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Abstract

To further improve and upgrade the existing functions of carbon fibers, and to endow the
carbon fiber with new and desired functions, the most effective and economic way is to
create nanostructures on the carbon fiber surface. The carbon fibers with nanostructures
grown on the surface, or namely nanostructured carbon fibers, not only maintain the
intrinsic high strength, light weight, high thermal conductivity of carbon fiber, but also
obtain significant functional enhancements in mechanical properties, interfacial bonding
and electrocatalytic property. Different kinds of nanostructures, such as nanoparticles,
nanorods, nanotubes, nanosheets, and nanoflowers, are controllably grown on the surface
of carbon fibers by using various kinds of techniques, including chemical vapor deposi-
tion (CVD), laser ablation, microwave treatment, and hydrothermal process. These multi-
scale, multifunctional nanostructured carbon fibers not only add new and interesting
branches to the carbon fiber family, but also pave the way for the application of carbon
fibers in next-generation fiber-reinforced composite, energy storage device and green
energy production.

Keywords: surface growth, carbon fiber, nanostructures, fiber-reinforced composite,
electrocatalyst

1. Introduction

Owning to its high mechanical strength, light weight and one-dimensional morphology, car-

bon fiber has become one of the most important materials in fabricating structural components

and load-bearing parts, and has found wide-spread applications from the fields of automotive,

sports, to aircrafts and aerospace shuttles. Perceived by its name, carbon fiber is composed of

the elemental carbon (C). Different from graphite, which is composed of sheets of carbon

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



atoms (graphene sheets) that parallelly stack on each other, the carbon fibers are composed of

graphene sheets that twisted, folded and crumbled upon each other. Therefore, carbon fibers

would have extremely high tensile strength and stiffness as compared to graphite. Carbon

fibers are majorly produced from the precursors such as polyacrylonitrile (PAN), rayon and

petroleum pitch [1]. In a typical process, the precursors are spun and drawn to form filament

yarns, which are subsequently subject to the pre-oxidation, thermal carbonization and graph-

itization processes. After the thermal carbonization process, the precursor filament yarns are

converted to carbon filament yarns with high carbon contents (~92–99%). The carbon filament

yarns produced from the carbonization process (1500–2000�C) generally exhibit high tensile

strength while the ones produced from the graphitization process (2500–3000�C) generally

exhibit high elastic modulus [2].

Due to its high mechanical strength, high modulus, thermal conductivity and low thermal

expansion, carbon fibers are widely used in the high technology sectors, such as aerospace and

nuclear engineering, where high performance under high damping, high temperature and

corrosive environment is required [3]. However, in general engineering sectors and transpor-

tation, the application of carbon fiber is restrained by the cost and production rates, and it only

appears in limited parts of the products, where high strength and light weight are needed. The

final properties of carbon fibers are highly dependent on their precursors and different types of

carbon fiber can be produced based on the specific requirements of application. For example,

the carbon fiber produced from PAN has the highest tensile strength (Table 1), which is

suitable for the high technology applications. On the other, the carbon fiber produced from

cellulose may have lower tensile strength accompanied with low cost, which is suitable for

general engineering applications (Table 2) [4].

The properties of carbon fibers can be further improved by the growth of nanostructured

materials on their surfaces, a process commonly known as “whiskerization” [5–7]. Techniques

such as chemical vapor deposition, hydrothermal process and electrochemical deposition are

usually employed to accomplish the nanostructure growth [8–10]. During the growth process,

the nanostructures are directly formed on the surface layer of the carbon fibers, either through

the pre-deposited “seed layer” or hydrophobic interaction. After the growth process, the as-

grown nanostructures and the carbon fiber substrates integrate and form free-standing,

binder-free multi-scale composites. Depending on the properties of the as-grown

nanostructures, the applied functions of carbon fiber can be greatly enhanced and extended.

Table 1. Mechanical properties of PAN, pitch and rayon based carbon fibers [3].
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For example, growth of carbon nanotubes or zinc oxide nanowires on the carbon fiber surface

can significantly increase the tensile strength (133%) and interfacial strength (113%) of the

fiber-reinforced composite prepared by using these carbon fibers [11, 12]. By growing metal

oxide or metal dichalcogenide nanostructures on carbon fiber surface, the electrochemical

catalytic and capacitive properties of carbon fibers can be substantially enhanced [13, 14].

Upon integrating the intrinsic high electrical and thermal conductivity, high mechanical

strength and chemical inertness of carbon fibers with the nanostructured materials of high

electrochemical activity, ideal bi-functional (anode and cathode) electrodes for metal-air batte-

ries and water-splitting cells can be readily realized, which further extends the applications of

carbon fiber to energy storage and green energy [15, 16]. This chapter will focus on the state-

of-the-art design and growth of functional nanostructures on carbon fiber surface, as well as

their advanced applications.

2. Nanostructures grown on carbon fiber for fiber-reinforced composites

Due to its excellent mechanical, thermal and chemical properties, carbon fibers are widely used

for the fabrication of fiber-reinforced composites (FRC), forming high-performance structures

and components for high-technology applications. However, the most frequent occurring cases

for the failure of FRC known as fiber pull-out and delamination are caused by the internally

weak bonding between the fibers and the polymeric matrix [17, 18]. In this regard, growth of

secondary nanostructures on the surface of carbon fibers to improve the interfacial bonding

Table 2. Mechanical properties of cellulose based carbon fibers [4].
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between the fibers and matrix has been proposed [19, 20]. In order to obtain the desired

enhancement in the interfacial bonding strength, three main factors should be considered,

including: (i) the as-grown nanostructures should have intrinsically good mechanical proper-

ties, proper size range and high surface area, which can significantly increase the interfacial

area between the fiber and matrix, as well as providing good anchoring strength; (ii) the

nanostructures should be directly grown on the surface of carbon fibers to avoid the involve-

ment of binders, as binders could affect the mechanical strength of the final composites; (iii) the

process of growth should not deteriorate the intrinsic mechanical properties of carbon fibers.

