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Abstract

In vivo free radical imaging in pre-clinical models of disease is now possible. Free radicals 
have traditionally been characterized by ESR or EPR spin trapping spectroscopy. The dis-
advantage of the ESR/EPR approach is that spin adducts are short-lived due to biological 
reductive and/or oxidative processes. Immuno-spin trapping (IST) involves the use of an 
antibody that recognizes macromolecular DMPO-spin adducts (anti-DMPO antibody), 
regardless of the oxidative/reductive state of trapped radical adducts. The IST approach 
has been extended to an in vivo application that combines IST with molecular magnetic 
resonance imaging (mMRI). This combined IST-mMRI approach involves the use of a 
spin trapping agent, DMPO, to trap free radicals in disease models, and administration of 
a mMRI probe, an anti-DMPO probe, that combines an antibody against DMPO-radical 
adducts and a MRI contrast agent, resulting in targeted free radical adduct detection. The 
combined IST-mMRI approach has been used in several rodent disease models, includ-
ing diabetes, ALS, gliomas, and septic encephalopathy. The advantage of this approach 
is that heterogeneous levels of trapped free radicals can be detected directly in vivo and 
in situ to pin-point where free radicals are formed in different tissues. The approach can 
also be used to assess therapeutic agents that are either free radical scavengers or gener-
ate free radicals. The focus of this review will be on the different applications that have 
been studied, advantages and limitations, and future directions.

Keywords: immuno-spin trapping (IST), molecular magnetic resonance imaging 
(mMRI), targeted free radical imaging, in vivo, diabetes, amyotrophic lateral sclerosis 
(ALS), glioma, septic encephalopathy, mice, rats
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1. Introduction

1.1. Free radicals in various diseases

Reactive oxygen and nitrogen species (RONS) lead to structural and functional modifica-

tions of cellular proteins and lipids, resulting in cellular dysfunction, such as impaired energy 

metabolism, altered cell signaling and cell cycle control, impaired cell transport processes and 

dysfunctional biological activities, immune activation, and inflammation [1]. RONS can be 

involved in several disease processes as causative agents or result as an effect of the pathogen-

esis. It is well known that free radicals play a role in the pathogenesis associated with various 

diseases such as diabetes, septic encephalopathy, neurodegenerative diseases, and cancers, to 

mention a few.

Nutritional stress, that for instance may result from excessive high-fat and/or carbohydrates, 

can promote oxidative stress, subsequently forming lipid peroxidation products, protein car-

bonylation, as well as decreased antioxidant levels [1]. Chronic oxidative stress and inflam-

mation, both associated with obesity, can lead to insulin resistance, dysregulated metabolic 

pathways, diabetes and cardiovascular diseases, via impaired signaling and metabolism that 

result in insulin secretion dysfunction, insulin action, and immune responses [1]. In type 1 

diabetes mellitus, RONS released from phagocytes may damage adjacent cells, which can lead 

to excessive inflammation and an autoimmune attack against pancreatic islet β-cells, and con-

tribute to a rapid progression of pathogenesis [1]. Immune system-associated enzymes (such 

as NADPH oxidase) can trigger the formation of reactive oxygen species (ROS) [1]. Excessive 

glucose and lipid levels, endocrine factors and numerous pro-inflammatory cytokines are 
known to activate NADPH oxidase [1]. Pro-inflammatory cytokines can also upregulate nitric 
oxide synthase 2 (NOS2), producing excessive nitric oxide, which can subsequently lead to 

the formation of peroxynitrite, and lead to further oxidative stress [1]. In Type 2 diabetes mel-

litus, excessive RONS production from chronic hyperglycemia increases oxidative stress in 

tissues that exacerbate the disease, such as pancreatic islets, muscle, adipose and hepatic, as 

well as influences secondary diabetic complications, including nephropathy, vascular disease 
and retinopathy, leading to oxidized lipids and proteins [1, 2].

Sepsis-associated encephalopathy pathophysiology is still poorly understood, but a number 

of mechanisms-of-action (MOA) have been proposed, including mitochondrial and vascular 

dysfunction, oxidative damage, neurotransmission disturbances, inflammation, and cellular 
death [3, 4]. Oxidative stress is a central MOA of acute brain damage [3]. Systemic inflamma-

tion induces mitochondrial dysfunction, which is involved in both apoptotic and necrotic cell 

death pathways, and increased glucose uptake by brain tissues, which results in the diversion 

of glucose to the pentose phosphate pathway that may contribute to oxidative stress by produc-

ing excessive superoxide radicals via NADPH oxidase [3, 4]. In addition, microglia activation 

results in the secretion of nitric oxide, ROS (reactive oxygen species) and matrix metallopro-

teinases (MMPs) that can all contribute to blood-brain barrier (BBB) and neuronal damage [3]. 

