into visual learning 
framework leads to improved recognition performance. To introduce modularity, we adopt 
an ensemble approach, a kind of learning approach in which multiple learners called base 
learners (they correspond to modules) are simultaneously trained and their learning results 
integrated into a single hypothesis. Based on this ensemble approach, we develop a novel 
visual learning model in which multiple base learners can be trained through cooperation 
with each other. Through the introduction of cooperation among multiple learners, 
recognition accuracy can be considerably improved. The learning strategy of the proposed 
visual learning model enables more flexible and accurate recognition applicable to a wide 
variety of data mining tasks using various types of visual data. We verify the flexibility and 
recognition performance of our method through an object recognition experiment using 
real-world image data, and a facial expression recognition experiment using video data. 

2. Visual learning 

At the beginning of computer vision and image understanding research, the recognition 
process was human-intensive. That is, a large part of domain knowledge was defined and 
given by hand. As the amount and complexity of image data increase, however, 
conventional image recognition methods have difficulty in recognizing real-world objects 
for several reasons. First, it is quite difficult to provide sufficient domain-specific knowledge 
manually due to the complexity of large-scale real-world recognition problems. Next, 
although the recognition performance of conventional methods is sufficient for limited 
domains, such as facial recognition and hand-written character recognition, these methods 
have great difficulty in effecting a flexible recognition that can discriminate a wide variety of 
real-world objects. Finally, the recognition performance of these methods tends to be 
affected by noisy images which contain cluttered backgrounds, bad lighting conditions, 
occluded or deformed objects, and so on. These problems must be solved in order to 
develop a recognition framework comparable to human visual systems. 
The first problem can be solved by the framework of visual learning. Visual learning 
autonomously acquires domain-specific knowledge in order to recognize images. This 
knowledge is derived by machine learning frameworks which statistically or logically 
analyze input image data and construct recognition models to recognize unknown images 
correctly for the given recognition task. Most machine learning frameworks can be easily 
applied to a wide variety of recognition problems and can provide domain-specific 
knowledge.  
Although machine learning frameworks automatically derive domain-specific knowledge, 
however, they often have difficulty in acquiring the knowledge because of the second 
problem caused by the data structure of image data. That is, an image has various features 
which are useful for the discrimination of objects in the image: for example, color 
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histograms and spatial frequency are widely used to describe images. However, these 
features are not explicitly specified in input data because an input image is usually given 
only as a set of pixels. Generally, since an image consists of a large number of pixels, the 
input images contain a large amount of irrelevant or redundant data. To solve this issue, 
feature construction is required to construct more informative features from the given image 
data. For instance, color histograms can be constructed by analyzing the distribution of the 
intensity values of the given pixels. Since the learning efficiency and performance depend 
on the features input into the machine learning algorithm, the feature construction method 
has a great influence on recognition performance. In other words, constructing appropriate 
features leads to an accurate recognition which is able to solve the second problem. For real-
world image recognition, a crucial problem stems from the large variety of objects to be 
recognized. The problem is that appropriate features are generally dependent on the given 
object. Therefore, it is essential for flexible recognition to develop an efficient feature 
selection method to select appropriate features according to the given object. 
As for the third problem, noisy images, which contain occlusion, deformation, or bad 
lighting conditions, often worsen the learning performance. To reduce the influence of these 
noisy images, some kind of image preprocessing such as image filtering is frequently used 
(Krawiec & Bhanu, 2003). However, the elimination of any type of noise using image 
preprocessing is extremely difficult. Thus, we attempt to deal with noisy images by 
developing a noise-robust learning model based on the ensemble approach. In the learning 
model, interaction among multiple base learners provides robustness to noise by detecting 
and eliminating noisy images. We show an example of the learning model in Fig. 1. 
 

eliminated

misclassified training examples
hard examples

1 2

3

...

 X  X 

 X ...

eliminated

eliminated

X i base learner

 

Fig. 1. The learning model with the collaboration of multiple base learners. 

In this learning model, an arbitrary number of base learners are collaboratively trained. 

Specifically, each base learner iX  ( i = 1, 2, … , n , where n  is the number of base learners) 

sends its misclassified training examples to the other base learners },,,,{ 111 nii XXXX AA +− . 

The examples misclassified by iX  are eliminated from its training set. Similarly, the other 

base learners send their misclassified training examples to iX  and eliminate the examples 

from their own training sets. iX  is then trained using the examples sent from the other base 

learners.  
The examples that are misclassified by all of the base learners are regarded as hard examples 
and are eliminated from the training sets of all base learners. Hard examples mean the 
examples which are very difficult to classify correctly; thus, noisy images correspond to 
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hard examples. Hard examples should be eliminated because they cause overfitting. 
Overfitting is the phenomenon in which base learners become too specialized through the 
recognition of hard examples, so that they often fail to recognize non-hard examples, which 
are the majority of given examples. Since resolving the problem of overfitting is sometimes 
crucial for ensemble learning, this learning model considerably reduces the influence of 
noisy images and improves recognition accuracy. 

3. Collaborative visual learning 

Since the key point of the learning model mentioned in the previous section is the 
collaboration of multiple base learners, we call this model collaborative ensemble learning. Its 
learning framework is based on a boosting algorithm (Freund & Schapire, 1997). Each 
example (i.e., image) is assigned a weight that measures the difficulty of correctly classifying 
the example, and each base learner is iteratively trained using these weights. The iteration 
step is called a round. The weights of all examples are updated at the end of each round to 
assess their classification difficulty. A higher weight means that the example is more 
difficult to classify correctly. In the machine learning domain, it has been proven that 
training a base learner using examples with high weights improves the classification 
performance of the base learner (Dietterich, 2000). At the end of each round, a base learner 
generates a hypothesis to classify unseen examples. Through the learning process, multiple 
hypotheses are generated and are ultimately integrated into a final hypothesis. The 
integration is performed by, for example, voting by multiple hypotheses. The final 
hypothesis corresponds to the prediction of an ensemble classifier and generally has much 
better classification performance than a hypothesis by a single base learner. 