Regarding brain dysfunction in sepsis, it is thought that RONS, generated during a systemic 

inflammatory response, triggers lipid peroxidation due to a decreased antioxidant activity [4].  

Free radical-induced structural membrane damage also induces neuro-inflammation [4].  

Free Radicals, Antioxidants and Diseases6



The formation of excessive superoxide radicals also depletes ambient nitric oxide in the cere-

brovascular bed, forming peroxynitrite, which irreversibly inhibits the mitochondrial electron 

transport chain, resulting in an increase in mitochondrial release of free radicals, and leads to 

mitochondrial dysfunction and neuronal bioenergetics failure [4]. Additionally, free radicals 

trigger apoptosis via altering intracellular calcium homeostasis in brain regions such as the cere-

bral cortex and hippocampus, further exacerbating local inflammatory responses further [4].

Oxidative stress has been proposed as a contributory factor in the pathogenesis of several neuro-

degenerative diseases [5]. For instance, in familial ALS (amyotrophic lateral sclerosis) (account-

ing for 5–10% of ALS cases) there is a mutation in superoxide dismutase 1 (SOD1) which results 

in dysfunctional superoxide radical clearance, leading to increased oxidative stress [5]. NADPH 

oxidases have emerged as possible drug targets for the treatment of neurodegeneration, due to 

their role in generating oxidants and also regulating microglia activation [6].

In cancer cells, RONS accumulation can result in damaging DNA, directly through an increase 

in cellular mutations and/or increase in oncogenic phenotypes, or indirectly by acting as sec-

ondary messengers intracellular signaling cascades [7]. It is thought that impaired cellular 

repair mechanisms induced by RONS oxidative stress on DNA can lead to cell injury and 

subsequently to genomic instability, mutagenesis and tumorigenesis [7]. It is also known that 

ROS can promote cell proliferation activating growth-related signaling pathways [7]. ROS 

may be involved in the multistep oncogenesis process at various different phases related 
to tumor initiation and progression, ROS-related mechanisms during tumor promotion, 

maintenance of the transformed state through extracellular superoxide radical formation by 

NADPH oxidase 1, and resistance to oxidative stress signals through membrane-associated 

catalase expression [7].

1.2. Spin trapping and ESR/EPR spectroscopy

For over half a century, free radicals were characterized by electron spin resonance (ESR) or 

electron paramagnetic resonance (EPR) spectroscopy coupled with spin trapping. Nitrone spin 

traps (N-oxides of imines), such as PBN (α-phenyl-tert-butyl nitrone), DMPO (5,5-dimethyl-

pyrroline-N-oxide) or 4-POBN (α(4-pyridyl-1-oxide)-N-tert-butyl nitrone), are the most com-

monly used for biological systems [8–18], and have been administered in vivo in various 

pre-clinical disease models [19–22] for several decades.

The disadvantage of the ESR/EPR approach is that the spin adducts (spin trapping agent — 

free radical adducts or aminoxyls) are short-lived due to reductive and/or oxidative processes 

in biological systems [8, 9] (see Figure 1).

1.3. Immuno-spin trapping (IST)

Mason et al. developed an antibody that recognizes macromolecular DMPO spin adducts, 

regardless of the oxidative/reductive state of the trapped radical adducts, and called the 

methodology immuno-spin trapping (IST) [23–28] (see Figure 2 for an illustrative descrip-

tion), that has been applied in over 80 publications. The anti-DMPO antibody is attached to a 
fluorescent dye, allowing the in vitro or ex vivo detection of trapped DMPO-radical adducts, 
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either as the free radical (aminoxyl), reduced or oxidized products, with fluorescence micros-

copy, regardless of whether they are EPR detectable or not.

1.4. Combined IST and molecular MRI (mMRI) detection of in vivo and in situ free 

radicals

Towner et al. extended the fluorescence in vitro/ex vivo approach to an in vivo approach that 

involves the use of immuno-spin trapping (IST) in conjunction with targeted molecular 

magnetic resonance imaging (mMRI), currently published in six publications [29–34]. This 

Figure 1. Spin trapping agents (nitrones) can be used to trap free radical compounds (R•) to form a spin adduct 

(nitroxide or aminoxyl), which are detected by EPR spectroscopy. However, in biological systems spin adducts can be 

either reduced (R’H) or oxidized ([O]). Reduced or oxidized spin adducts are EPR silent.

Figure 2. Immuno-spin trapping (IST) involves tagging a fluorescent-labeled-anti-DMPO antibody to DMPO-spin 
adducts (either as the free radical (aminoxyl), reduced or oxidized products, i.e. regardless of whether they are EPR 

detectable or not). The “F” designates a fluorescent dye.

Free Radicals, Antioxidants and Diseases8



involves the use of a spin trapping agent, DMPO, which is used to trap free radicals in an 

oxidative stress-related disease model, and administration of a mMRI probe, called an anti-

DMPO probe (see Figure 3), that combines an antibody against DMPO-radical adducts and a 

MRI contrast agent, resulting in targeted free radical adduct mMRI (see Figure 4 for methodol-

ogy scheme). The contrast agent used in the Towner approach includes an albumin-Gd-DTPA 

(gadolinium diethylene tri-amine penta-acetic acid)-biotin construct, where the anti-DMPO 

antibody is covalently linked to the cysteine residues of albumin, forming an anti-DMPO-

adduct antibody-albumin-Gd-DTPA-biotin entity. The Gd-DTPA moiety acts as the MRI 

signaling component, which will increase MRI signal intensity (SI) in a T
1
-weighted morpho-

logical MR imaging sequence, and decrease T
1
 relaxation in a T

1
 map image. Both of these 

parameters, MRI SI or T
1
 relaxation) can be used to assess the presence of the anti-DMPO 

probe. The biotin moiety can be used for ex vivo validation of the presence of the anti-DMPO 

probe in tissues, by using a streptavidin-fluorescent dye (e.g. Cy3) or streptavidin-HRP (horse 
radish peroxidase) to tag the biotin in the anti-DMPO probe.

1.5. Other approaches used to detect in vivo and in situ free radicals in animal 

models and cells

It is well known that intensity-based fluorescent methods (particularly 2′,7′-dicholorofluo-

rescin [DCFH]) for ROS (includes the non-radical hydrogen peroxide) detection/quantifi-

cation are sensitive and readily used, however, these agents lack the specificity for ROS or 
reactive nitrogen species (RNS), and often produce artifacts resulting in false-positive signals 

[35, 36]. An interesting recent study by Liu et al. used a new fluorescent probe, MPT-Cy2, 
which can be used to detect endogenous in vivo hydroxyl radicals in cells and zebrafish [37]. 

MPT-Cy2 becomes a fluorescent product, OMPT-Cy2, when it binds hydroxyl radicals [37]. 

In a similar fashion, Hu et al. reported on a fluorescent probe, HKSOX-1, for the imaging and 

Figure 3. Illustration of the anti-DMPO probe, consisting of an albumin link that binds a MRI contrast agent, Gd-DTPA 

(for detection by MRI), the anti-DMPO antibody (Ab) (that binds to DMPO-free radical adducts), and biotin (that can be 

used for ex vivo fluorescence microscopic imaging). Modified from Gomez-Mejiba et al. [28].
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http://dx.doi.org/10.5772/intechopen.74106

9



detection of endogenous in vivo superoxide in cells and zebrafish embryos [38]. A fluores-

cence probe, o-phenylene diamine-Phe-Phe-OH, has also been developed for the detection of 

nitric oxide (NO), and used in living cells [39]. Another fluorescence probe, LyNP-NO, was 
used to detect NO in C6 glioma cells [40]. It was also found that single-walled carbon nano-

tubes have fluorescent properties, and have been used to detect in vivo levels of NO, which 

quenches the fluorescence signal, in mice [41]. However, for most of the fluorescence probes 
in vivo applications will be limited to a depth-of-penetration detection of the fluorescence 
signal and may only be applicable to small animal models.

Another group, Li et al. used a near infrared (NIR)-light excited luminescence resonance 

energy transfer based nanoprobe for in vivo detection of hydroxyl radicals [42]. NIR fluo-

rescence probes (Hcy-Mito and Hcy-Biot) were also recently used for the in situ detection of 

superoxide anion and hydrogen polysulfides in living cells and in mouse tumor models [43]. 

Also, a phosphinate-based NIR fluorescence probe, CyR, was recently also used to detect 
superoxide radical anion in vivo within zebrafish [44]. NIR-fluorescent single-walled carbon 
nanotubes have also been used to detect in vivo NO levels in mice [45]. It should be pointed 

out, however, that there is ESR spectroscopy evidence for in vivo formation of free radicals in 

the tissues (lungs, heart and liver) of mice exposed to single-walled carbon nanotubes with 

no oxidative stress [46].