3.1 A weighting algorithm to detect hard examples 

To describe the collaborative ensemble learning model, we first formulate an object 

recognition task as a classification problem. The training set S is represented as S  = {( 1x , 

1y ), … , ( mx , my )}, where m  is the number of training examples. ix  and iy ∈ { 1, … , C } 

correspond to an image and a class label respectively. C  is the number of classes—that is, 

the recognition problem is to distinguish C  kinds of objects.  
Our learning algorithm is based on AdaBoost, which has the crucial problem of 
susceptibility to hard examples. This problem stems from the fact that AdaBoost gives 
excessively high weights to hard examples, so that overfitting tends to occur. In order to 
prevent overfitting, we improve the weighting algorithm that determines weights so that 
the weights of hard examples are appropriately controlled. We propose a weighting 
algorithm based on the following two points: (1) To prevent overfitting, when an example is 

regarded as a hard example by a base learner X , that example should not be used as a 

training example for X ; and (2) To train all base learners collaboratively, when 

X misclassifies a training example, its weight for other base learners should be increased so 
that the example is used to train the other base learners. We thus define the weight 
distribution for our weighting algorithm. The weight distribution represents the importance 
of each example. The examples which have high weight distribution values are useful to 

improve the classification performance of base learners. The weight distribution l

tiD ,  of the 

i-th example ix  for the l-th classifier lX  at the t-th round is calculated as follows: 
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where n is the number of base learners and j

tiw , is the weight of ix  (calculated in the same 

way as a weight used in AdaBoost) for lX  at the t-th round. When an example ix  is 

regarded by lX  as a hard example, l

ti,δ = 0. Thus, from equation (1), l

tiD ,  is 0 and ix  is not 

used in any subsequent rounds. In this way, hard examples are removed from the training 

set. Equation (2) represents the collaboration of base learners. l

tid ,  is determined based on 

the weights of other base learners. Since the weight j

tiw ,  of a misclassified example 

increases, the values of both l

tid ,  and l

tiD ,  increase when most of the other base learners 

misclassify the example. Consequently, the example is learned by lX . 
Here, we show an example of the weighting process. We consider a case in which the 

training set consists of six examples },,,,,{ 654321 xxxxxx whose class labels are 

},,,,,{ 332211 cccccc  respectively, and three base learners 21,XX  and 3X  are trained 

simultaneously. Assuming that each base learner classifies each example at the first round 
as shown in Table 1 (a) (the class labels shown in boldface represent the correct 
classification), the weight distribution of each example for the second round is calculated 
according to equation (1) as shown in Table 1(b). 

For example, 4x  was correctly classified by 1X  and 2X  while misclassified by 3X . On the 

other hand, 2x  was correctly classified only by 3X . Thus, 4x  should be learned by  1X  

and 2X  while 2x  should be learned by 3X . From Table 1 (b), the weight distribution of 4x  

for 1X  and 2X  is much higher than for 3X . The weight distribution of 2x  for 3X  is 

higher than for 1X  and 2X . Since each base learner learns the examples which have higher 

weight distributions, both 2x  and 4x  (as well as the other examples) are learned by 

appropriate learners in the next round. 
 

 1x  2x  3x  4x  5x  6x   1x  2x  3x  4x  5x  6x  

1X  1
c  2c  3c  

2
c  

3
c  

3
c  1X  .20 .13 .08 .20 .20 .20 

2X  2c  3c  
2
c  

2
c  1c  

3
c  2X .09 .15 .22 .22 .09 .22 

3X  1
c  

1
c  

2
c  3c  

3
c  2c  

 

3X .21 .22 .21 .08 .21 .08 

(a) Predicted class labels  (b) Weight distributions 

Table 1. Predicted class labels and weight distributions. 

                                                 
1 The threshold is determined by searching for the optimal value using the beam search, 
based on the NadaBoost algorithm (Nakamura et al., 2004), which is more robust to hard 
examples than AdaBoost. 
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3.2 Construction of an ensemble classifier using collaboration of base learners 

Assuming that the number of rounds is T , the l-th base learner trained in the t-th round is 

represented as l

tX ( t = 1, … ,T ). At the end of the T-th round, we integrate the base learners 

T

t

l

tX 1}{ =  into an ensemble classifier lX  and determine the prediction of lX  by integrating 

the predictions of all base learners }{ l

tX  using a weighted voting method. Specifically, the 

prediction of the ensemble classifier lX  is determined as the class label which is predicted 

by the majority of base learners. The prediction )(xX l of the ensemble classifier lX for an 

example x is defined as follows: 

 ∑
=∈

==
T

t

l

t

l

t
Cc

l cxXxX
1},...,1{

])([maxarg)( α ,  (3) 

where ])([ cxX l

t =  is 1 if cxX l

t =)(  and otherwise is 0. })1(log{ l

t

l

t

l

t εεα −= , where 
l

tε  is 

the classification error of
lX . Thus, a higher value for 

l

tα  means a lower classification error.  
In the learning process, each base learner is specialized to classify non-hard examples 
precisely. Thus, we must determine whether a given example is a hard example or a non-
hard example. To distinguish hard examples from non-hard examples, we define a criterion 
and call it class separability. Class separability is defined so that it is proportional to the 

classification performance of a base learner for each class. When l

tX  can correctly classify 

the examples whose class labels are c , the class separability for class c  is high because l

tX  

can distinguish these examples from the other examples. On the other hand, if l

tX  

misclassifies these examples, the class separability for class c  is low. Since hard examples 
are frequently misclassified, the class separability of a hard example will be much lower 

than that of a non-hard example. Here, we consider the case in which l

tX  predicts the class 

label of an unknown example x  as class c . If the class separability of l

tX  for class c  is 

high, x  will be a non-hard example. That is, the possibility that the prediction is correct will 

be high. We define the class separability )(cs lt  for class c  as follows: 
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jitn ,,  denotes the number of examples whose class label is i  and which were classified into 

class .j )(cs lt+  is high when the examples whose class labels are c  are correctly classified 

www.intechopen.com



Content-based Image Classification via Visual Learning 

 

147 

into class .c )(cs lt−  is high when the examples whose class labels are )( ccc ≠′′  are 

classified into class .c′  If the prediction )(xX l

t
′  of the l-th classifier is c , then )(cs lt+  is used 

as the class separability. Otherwise, )(cs lt−  is used as the class separability. For example, in 

the case shown in Table 1, 2/1)( 1

1

1 =+ cs  because 
1X  correctly classifies 1x  and misclassifies 

2x . 14/4)( 1

1

1 ==− cs  because 1X correctly classifies 543 ,, xxx  and 6x . Similarly, the class 

separabilities of the other base learners for the class 1c  are calculated as follows: 

,1)(,4/3)(,0)( 1

3

11

2

11

2

1 === +−+ cscscs  and 1)( 1

3

1 =− cs . These values of class separability for 

1c indicate that 3X will give the most accurate prediction in the classification of the 

examples whose class labels are 1c . 