Rayner et al. used a reversible pro-fluorescent probe containing a redox sensitive nitroxide 
moiety (methyl ester tetraethylrhodamine nitroxide, ME-TRN) for the in vivo detection of 

retinal oxidative status within rat retina following acute ischemia-reperfusion injury [47]. 

Figure 4. Combined IST and free radical-targeted molecular MRI (mMRI) approach. Initially mice are administered 

DMPO (i.p.) to trap free radicals resulting from an oxidative stress-associated disease or process. Any cell membrane-

bound radicals (e.g. oxidized proteins or lipids) can then be detected with the anti-DMPO probe (administered via a 

tail-vein catheter). Modified from Towner et al. [29].
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Another interesting approach using nitrone functionalized gold nanoparticles (Au@EMPO, 

EMPO = 2-(ethoxycarbonyl)-2-methyl-3,4-dihydr-2H-pyrrole 1-oxide)) to trap hydroxyl radi-

cals was demonstrated by Du et al. [48] and may be potentially important for pre-clinical in 

vivo applications in combination with micro-computed tomography (CT).

Recent studies by Berkowitz et al. have used quench-assisted (Quest) 1/T
1
 MRI to measure 

oxidative stress changes in rodent models [49, 50]. Quest MRI detected pathologic free radi-
cal production in MnSOD (manganese superoxide dismutase) knockout mouse retinas with 

laminar resolution in vivo, where in particular dark-adapted RPE-specific MnSOD knockout 
mice had elevated 1/T

1
 values in the outer retina, compared to relevant controls [49] The Quest 

MRI technique was also used to report on high levels of free radicals in the hippocampus 

region in mouse models for neurological diseases such as Alzheimer’s disease and Angelman 

syndrome [50]. However, it should be noted that paramagnetic oxygen [49–51] and hydrogen 

peroxide [50, 51] can also provide a dominant 1/T
1
 contrast effect, which could complicate the 

interpretation of the presence of free radicals. In addition, temperature and pH also can influ-

ence the rates of proton exchange which will also affect 1/T
1
 contrast [52, 53]. Nonetheless, 

Quest MRI is an interesting approach that provides information on total free radical burden, 
somewhat similar to the combined IST and mMRI approach, but without the use of a MRI 

contrast agent [49, 50].

Endogenous reactive oxygen species (ROS) contrast MRI was also recently used by Tain et al. 

to detect ROS (measured as a reduction in T
1
) in rotenone-treated mouse brains [51]. Another 

study by Eto et al. used in vivo nuclear polarization MRI (DNP-MRI) with nitroxyl radicals 

(carbamoyl-PROXYL (cell permeable) and carboxy-PROXYL (cell impermeable)) to assess 
the redox status (measured as an increase in image intensity) in the skeletal muscle of mice 

that had an acute local inflammation (induced with i.m. injection of bupivacaine) [54]. The 

signal decay of carbamoyl-PROXYL in bupivacaine-exposed mice was confirmed by in vivo 

L-band EPR spectroscopy [54]. The nitroxyl radical probes, are paramagnetic which broaden 

the MRI signal, bind free radicals, and thus results in an increase in MRI signal intensity [55]. 

Another group used DNP-MRI to visualize endogenous free radical intermediates of FMNH 

(flavin mononucleotide-hydrogen) and FADH (flavin adenine dinucleotide-hydrogen) in 

vitro [56], which could potentially be detected in vivo in the future. DNP-MRI, also used for 

PEDRI (proton electron double-resonance imaging) or OMRI (Overhauser enhanced mag-

netic resonance imaging), is a relatively new imaging approach for detecting free radical spe-

cies in vivo [57, 58]. Yamamoto et al. recently developed a combined PET (positron emission 
tomography)/OMRI system to detect radionucleotide and nitroxyl radical probes for small 

animal imaging [59].

1.6. Overall scope

The focus of this review is on in vivo and in situ IST-mMRI applications in different experi-
mental oxidative stress-associated animal disease models that have been studied, advan-

tages and limitations of the technique, and future directions in further applications, 

improvements on the methodology that can be made, and subsequent free radical identifi-

cation approaches.
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2. In vivo and In situ targeted free radical detection: various models

The combined IST-mMRI approach has been used in several in vivo disease models, including 

multi-tissue assessment in diabetic mice [29] (see Figure 5) with further assessment of cardio-

myopathy [30] (see Figure 6), and in neurological applications, such as rodent models septic 

encephalopathy [31] (see Figure 8), for amyotrophic lateral sclerosis (ALS) [32] (see Figure 7), 

and gliomas [33], to target in vivo and in situ free radical detection.

2.1. Diabetes

The initial proof-of-concept combined IST and mMRI approach to detect in vivo free radi-

cals was assessed in a STZ (streptozotocin)-induced diabetes model in mice. From this study, 

all major organs excluding the heart, such as the lungs, liver and kidneys, were assessed 

regarding levels of trapped in vivo and in situ DMPO-radical adducts [29]. Figure 5 depicts 

the data obtained in the liver of diabetic (STZ-induced) and non-diabetic mice (wild-type 

Figure 5. Combined IST and free radical-targeted mMRI in a STZ-induced mouse diabetic model. (A) In vivo anti-DMPO 

probe distribution map (based on MRI signal intensity (SI) change). Anatomical assignments: ln = lung, h = heart, 

s = stomach, lv = liver, k = kidney, i = intestine, and b = bladder. (B) Stretavidin-Cy3 biotin-tagged ex vivo liver image 

in Diab mice. (C) iNOS immunohistochemistry (IHC) from the liver of a diabetic mouse. (D) Fluorescence intensity of 

iNOS IHC in non-diabetic (control) and diabetic mouse livers. N = 5 for each. (E) Percent (%) change in MRI SI in diabetic 

mice administered DMPO + anti-DMPO probe (Diab), DMPO + a non-specific IgG contrast agent (Cont), saline + anti-
DMPO probe (Sal), and wild-type non-diabetic mice administered DMPO + anti-DMPO probe. N = 5 for each group. (F) 

Fluorescent-IST image of the liver of a diabetic mouse. Modified from Towner et al. [29].

Free Radicals, Antioxidants and Diseases12



mice not administered STZ), and appropriate controls (e.g. diabetic mice given saline rather 

than DMPO plus the anti-DMPO probe — spin trap control; or a diabetic mouse administered 

DMPO, but given a non-specific IgG contrast agent [IgG-albumin-Gd-DTPA-biotin] instead 

Figure 6. Combined IST and free radical-targeted mMRI in a STZ-induced mouse diabetic heart. (A) MR image of a 

mouse heart with an in vivo anti-DMPO probe cardiac map overlay (based on MRI SI change). Anatomical assignments: 

1 = lung, 2 = left ventricle chamber, 3 = cardiac muscle, 4 = liver, and 5 = thoracic muscle. (B) Percent (%) change in MRI 

SI in diabetic mouse hearts after administered DMPO + anti-DMPO probe (Diab+D + P), DMPO + a non-specific IgG 
contrast agent (Diab+D + IgG), and non-diabetic mice administered DMPO + anti-DMPO probe (nDiab+D + P). N = 5 

for each group. (C) Stretavidin-Cy3 biotin-tagged ex vivo cardiac image in Diab mice. (D) Fluorescent-IST image of the 

heart of a diabetic mouse. (E) 3-Nitrotyrosine (3-NT) adducts and (F) malondialdehyde (MDA) ELISAs from the hearts 

of diabetic and non-diabetic mice. N = 5 for each. Modified from Towner et al. [30].
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of the anti-DMPO probe). (Figure 5) Diabetic mice that were administered DMPO and the 

anti-DMPO probe, had significantly higher levels of the anti-DMPO probe (detected by an 
increase in percent (%) change in MRI SI), than non-diabetic mice or diabetic mouse controls, 

in their lungs, kidneys and livers (see Figure 5A for overall distribution of the anti-DMPO 

probe in a horizontal image; and Figure 5E for quantitative liver data). A post-contrast image 

minus a pre-contrast image was obtained, and the gray-scale image was false-colored red, and 

overlaid on top of the morphological image. Non-specific biodistribution of the anti-DMPO 
was also found in the stomach, intestines, and bladder (Figure 5A). From kinetics assessment, 

it was found that the anti-DMPO probe persisted in certain tissues (e.g. lungs, liver and kid-

neys) for over 3 hours. Verification of the presence of the anti-DMPO probe in ex vivo tissues 
was done by using streptavidin-Cy3 which bound to the biotin moiety of the anti-DMPO 

probe (see Figure 5B for example in liver tissue). It was also confirmed that DMPO-radical 
adducts were formed by using a fluorescent-anti-DMPO antibody (IST approach) in diabetic 
(see Figure 5C) and non-diabetic mouse livers. In addition, inducible nitric oxide synthase 

(iNOS) levels were assessed in the livers of diabetic and non-diabetic mice (see Figure 5D 

for immunohistochemistry (IHC) detection of iNOS in a diabetic mouse liver; and Figure 5F 

for quantitative levels of iNOS in diabetic and non-diabetic mouse livers) as an additional 

marker of oxidative stress. This was the first in vivo study to demonstrate that diabetic mice 

had elevated in situ free radical levels in organs/tissues such as the lungs, liver and kidneys.