When classifying an unseen example, we first obtain the predictions of all classifiers 
1

{ }l n

l
X = , 

where n  is the number of features. We next calculate the class separability of each classifier 

and select the classifier with the highest class separability as the most reliable classifier. The 

prediction )(xF  of the ensemble classifier for an example x  is then determined by the 

following equation: 

 ∑
=

′==
t

ll

l

l xXslXxF
1

** )).((maxarg such that   )(
τ

ττ   (5) 

Finally, we show the algorithm list of the collaborative ensemble method as follows: 

1. Initialize: t = 1, mD l

i 11, =  and l

i 1,δ  = 1 for all i  and l , T_list = {}. T_list is the list to 

retain up to b  weight thresholds, where b  is beam width. 

2. For each base learner, construct the training set l

tS  by sampling from the original 

training set S  according to the weight distribution l

tiD , . 

3. Train each base learner using l

tS  and obtain l

tX . 

4. If Tt = and T_list is empty, then make the final prediction F  and finish the learning 

process; otherwise, go to step 5. 

5. For all l , classify all training examples using l

tX , then decrease the weights of correctly 

classified examples and increase the weights of misclassified examples. 

6. Obtain the possible thresholds .ltW  

7. Calculate the accuracy of each threshold by estimating the classification accuracy using 
the threshold. 

8. Add the threshold to T_list. 

9. If the number of thresholds in T_list is more than b , remove the thresholds which have 

lower accuracy. 
10. Select the most accurate threshold from T_list to detect hard examples, then remove the 

threshold from T_list. 

11. Set l

ti 1, +δ  to 0 if ix  is regarded as a hard example by 
l

tX , otherwise to 1. 

12. Calculate the weight distribution l

tiD 1, +  for each l  and i . 
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13. 1+← tt and go to step 2. 

In the above algorithm, we efficiently search for the optimal (or suboptimal) threshold based 

on beam search. The process corresponds to steps 5 to 10 above. After all base learners are 

trained, each weight is updated in step 5. According to the weights, the possible thresholds 
l

tW  are determined in step 6. We next evaluate the classification accuracy for each threshold 

in step 7. In step 8, the thresholds are added to a list T_list, which is used by beam search to 

restrict the search space. T_list retains at most b thresholds, where b corresponds to the 

beam width. If the number of possible thresholds is higher than b , the thresholds which 

have a lower accuracy are removed from T_list in step 9 and are not used for the search. In 

step 10, a threshold *l

tW which has the highest accuracy is selected and removed from T_list. 

Hard examples are detected using *l

tW . This process is repeated while T_list is not empty. 

As a result, the optimal (or suboptimal) threshold can be found. 

3.3 Experiment 

We carried out several object recognition experiments to verify the performance of our 
method using the images in the ETH-80 Image Set database (Leibe & Schiele, 2003). This 
data set contains 8 different objects:  apples, cars, cows, cups, dogs, horses, pears, and 
tomatoes. We used 20% of the examples as training examples and the remainder as test 
examples. The number of rounds was experimentally set to 100. We constructed five types 
of base learners using five types of features as given in Fig. 2. 
 

 

Fig. 2. The features used in this experiment. 

The first base learner is an appearance-based recognition method which utilizes contour 
fragments (Nomiya & Uehara, 2007), as shown in (b).  The set of contour fragments is 
grouped into meaningful structures called patterns as depicted in (c). The second base 
learner is based on the distributions of pixel intensity values (Nomiya & Uehara, 2007). The 
distributions are represented by a Generic Fourier Descriptor (GFD). A GFD is obtained by 
calculating the spatial frequency of an image as described in (d). The third base learner is a 
feature tree (Nomiya & Uehara, 2005). This method generates region-based features by 
image filtering as shown in (e). It then combines several features into several decision trees 
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called feature trees. The fourth base learner is based on Scale Invariant Feature Transform 
(SIFT) (Lowe, 2004). SIFT generates deformation-invariant descriptors by finding distinctive 
points in objects (indicated by white arrows in (f)). These points represent the characteristics 
of the object based on image gradients. The fifth base learner uses the shape context method 
(Belongie et al., 2001). In this method, the contour of an object is described by a set of points 
as illustrated in (g). Using this set of points, log-polar histograms of the distance and angle 
between two arbitrary points, called shape contexts, are calculated for all points. An 
example of shape context is given in (h). This method discriminates the object by matching 
its shape contexts with the shape contexts in the training set. 
In this experiment, we evaluate the proposed method from the following three viewpoints: 
firstly, in order to verify the effectiveness of the learning model of the proposed method, we 
evaluate the recognition performance of the collaborative ensemble learning model. 
Secondly, we assess the usefulness of the proposed method as an object recognition method 
by comparing it with several existent object recognition methods. Finally, we use noisy 
image data to verify the robustness of the proposed method to noise. 

3.3.1 Evaluation of collaborative ensemble learning model 

To verify the effectiveness of our collaborative ensemble learning model, we construct four 

types of ensemble classifiers, 2L , 3L , 4L and 5L , by integrating two, three, four and five base 

learners respectively. iL  consists of the first, second, … , and i-th base learners. We then 

compare their performance. The result of the experiment is provided in Fig. 3. 
 

 

Fig. 3. The recognition accuracy for each ensemble classifier and shape context method. 

The recognition accuracy is proportional to the number of integrated base learners. In 
particular, the accuracy improves significantly for animals with complex shapes and 
textures. This result implies that diverse features are required to discriminate correctly 

between complex objects and that our method can effectively utilize various features. 5L  

achieved much higher accuracy than the other ensemble classifiers. Although this 
improvement is due to the high classification performance of the shape context learner (i.e., 
the fifth base learner), our method fully outperforms the shape context method. Since the 
shape context method depends on the shapes of objects, it sometimes fails to distinguish 
between objects which have similar shapes, such as apples and tomatoes. Thus, our method 
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selects an appropriate base learner other than the shape context learner for the classification 
of apples and tomatoes, leading to a higher recognition accuracy for our method. 