Figure 7. Combined IST and free radical-targeted mMRI in a septic encephalopathy CLP-induced mouse model. (A) 

In vivo anti-DMPO probe brain map of a septic mouse (based on MRI SI change). (B) Stretavidin-Cy3 biotin-tagged ex 

vivo septic brain image. (C) Fluorescent-IST image of the septic brain of a mouse. (D) Percent (%) T1 relaxation change 

in septic and sham mice administered DMPO + anti-DMPO probe in different brain regions (hippocampus, striatum, 
occipital lobe, and medial cortex). N = 5 for each group. (E) 4-Hydroxynonenal (4HNE) levels from western blots of 

brains of septic and non-septic mice. (F) 3-Nitro-tyrosine (3-NT) levels from western blots of brains of septic and non-

septic mice. N = 5 for each. Modified from Towner et al. [31].
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At a later stage it was found that the cardiac muscle in diabetic mice also retained the anti-

DMPO probe [30] (see Figure 6). A morphological MR image of a mouse heart is shown in 

Figure 6A. The post-contrast minus pre-contrast image in a diabetic mouse with false color-

ation is shown in Figure 6A, overlaid on top of a horizontal morphological image of the heart.

Significantly higher quantitative levels of the anti-DMPO probe in diabetic (Diab) mice 
administered DMPO (D) and the anti-DMPO probe (P) were found when compared to dia-

betic (administered the isotype IgG contrast agent instead of the anti-DMPO probe) and non-

diabetic (non-STZ exposed WT mice administered DMPO and the anti-DMPO probe) controls 

(see Figure 6B). Confirmation of the presence of the anti-DMPO probe in cardiac muscle of a 
diabetic mouse is shown in Figure 6C. Verification of the presence of DMPO-radical adducts 
is shown in Figure 6D, where a fluorescent-labeled anti-DMPO antibody was used. In the 
diabetic cardiomyopathy study, it was also established that diabetic mice had significantly 
higher levels of 3-nitrotyrosine (3-NT) (oxidized protein marker) (Figure 6E) and malondi 

aldehyde (MDA) adducts (oxidized lipid marker) (Figure 6F) in cardiac muscle, when compared  

Figure 8. Combined IST and free radical-targeted mMRI in an ALS mouse model. (A) In vivo anti-DMPO probe map 

(based on MRI signal intensity (SI) change). (B) DMPO probe concentration in ALS mice administered DMPO + anti-

DMPO probe (ALS-D), DMPO + non-specific IgG contrast agent (ALS-C), and wild-type non-ALS mice administered 
DMPO + anti-DMPO probe (non-ALS-D). N = 5 for each group. (C) Diffusion-weighted image of an ALS mouse with 
increased apparent diffusion coefficient (ADC) in lumbar region (outlined). (D) Stretavidin-Cy3 biotin-tagged ex vivo 

spinal cord in ALS-D. (E) Co-localized DMPO probe (red) and neuronal marker (green) fluorescence image in mouse 
spinal cord. (F) Fluorescent-IST image of the spinal cord of an ALS mouse. Modified from Towner et al. [32].
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to  non-diabetic mice. This was the first in vivo study to demonstrate increased in situ free 

radical levels in diabetic cardiomyopathy. The correlation with oxidized lipids and proteins 

was done, as it is suspected that the combined IST and mMRI approach primarily reports on 

macromolecular free radicals that are cell-membrane bound. Mason et al. have previously 

reported on the application of IST to trap oxidized proteins [23–25]. As both an increase in 

oxidized lipids and proteins were detected in diabetic cardiac muscle via ELISA, it is possible 

that the combined IST and mMRI method detects both oxidized lipids as well as proteins. 

Further verification would require a mass spectrometry approach to confirm this assumption.

2.2. Septic encephalopathy

It was then decided to assess the combined IST and mMRI free radical-targeted approach in 

other disease models, such as septic encephalopathy. Mice with septic encephalopathy (induced 

by cecal ligation and puncture (CLP)) were also found to have higher levels of trapped DMPO-

radical adducts compared to sham animals (abdominal incision without CLP and sutured) [31] 

(Figure 7). Figure 7A depicts a MRI SI difference image (false-colored red) overlaid on top of a 
morphological image of the brain region of a septic mouse. Confirmation of the presence of the 
anti-DMPO in the cortical brain tissue of a septic mouse is shown in Figure 7B, and verification 
of DMPO-radical adducts in a septic mouse brain is depicted in Figure 7C. The distribution 

of the anti-DMPO probe is dispersed throughout the brain, and was found to be significantly 
higher in septic mice vs. sham animals in the hippocampus, striatum, occipital lobe and medial 

cortex regions of the brain (Figure 7D), as measured by a % change (overall decrease in T
1
 

relaxation). Oxidized lipid levels (measured from Western blots for 4-hydroxynonenal (4-HNE) 