3.3.2 Comparison with other object recognition methods 

We compare our recognition performance with those of the following six object recognition 
methods. The first is the shape context (Belongie et al., 2001). The second is the 
multidimensional receptive histogram (Schiele & Crowley, 2000), which describes the 
shapes of objects using statistical representations. The third is color indexing (Swain & 
Ballard, 1991), which discriminates an object using RGB histograms calculated from all the 
pixels in the object. The fourth is based on local invariant features (Grauman & Darrell, 
2005) that are generated by a gradient-based descriptor and are robust to the deformation of 
images. The fifth is the learning-based recognition method (Marée et al., 2005), in which an 
object is described by randomly extracted multi-scale subwindows in the image and 
classified by an ensemble of decision trees. The sixth is the boosting-based recognition 
method (Tu, 2005), in which a probabilistic boosting-tree framework is introduced to 
construct discriminative models. The recognition accuracy is shown in Table 2. 
 

Swain & Ballard (1991) 64.85 Grauman & Darrell (2005) 81 

Marée et al. (2005) 74.51 Belongie (2001) 86.402 

Tu (2005) 76 Proposed method 87.27 

Schiele & Crowley (2000) 79.79  

Table 2. The recognition accuracy for each object recognition methods (in %). 

Our recognition accuracy is higher than those of all other recognition methods. We utilize 
multiple features for recognition and thus can discriminate a wider variety of objects than 
single-feature recognition methods. In addition, this result indicates that our learning 
strategy for selecting optimal base learners is effective. Since the criterion for the 
determination of optimal base learners is determined by observing the collaborative 
learning process, this result indicates the effectiveness of our collaborative learning 
framework. 

3.3.3 Robustness over hard examples 

In order to verify the robustness to hard examples of our method, we carry out an 
experiment using the Caltech image data set, which contains many hard examples. We use 
the images of six kinds of objects from the data set: airplanes, cars, Dalmatians, faces, 
leopards and motorbikes. We use 20% of the examples as training examples and the 
remainder as test examples. We construct two types of ensemble classifiers and compare 

these ensemble classifiers with our method. The first ensemble classifier, 1X , does not 

eliminate any hard examples and never increases the weights of hard examples even if they 

are misclassified. The second ensemble classifier, 2X , also does not eliminate hard examples, 

                                                 
2 This recognition accuracy is reported by (Leibe & Schiele, 2003). This accuracy has been 
achieved, however, using over 98% of the examples in the training set while we use only 
20%. In addition, its recognition accuracy is proportional to the number of the training 
examples as shown in (Belongie et al., 2001). The recognition accuracy using 20% of 
examples in the training set is 81.06%. 
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but it does increase the weights of all misclassified examples even if they are hard examples. 
First, we show the recognition accuracy for each class and total recognition accuracy in Fig. 4. 
 

 

Fig. 4. The recognition accuracy for each class. 

The recognition accuracy of 2X is the worst because it does not take hard examples into 

consideration. 1X outperforms 2X by giving smaller weights to hard examples and thus 

reducing their influence to some extent. Given that our recognition accuracy is the best for 

all objects, it seems that detecting and eliminating hard examples from training examples 

leads to more efficient learning. 
Through these experiments, we confirm the effectiveness of our collaborative ensemble 
learning framework. However, it is difficult to determine the appropriate combination of 
base learners because finding the optimal combination is an open problem. Although our 
method enables an ensemble classifier to be less sensitive to the combination of classifiers 
due to the determination of the optimal base learner for a given example, the accuracy of the 
proposed method can improved if we can determine the optimal combination of base 
learners.  Thus, we should find an efficient method to determine the optimal combination.  

4. Application to facial expression classification problem using multistream 
time-series data 

4.1 Visual learning in facial expression recognition 

In this section, we mention the application of our visual learning framework to problems in 
facial expression classification which is a challenging domain in computer vision 
understanding. In facial expression recognition, distinguishing slight differences in face 
images is required. However, it is quite difficult to accomplish this because the number of 
characteristic points on a face is small. Moreover, the movement of each point is subtle, 
while multiple points are mutually correlated in most facial expressions. For accurate 
recognition, a variety of recognition methods have been proposed using various features 
which can be extracted or constructed from input image data. We divide the features 
typically used in facial expression recognition into three levels: low-level features, medium-
level features and high-level features. 
Low-level features are based on the intensity of each pixel in an image. Since an image is 
generally given as a set of pixels and a pixel is described by its intensity value, low-level 
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features can be obtained by directly processing the given image data using some kind of 
statistical analysis and dimensionality reduction techniques, such as principal component 
analysis and linear discriminant analysis (Donato et al., 1999). Since low-level features can 
be directly and easily generated from the given image data, they can be utilized for a variety 
of recognition problems (e.g., object recognition and handwritten character recognition). 
However, low-level features seem to be rather insufficient for accurately distinguishing 
slight difference among various types of facial expressions.  
In facial expression recognition, it is effective to observe the movement of particular parts in 

a face because facial expressions can be described as the combination of the movement of 

facial muscles. According to this idea, several features which are able to describe partial 

movement in a face have been proposed (Bourel et al., 2002). These features, which we call 

medium-level features, can more precisely describe characteristic parts of a face. By 

selecting appropriate parts which are relevant to the facial expression and analyzing their 

movement, more accurate recognition can be performed. However, since useful parts are 

highly dependent on the expression, finding appropriate parts is a difficult task. 

Features more complex than medium-level features are defined by modeling whole face 

(Essa & Pentland, 1997). We call these features high-level features. The models are able to 

analyze multiple parts in a face simultaneously and can be more effective than medium-

level features. High-level features are typically constructed by taking multiple images from 

various directions and generating 3D models from input 2D images. This can be a crucial 

problem, however, because it is troublesome and time-consuming to construct facial models 

through such processes. 

Taking the tradeoff between the better quality of higher-level features and the lower cost of 

constructing lower-level features into account, we propose a facial expression recognition 

method based on medium-level features. Although the representational ability of a single 

medium-level feature is lower than that of a single high-level feature, more discriminative 

features can be constructed by combining multiple medium-level features. As was 

mentioned in Section 3, ensemble learning enables the utilization of multiple features. Thus, 

we can deal with multiple medium-level features by introducing our visual learning 

framework.  

Generally, only a few medium-level features around salient parts on a face (e.g., eyes, 

eyebrows and mouth) are used for recognition when analyzing various facial parts, and 

finding the appropriate combination of facial parts is essential to distinguishing a wide 

variety of facial expressions. In order to solve this issue and find an appropriate 

combination depending on facial expressions, we utilize a motion capture system which can 

precisely observe the movement of diverse facial parts (Osaki et al., 2000). 

The facial expression data obtained from the motion capture system are represented as 

multistream time-series data. Multistream time-series data consist of multiple time-series 

sequences which are mutually correlated. Since multistream time-series data generally 

contain a large amount of information which includes redundant data, it is necessary to 

select useful streams from the given streams in order to achieve accurate recognition. Thus, 

we propose an efficient method of assessing the usefulness of each stream and finding 

appropriate streams based on an effective criterion to measure the similarity among 

multiple streams. To verify the effectiveness of the proposed method, we perform several 

facial expression recognition experiments. 
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4.2 Feature construction method 
In order to generate facial expression data, we utilize a motion capture system to capture the 
movement of several points on a face. Specifically, the facial expression data are captured by 
35 markers on the subject's face as depicted in Fig.5 and described by 35 streams which 
represent the movement of each marker.  
 

 

Fig. 5. Markers used by motion capture system. 

The location of each marker is determined according to the definition of Facial Action 
Coding System (FACS) (Ekman & Friesen, 1978), which is designed for measuring and 
describing facial behavior. FACS was developed by analyzing and determining the 
relationship between the contraction of each facial muscle and the appearance of the face. In 
FACS, specific measurement units called Action Units (AUs) are defined to describe facial 
expressions. AUs represent the muscular activity that leads to the changes in facial 
expression. Although numerous AUs are specified, the following 17 AUs are considered to 
be sufficient to describe basic facial expressions. 
 

No. Name No. Name No. Name 
1 Inner Brow Raiser 9 Nose Wrinkler 17 Chin Raiser 
2 Outer Brow Raiser 10 Upper Lip Raiser 20 Lip Stretcher 
4 Brow Lowerer 12 Lip Corner Puller 23 Lip Tightener 
5 Upper Lid Raiser 14 Dimpler 25 Lips Part 
6 Cheek Raiser 15 Lip Corner Depressor 26 Jaw Drop 
7 Lid Tightener 16 Lower Lip Depressor  

Table 3. Main Action Units (AUs). 

In Table 3, for example, AU 1 corresponds to the raising of the inner corner of the eyebrow, 
while AU 4 corresponds to the puckering up of the outer corner of the eyebrow. Combining 
these AUs allows for various types of facial expressions to be described. We show the 
combinations of AUs for several basic facial expressions (Surprise, Anger, Happiness and 
Sadness) in Table 4. 
 

Expression AU numbers (intensity) 

Surprise 1(100), 2(40), 5(100), 10(70), 12(40), 16(100), 26(100) 

Anger 2(70), 4(100), 7(60), 9(100), 10(100), 12(40), 15(50), 26(60) 

Happiness 1(60), 6(60), 10(100), 12(50), 14(60), 20(40) 

Sadness 1(100), 4(100), 15(50), 23(100) 

Table 4. Combination of AUs for each expression. 

In Table 4, the numerical values in parentheses are intensity values of AUs. A higher 
intensity value means stronger activity of an AU, and the maximum value is 100. For 
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example, in Sadness, AUs 1, 4 and 23 are strongly activated and AU 15 is weakly activated 
because brows and lips show characteristic changes in the expression of sadness. Based on 
the combination of AUs, corresponding combinations of streams (i.e., markers shown in Fig. 
5) are determined for each expression as illustrated in Fig. 6. In Fig. 6, the markers encircled 
by squares denote the corresponding streams. 
The input data given by the motion capture system simply represents the movement of each 
marker. It is a kind of primitive feature and is thus inadequate for recognition. To construct 
higher-level features, we estimate the stress from each marker. This is because each facial 
expression is described as the movement of particular facial muscles which can be 
represented by the stress for each marker. Due to the difficulty of directly measuring the 
stress, we instead estimate the stress using finite element method (FEM). FEM is widely 
used for estimating the deformation of an object caused by the given stress. Since our goal is 
to obtain the stress given to each marker, we consider the inverse problem of FEM. That is, 
we estimate the stress from the deformation of facial muscles. In order to describe the stress 
estimation process, we first show the settings of this problem in Fig. 7. 
 

 

Fig. 6. Corresponding markers (streams) for each expression. 

 

 

Fig. 7. The problem settings of inverse FEM for facial expression recognition. 
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Fig. 7 represents the settings of the inverse problem of FEM for facial expression recognition. 

A face is divided into several regions by the markers on the face. The regions and markers 

are called elements and nodes, respectively. Since we use 35 markers, the number of nodes 

np  is 35. A node is represented by a circle in Fig. 7. Each element is defined as a triangular 

region whose vertices consist of three nodes. Thus, the number of elements ne  is 56. We fix 

the number of materials nm  at 1 because a face is uniformly covered with skin and set the 

number of constraints (i.e., the number of fixed points) nb  at 3 because the three markers 

(Head, LHead and RHead) represented by •  are fixed. 

Under this setting, we observe the deformation of each element by measuring the movement 
of each marker and then estimate the stress given to each node. The process of solving the 
inverse problem of FEM proceeds as follows: 
1. Calculating the element rigidity matrix 

Using the above settings, calculate the element rigidity matrix ][EK  as follows: 

]][[][][ BDBtSEK T=  

where TB][ denotes the transpose of ][B and 
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nx  and ),,( kjinyn =  are the x-coordinate and y-coordinate of the three nodes 

ji, and k which form an element. ν,E  and t  denote Young’s modulus, Poisson’s ratio, 

and board thickness, respectively. We experimentally set the value of E  and ν  to 

0.14[MPa] and 0.45, respectively. 
2. Constructing the whole rigidity matrix 

Construct the whole rigidity matrix ][TK  using the element rigidity matrix ][EK so 

that each element of ][TK  corresponds to ][EK  calculated for each element in step 1. 