(Figure 7E) and oxidized protein levels (measured from Western blots for 3-NT) (Figure 7F) 

were found to be significantly higher in septic mice (CLP) after 6 hours, compared to sham 
controls. This study also indicates that both oxidized lipids and proteins may play a role in the 

free radical-associated pathology of ALS. This is the first reported in vivo detection of elevated 

in situ free radicals in a mouse model for septic encephalopathy.

2.3. Amyotrophic lateral sclerosis (ALS)

The combined IST and mMRI approach for detecting in vivo free radicals was extended to 

other neurological disorders, such as ALS. High levels of trapped DMPO-radical adducts 

were also found in a transgenic mouse model for ALS (superoxide dismutase (SOD) muta-

tion) [32] (see Figure 8). As SOD1 plays an important role in O
2
−• clearance, the loss of SOD1 

can lead to increased levels of free radicals [5]. A pre-contrast minus post-contrast difference 
sagittal image is shown in Figure 8A for an ALS mouse, with false coloration depicted in the 

lumbar region of the spinal cord. From T
1
 relaxation values the estimated anti-DMPO probe 

concentration can be obtained, and it was found that ALS mice administered DMPO and the 

anti-DMPO probe (ALS-D) had significantly higher levels of the anti-DMPO probe, compared 
to ALS (administered the IgG contrast agent instead of the anti-DMPO probe) and non-ALS 

(administered both DMPO and the anti-DMPO probe) controls (see Figure 8B). A diffusion-
weighted image is shown in Figure 8C depicting a high signal intensity in the lumbar region 

of the spinal cord. Ex vivo detection of the anti-DMPO probe in the lumbar region of the spinal 

cord of an ALS mouse is shown in Figure 8D. Figure 8E illustrates that a neuronal marker 
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(NrCAM) (green) co-localizes with the location of the anti-DMPO probe (red) in some regions 

(yellow). Confirmation of DMPO-radical adducts is depicted in Figure 8F. This is the first 
direct in vivo detection of elevated in situ free radicals in the lumbar region of ALS-like mice.

2.4. Gliomas

Lastly, the combined IST and mMRI in vivo free radical detection method was applied to 

assess glioma models, both for untreated and anti-cancer agent treated tumors. It was initially 

demonstrated that free radicals can be detected in a GL261 mouse glioma model [33]. The 

DMPO-trapped radicals were found to be heterogeneously distributed primarily in the tumor 

core region, possibly associated with increased cell proliferation [33]. In addition to confirm-

ing the presence of the anti-DMPO probe in glioma tumor tissue and detection of anti-DMPO 

trapped radicals, it was also possible to demonstrate that GL261 gliomas had elevated levels 

of MDA protein adducts and 3-NT, compared to normal mouse brain tissue [33].

Figure 9. Combined IST and free radical-targeted mMRI in a F98 rat glioma model. In vivo anti-DMPO probe brain maps 

of (A) untreated (UT) and (B) OKN-007-treated rat F98 tumors (based on MRI SI change). (C) Trapped free radical levels 
(% change in MRI SI) in UT and OKN-007-treated F98 gliomas administered DMPO + anti-DMPO probe. N = 5 for each 
group. Stretavidin-HRP biotin-tagged ex vivo F98 gliomas that were (D) UT or (E) OKN-007-treated. (F) Malondialdehyde 
(MDA) levels from IHC of F98 tumors of OKN-007-treated or UT rats. (G) 3-Nitrotyrosine (3-NT) levels from IHC of F98 
tumors of OKN-007-treated or UT rats. N = 5 for each. Modified from Coutinho de Souza et al. [34].
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The combined IST and mMRI approach in glioma models can also be used to assess possible 

therapeutic agents that are either free radical scavengers or generate free radicals. For exam-

ple, this approach was used to assess the free radical scavenging ability of an anti-cancer agent, 