3. Estimating the stress for each node 

Calculate the node force vectors }{F  according to the following equation: 

}]{[}{ dTKF =  

where }{d  denotes the displacement of the nodes output by the motion capture system. 

The node force vectors }{F  represent the stress given to each node. Thus, we utilize 

them as the higher-level features. 
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4.3 Feature selection method 

Through the above feature construction process, the higher-level features are constructed for 
each node (i.e., marker). However, using all of the features is inefficient because the large 
amount of information which they contain often includes redundant data. Since such 
redundancy makes the computational complexity excessively large and does not contribute 
to the improvement of the recognition accuracy, it is necessary to select useful features. To 
perform efficient feature selection, because the constructed features are represented as 
multistream time-series data, we propose an effective method to evaluate the usefulness of 
streams in multistream time-series data. 
We propose an effective criterion to assess the usefulness of each stream based on a novel 
similarity measure called Angular Metrics for Shape Similarity (AMSS) (Nakamura et al., 
2007). To measure the similarity between time-series data, AMSS first divides a time-series 
sequence into several subsequences which are represented by a set of vectors. It then 
calculates the similarity based on the angles between two subsequences. Using angles for 
calculating similarity, AMSS can be robust to the difference in spatial locations of two time-
series sequences compared with conventional similarity measures such as Dynamic Time 
Warping (Berndt & Clifford, 1996). 
In order to evaluate the usefulness of a stream based on AMSS, we consider a C-class 
multistream time-series data classification problem. We assume that the input data consist 
of several examples. An example x  contains a set of streams, which are described by vector 

sequences, and is represented as )},,(),,,{(},,{ 1111

1

1 ppqpq

p xxxxxxx
fAfAfAfA == , where p  

is the number of streams, rsx
f

 is the s-th vector in the r-th stream, and kq  is the length of the 

k-th stream. Each example has the class label )},,1{( Cyy A∈ . We represent a multistream 

time-series data set as )},(,),,{( 11 mm yxyx A wherem is the number of examples. 

To define a criterion to evaluate the usefulness of a stream, we assume that examples with 
the same class label have similar streams while examples with different class labels have 
dissimilar streams. The streams which satisfy these assumptions are useful to classifying 
examples accurately because if these assumptions are satisfied, the examples can be 
appropriately separated into each class. Thus, we measure the similarity between arbitrary 
combinations of two streams and, by determining whether the streams satisfy these 
assumptions, find the optimal streams. 

According to the first assumption, we first define the similarity )(nSS  among the examples 

which have the same class label for each stream ( pn ,,1A= ) as follows: 
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jnix
f

 corresponds to the i-th vector in the n-th stream nix
f

 of the j-th example jx . 

),( n

l

n

k xxAMSS  denotes the similarity between n

kx  and  n

lx  as calculated by AMSS. Due to 

space limitations, we do not show the details of AMSS here. The detailed algorithm of AMSS 

is described in (Nakamura et al., 2007). In equation (12), the coefficients )( n

kxw  and )( n

lxw  

are used as weights. In order to utilize informative streams, we introduce these weights. We 
show an example in Fig. 8. 

In Fig. 8, 
1

ix  is similar but not identical to 1

jx . On the other hand, 
2

ix  and 2

jx  are identical. 

Thus, the similarity between 
2

ix  and 2

jx  is higher than that between 
1

ix  and 1

jx . From the 

viewpoint of information theory, however, the entropy of 
1

ix  and 1

jx  is much higher than 

those of 
2

ix  and 2

jx . Thus,
1

ix  and 1

jx  are more informative and represent the characteristics 

of streams. As a result, comparing 
1

ix  with 1

jx   is more effective than comparing 
2

ix  and 
2

jx . Since the weights in equation (12) reflect the information contained in each stream, 

introducing the weights enables the utilization of informative streams. 
 

xi
1

xj
1

xi
2

xj
2

 

Fig. 8. Informative streams (left) and uninformative streams (right). 

Next, with respect to the second assumption, we define the similarity )(nDS  for each 

stream among the examples which have different class labels as follows: 
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In the calculation of )(nDS , we do not use weights. Without weighting, uninformative 

streams as shown in Fig. 8 make the value of )(nDS  higher, and a higher )(nDS  means 

that the stream is less useful. Consequently, the streams are regarded as useless streams. 

Based on )(nSS  and )(nDS , we define the usefulness of the n-th stream )(nU  by the 

following equation: 

 .
)(

)(
)(

nDS

nSS
nU =   (17) 
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Using equation (17), we can estimate the usefulness of each stream. However, multistream 

time-series data generally contain a number of streams, with the number of possible 

combinations of the streams exponentially increasing as the number of streams increases. 

Thus, selecting useful streams is a difficult task. In order to determine the optimal number 

of streams, we propose an effective method based on the idea of class separability 

mentioned in Section 3.2. For the stream selection, the class separability is defined as 

follows: 
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where k

jie ,  denotes the number of examples whose class labels are i and which are classified 

into the class  j using the k most useful streams (i.e. streams that have the k highest values of 
usefulness). Based on the class separability, we determine the optimal number of streams 

*k  so that the following evaluation function is maximized: 
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That is, *k  streams should be selected where *k  is the number of streams which maximizes 

the products of )(cs k+  and )(cs k−  for each class. When classifying an unseen example x, the 

predicted class label y is given by 
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where 
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and cm  is the number of examples whose class labels are c. 

4.4 Experiment 

For the evaluation of the proposed method, we perform two types of experiments. In the 

first experiment, we verify the usefulness of our feature construction and feature selection 

methods by comparing the recognition performance using the streams selected by the 

proposed method with the performance using the streams defined to be useful by FACS. We 

then apply our collaborative ensemble learning framework to a facial expression recognition 

problem and assess the effectiveness through the second experiment. 
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The motion data used in this experiment are obtained using the optical motion capture 
system HiRES (4 cameras) by Motion Analysis company. The motion data has a sampling 
frequency of 60Hz and a length of 5 seconds. Thus, a total of 300 frames are used per 
markers. We divide these frames into 30 groups, so that each group contains 10 frames, then 
generate time-series data for each stream whose length is 30 by averaging the frames in each 
group. Since we use the time-series data of horizontal and vertical movement of the 
markers, each stream consists of 2-dimensional time-series data. The motion data contains 
four types of expressions: Surprise, Anger, Happiness, and Sadness. Thus, the classification 
task is to distinguish these four expressions (i.e., a 4-class classification problem). 

4.4.1 Comparison with FACS 

We carry out several facial expression recognition experiments using facial expression data 
from five subjects. For each subject, we obtain 24 examples (6 examples for each expression), 
for a total of 120 examples. We perform 5-fold cross-validation using 96 examples as training 
examples and 24 examples as test examples. In addition, we perform person-independent 
and person-dependent experiments. A person-independent experiment is an experiment in 
which the training set consists of examples from four subjects and the test set consists of 
examples from the remaining one subject. In a person-dependent experiment, the training 
set and test set include examples from the same subject (but not identical examples). 
For the collaborative ensemble learning, we construct four base learners which are 
specialized to recognize Surprise, Anger, Happiness and Sadness. These base learners were 
generated using the following equation instead of equation (16). 
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where c is the class label (that is, Surprise, Anger, Happiness, or Sadness). To classify an unseen 
example, we perform weighted voting using these four base learners and using their class 
separability as weights. For the comparison with FACS, we construct four base learners 
based on the stream defined by FACS and integrate them using weighted voting. We show 
the result of experiment in Table 5. 
 

Method Avg. # of streams Surprise Anger Happiness Sadness Total 

Person-independent 

Proposed 24.3 100 63.3 86.7 73.3 80.8 

FACS 17.0 100 43.3 66.7 60.0 67.5 

Person-dependent 

Proposed 27.4 100 83.3 90.0 76.7 87.5 

FACS 17.0 100 60.0 73.3 80.0 78.3 

Table 5. The recognition accuracy of the proposed method and FACS (in %). 

Our method outperforms FACS in all expressions except for Surprise and total recognition 
accuracy. Since Surprise is most discriminative expression because of the intensive 
movement of facial muscles, both methods perfectly classified the example of Surprise. On 
the other hand, because distinguishing Anger from the other expressions is relatively 
difficult, the recognition accuracy for Anger is generally lowest. From this result, we verify 
the effectiveness of our feature construction and selection method. 
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The number of selected streams of our method is quite larger than that of FACS. For 
example, in the person-independent experiment, the average numbers of selected streams 
for Surprise, Anger, Happiness and Sadness are 26.4, 19.0, 27.4, and 24.2, respectively. Thus, the 
overall average number of selected streams is 24.3. We show an example of selected streams 
for the person-independent experiment in Fig. 9. 
As for Anger and Sadness, most streams are regarded as useful streams while the number of 
streams defined by FACS is relatively small. This is because Anger and Sadness are more 
difficult to classify correctly than the other two expressions.  In fact, the recognition accuracy 
for Anger and Sadness is relatively low. The number of selected streams for Surprise and 
Happiness is smaller than for the other expressions, but larger than those of FACS. This result 
implies that most AUs can contribute to the discrimination of facial expressions. 
 

 

Fig. 9. Example of selected streams for each expression. 

Although the recognition performance of our method is higher than that of FACS, the 
number of streams used is also higher than that of FACS. Since this may be unfair, we 
perform a recognition experiment using the same number of streams as FACS. We show the 
result in Table 6. 
 

 Surprise Anger Happiness Sadness Total 

Person-dependent 100 56.7 90.0 80.0 81.7 

Person-independent 100 83.3 83.3 66.7 83.3 

Table 6. The recognition accuracy of the proposed method using the same number of 
streams as FACS (in %). 

Compared with the recognition accuracy of FACS in Table 5, our method fully achieves high 

recognition performance. Thus, we confirm the advantage of employing the streams 

selected by our method over the streams defined by FACS. In the person-dependent 

experiment, the recognition accuracy is higher than the accuracy shown in Table 5. 

Generally, person-independent problems are more difficult than person-dependent 

problems because the distributions of training set and test set can be considerably different. 

Therefore, we should introduce a method of more accurately estimating the distribution of 

the test set. However, there is no significant difference between the recognition accuracy of 

the person-independent cases in  Table 5 and Table 6 under the t-test with a 5% significance 

level. This result indicates that our method is able to find the sub-optimal combination of 

streams which is comparable to the optimal combination with respect to recognition 

performance. Therefore, our feature selection method seems to be fully effective. 
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4.4.2 Verification of the effectiveness of collaborative ensemble learning 

We introduce our collaborative ensemble learning framework, as shown in Section 3. We 
use the aforementioned four base learners and train them according to the collaborative 
ensemble learning algorithm shown in Section 3.2. The prediction of the resulting ensemble 

classifier )(xf for a given example x is determined based on equation (5) as follows: 

 ∑
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where 321 ,, τττ YYY  and 4

τY  correspond to the hypotheses generated at the τ -th round by the 

base learners for Surprise, Anger, Happiness and Sadness, respectively. )4,3,2,1( =ls lτ  

represents the class separability for each base learner and is calculated by equation (4). We 
perform a person-independent experiment with 100 rounds of learning. The result of our 
experiment is shown in Table 7. 
 

Collaborative ensemble learning 

1 round 5 rounds 10 rounds 20 rounds 50 rounds 100 rounds 

Weighted 
voting 

81.5% 81.5% 82.5% 83.0% 85.0% 85.2% 80.8% 

Table 7. Recognition accuracy by collaborative ensemble learning and weighted voting. 

The recognition accuracy is proportional to the number of rounds. Although the recognition 
accuracy of the collaborative ensemble learning method is slightly higher than that of the 
weighted voting method in early rounds, the difference is significant after approximately 
the 50th round. This result shows that the interaction of multiple base learners is effective in 
dealing not only with image data but also with multistream time-series data. From this 
result, we confirm the flexibility of our learning model. 
These experimental results show that the streams selected by the proposed method lead to 
better recognition results than the streams defined by FACS. The results reflect the 
effectiveness of our method as a data-mining framework in facial expression recognition. 
However, there is room for improvement in the determination of the optimal combinations 
of streams in the person-independent case. Thus, we should try to estimate the distribution 
of each stream more accurately and improve the performance of our stream selection 
method. In addition, we verify the applicability of our collaborative ensemble learning 
framework to facial expression recognition problems. In the experiment, the difference 
between the recognition accuracy at the 50th round and that at the 100th round is 
insignificant although the computational complexity differs considerably. However, the 
number of rounds is determined experimentally. In order to improve the learning efficiency, 
a method of automatically determining the optimal number of rounds is needed. 