OKN-007, in a rat glioma model [34] (see Figure 9). Representative difference images (false-
colored red) of an untreated F98 glioma and an OKN-007-treated F98 glioma, overlaid over 
appropriate morphological images, are shown in Figure 9A and B, respectively. Quantitative 
levels of trapped free radical levels (measured from % changes in MRI signal intensities) for 

untreated and OKN-007-treated F98 gliomas is shown in Figure 9C. Significantly lower levels 
of MDA (Figure 9F) and 3-NT (Figure 9G) were found for F98 gliomas treated with OKN-
007 compared to untreated (UT) tumors. IHC levels for MDA and 3-NT were quantitated in 

several OKN-007-treated and UT F98 tumor-bearing rats. These results indicate that OKN-
007 acts as a free radical scavenger when used as an anti-cancer agent. This is the first time 
in vivo detection of in situ free radicals had been reported for an anti-cancer agent with free 

radical scavenging capability. It was previously demonstrated that OKN-007 can significantly 
increase animal survival and significantly decrease tumor volumes, when compared to UT 
animals. The combined IST and mMRI approach can be taken to assess any therapeutic agents 

that would either increase or decrease free radical levels in different disease models.

Immuno-electron microscopy (IEM) with gold-anti-biotin, targeting the biotin moiety of the 

anti-DMPO probe, was also used to confirm the ex vivo presence of the anti-DMPO probe in the 

plasma membrane of rat glioma cells following in vivo administration [34] (see Figure 10). The IEM  

data is confirmation that the combined IST and mMRI approach is detecting macromolecular 
membrane-bound (both plasma membrane and possibly nuclear membrane) free radicals.

3. Concluding statements

The novelty of the IST-mMRI approach is that heterogeneous levels of trapped free radicals 

can be detected directly in vivo and in situ with high image resolution, and can be used to 

Figure 10. Immuno-electron microscopy detection of the anti-DMPO probe in the plasma membrane/ cytoplasm and 

cell nuclei in F98 rat gliomas. The biotin moiety of the anti-DMPO probe was targeted with gold-anti-biotin. Gold-anti-

biotin colloids were detected within the plasma membrane/cytoplasm (black arrows) and cell nuclei membranes of F98 

tumor cells administered the anti-DMPO probe. Scale bar = 1 μm. Magnification = 20,000×. n = nucleus; c = cytoplasm; 
pm = plasma membrane. Modified from Coutinho de Souza et al. [34].
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pin-point where high levels of free radicals are formed in different heterogeneous regions 
of specific tissues. It should be noted that MRI has no depth-of-penetration limitation. The 
current anti-DMPO-albumin-Gd-DTPA-biotin construct allows rapid vascular delivery, and 

binding to macromolecular DMPO-trapped free radicals in the plasma membrane, as well as 

ex vivo confirmation with microscopy.

This review has discussed all of the current studies that have utilized combined IST and 

mMRI to detect targeted trapped macromolecular DMPO-radical adducts in vivo and in situ 

within various animal models where oxidative stress plays a major role. It was established 

for all oxidative stress-associated disease models studied thus far, that levels of free radi-

cals were found to be significantly increased in all cases for animals treated with DMPO and 
the anti-DMPO probe, when compared to controls, including disease controls (e.g. wild-type 

rodents or shams), non-DMPO controls (i.e. administered saline instead of DMPO), and/or 

mMRI probe controls (i.e. a non-specific IgG was covalently bound to the albumin of the MRI 
contrast agent construct instead of the anti-DMPO antibody). An example of assessing an 

anti-cancer agent with free radical scavenging activity was also presented. The biotin moiety 

of the anti-DMPO probe also allowed ex vivo validation of the presence of trapped DMPO 

macromolecular adducts in various tissues. IST was also used in all cases to confirm the pres-

ence of trapped free radicals with fluorescence or optical (e.g. HRP) microscopy. Finally, IEM 
was used to confirm the presence of the anti-DMPO probe in plasma and nuclear membranes.

Some of the disadvantages with the methodology include limited access to pre-clinical MRI 

systems, availability of the anti-DMPO antibody, and further identifying the radical source 

that is being trapped. For non-neurological studies, this approach can be easily utilized in 

numerous pathological/toxicological models. However, for neurological studies, the approach 

will be limited to whether there is BBB permeability, in order to allow the anti-DMPO probe, 

and possibly DMPO, to access the target tissue.

The IST-mMRI approach can certainly be further applied to study free radicals associated longi-

tudinally in oxidative stress-related disease processes, as well as assess the effect of therapeutic 
agents that alter free radical levels. Mass spectrometry may need to be used to not only further 

assess whether the anti-DMPO probe detected in heterogeneous tissue regions are essentially 

oxidized proteins or oxidized lipids, or a combination of both, before the type of protein or 

lipid is identified. The current size of the probe may prohibit use in neurological studies with 
an intact blood-brain barrier (BBB). The development of a smaller nanoparticle-based anti-

DMPO probe, which may allow access through an intact BBB, is currently being considered.
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