5. Visual learning revisited 

The performance of a visual learning model is closely related to (1) the learning model and 
(2) features. We refer to several visual learning methods shown in Table 8 from these two 
viewpoints. 
At an early stage of the study of visual learning, a successful object detection method was 
proposed based on AdaBoost (Viola & Jones, 2001). In this method, a cascade classifier, 
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which is a kind of ensemble classifier, is constructed. An example of a cascade classifier for 
facial recognition is shown in Fig. 10. 
 

Reference Learning model  Features 

Viola and Jones, 2001 

 

Cascade classifier 
+ AdaBoost  

Primitive feature 
+ feature selection 

Marée et al., 2005 
 

Decision tree  
+ ensemble learning  

Primitive feature 

Krawiec and  
Bhanu, 2003 

Evolutionary computation 
+ closed-loop learning  

Feature construction 
+ feature selection 

Proposed method Collaborative learning 
+ modular approach  

Feature construction 
+ feature selection 

Table 8. Visual learning models. 

 

...C1 C2 Cn

recognized as non-face

face face face recognized
as faceinput image

non-face non-face non-face

 

Fig. 10. An example of cascade classifier. 

In Fig. 10, iC  ( i = 1, 2, … , n , where n  is the number of base classifiers) represents the base 

classifier. For a facial recognition task, if all the base classifiers classify the given image as a 

face image, then the image is recognized as a face image. Otherwise, the given image is 

recognized as a non-face image. This recognition process is efficient because, when a given 

image is classified by a certain classifier as a non-face image, subsequent classifiers are not 

used. In addition, the cascade classifier is able to select a small number of useful features 

from a large number of extracted features and can thus quickly and accurately detect 

objects. However, the features used in this method are primitive features because they are 

obtained only from pixel intensity values. Moreover, all the base learners use the same 

features, called Harr-like features. Since recognition performance is greatly dependent on 

the representational ability and diversity of the features (i.e., various types of high-level 

features are required), this method seems to be insufficient to describe and recognize 

complex objects. In addition, the learning model of this method is rather simple because it 

only optimizes the parameters used in AdaBoost rather than constructing or selecting 

features. Therefore, this method can be regarded as the most primitive visual learning 

model. 

To utilize multiple features effectively, the ensemble approach has already been introduced 

into visual learning. For example, in (Marée et al., 2005), an ensemble classifier is 

constructed using decision tree classifiers as base learners. The learning model of this 

method is shown in Fig. 11. In Fig. 11, iT  ( i = 1, 2, …, n , where n  is the number of base 

learners) represents the base learner (i.e., decision tree classifier). The learning result of each 

base learner is integrated into an ensemble classifier using weighted voting by all base 

learners. However, in this ensemble approach, the base learners are separately constructed 
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with only their learning results integrated. Thus, there is no interaction among the base 

learners. In addition, all visual learners are based on the same primitive features directly 

obtained from the color information of each pixel. Since the performance of the ensemble 

approach tends to be proportional to the diversity of features, higher-level features are 

needed from the viewpoints of the flexibility and accuracy of recognition. 
 

T1 T2 Tn. . .

ensemble classifier

input image

integrate learning results

L1 L2 Ln

L1 Ln~
 

Fig. 11. Ensemble visual learning model. 

As a principal learning structure of human visual systems, Krawiec et al. introduced a 

closed-loop learning scheme based on evolutionary computation (Krawiec & Bhanu, 2003). 

In this method, high-level features are constructed from the given primitive features (the 

intensity values of pixels) by combining several image processing operations, such as image 

filtering and the application of mathematical or logical computation for some pixels. In 

order to construct appropriate high-level features, the optimal combination of image 

processing operations is sought through the learning loop. In the learning loop, the 

combination of image processing operations is determined and its effectiveness is evaluated 

using evolutionary computation. The learning framework is shown in Fig. 12. 
 

evolutionary
computation feature evaluation

training examples

S

E

S*

learning loop

S : sequence of image processing operations
E : evaluation of S

S  : optimal sequence of image processing operations*

 

Fig. 12. Evolutionary (closed-loop) visual learning model. 

The process of constructing and evaluating features is iteratively performed during the 

learning process. The evaluation of the constructed features is fed back to the evolutionary 

computation algorithm and better features then searched. Finally, the best feature *S is 

output at the end of learning process. This feature construction strategy represents a 

sophisticated learning framework that is consistent with human visual learning process. 

However, the effectiveness of the feature construction method is dependent on the 
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predefined image processing operations, and the determination of appropriate image 

processing operations is an open problem. The proposed visual learning approach has the 

properties of modularity and closed-loop learning, both essential properties in human visual 

systems; thus, they make the proposed method more efficient than conventional visual 

learning methods. However, our method still has the following two main problems.  

The first problem is related to features. In the facial expression recognition, we propose a 

feature construction method based on stress estimation. Additionally, we propose a feature 

selection method based on the evaluation of the usefulness of each stream. We verify the 

effectiveness of our method through the comparison of its recognition performance with 

that of FACS. However, the experimental result shows that our feature construction and 

selection methods cannot always find the optimal combination of streams. This implies that 

our method is rather simple because we construct higher-level features for each stream 

separately. A facial expression is represented by the complex movements of several points 

on a face. This means that multiple streams are mutually correlated. Therefore, we should 

improve the feature construction process so that the higher-level features are constructed by 

integrating multiple streams which are mutually correlated. More generally, we should 

further analyze human visual systems and attempt to model them in order to develop 

satisfactory feature construction frameworks for various visual recognition problems. The 

second problem with our method resides in the representation of knowledge obtained 

through the learning process. Our method can provide the knowledge for the recognition of 

visual data as the useful features. This knowledge can be used for data mining, but in order 

to utilize the learning results of our method fully in some data mining domains, the 

knowledge should be systematized by analyzing and organizing it in the learning process. 
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