2.1. Growth of nanocarbons

Due to their intrinsic affinity to the surface of carbon fibers, carbon nanomaterials (nanocarbons)

have been grown on carbon fiber for the FRC application. For example, carbon nanotubes

(CNTs) grown on carbon fibers are speculated to improve the interfacial bonding in FRC due to

the high mechanical strength, high surface area and good substrate adhesion [21]. Extensive

research efforts have been devoted to grow CNTs on carbon fibers while the diameter, length

and crystallinity of the as-grown CNTs can be effectively controlled [22–25]. Techniques of

chemical vapor deposition (CVD) are widely applied to grow CNTs on carbon fiber surface

(Figure 1). In a typical process, the carbon fibers are firstly cleaned and desized in organic

solvents by sonication, and then immersed in the catalyst solution at elevated temperature for

absorbing and loading of the metal catalysts. Metals, such as iron (Fe), nickel (Ni), cobalt (Co),

are the major catalysts used for the growth of CNTs [27, 28]. After the immersion and the

subsequent drying process, the surface of carbon fiber is densely loaded with small metal

particles, as shown in Figure 2. Afterwards, the metal-loaded carbon fibers are placed in a quartz

tube furnace, which are subsequently heated in the presence of hydrogen (H2) and carbon source

mixed stream (e.g., benzene, ethylene, acetylene) to accomplish the CNT growth. The flow rate

of total gas streams is typically in the range between 100 mLmin�1 and 300 mLmin�1, and inert

gas protection is required during the heating and cooling steps.

Figure 1. Schematic illustration of the CVD process for growing CNTs [26].
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The as-grown CNTs exhibit long and curved shapes which wrapped around the longitudinal

axis of the carbon fibers randomly, as shown in Figure 3. The morphology of the as-grown

CNTs can be controlled by a wide-range of parameters including types of catalyst, catalyst

concentration, gas flow rate, growth time and temperature. A brief summary of the relation-

ship between the carbon fiber morphology and these parameters is provided in Table 3.

Amongst these parameters, the catalyst concentration is speculated to play a major role since

all the morphological related parameters (e.g., diameter, length, density) can be effectively

tuned by it (Figure 4). It should be noted that there exists a proper range for tuning the growth

parameters of CNTs, and beyond this range CNTs may not be properly grown [30]. Other than

CNTs, carbon nanofibers (CNFs) can also be grown on the surface of carbon fiber by using the

same chemical vapor deposition (CVD) procedures [31–33]. Different from CNTs, the CNFs is

characterized as long nanofibers with solid core, and they would generally have higher aspect

ratios than CNTs. It is speculated that by increasing the time of CVD the CNTs can be further

grown into CNFs, as shown in Figure 5 [34].

Figure 2. Scanning electron microscopy (SEM) images of (a) bare carbon fiber surface [11] and (b-c) Ni particle-loaded

carbon fiber surface with increasing concentrations of the catalyst solution [24].

Figure 3. SEM and TEM images of CNTs grown on carbon fiber by using (a, d) Fe based catalyst [11], (b, e) Co based

catalyst [22], and (c, f) Ni based catalyst [29].
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2.2. Growth of nanostructured metal oxides

Besides CNT and CNFs, metal oxide nanostructures are also grown on carbon fibers to

improve their interfacial bonding strength, respectively [35–37]. The hydrothermal method is

widely used to grow metal oxide nanostructures, as illustrated in Figure 6. Compared with

the growth of nanocarbons, growing metal oxide nanostructures on carbon fibers by the

Figure 4. Pattern films of CNTs grown by increasing catalyst concentrations: (a) 10 mM, (b) 25 mM, (c) 40 mM, (d) 70 mM;

(e, f) 50 mM Fe(NO3)3•9H2O. Aligned CNTs grown perpendicular to the substrate surface can be observed in (e) and (f)

with a width of 10 μm and height of 20 μm [30].

Table 3. Correlation between the morphology of CNTs and growth conditions. (+) represents in direct proportion while

(�) represents in inverse proportion.
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hydrothermal method may obtain the advantages including: (i) higher degree of morphologi-

cal control over the as-grown nanostructures can be achieved on the carbon fiber surface. In

other words, higher structural uniformity and higher growth density can be readily achieved

for the as-grown metal oxide nanostructures; (ii) the growth process of metal oxides is simpler

and requires less instrumentation, the material and energy consumption are also less compar-

ing with the thermal CVD process; (iii) by using the same growth protocol, different types of

nanostructured metal oxides can be grown on the surface of carbon fibers. However, CNTs and

CNFs grown by thermal CVD may still possess the pros including: (i) higher theoretically

predicted improvement in the interfacial strength for FRC; (ii) higher surface area of the as-

grown nanostructures, and (iii) better affinity or adhesion to the carbon fiber substrate [38].

Figure 5. SEM images of the CVD-grown (a, C) CNTs and (B, D) CNFs obtained from 10 min and 40 min at 900�C,

respectively [34].

Figure 6. Schematic illustration of a typical hydrothermal process that used for the synthesis of metal oxide [42].
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Given the remarkable advantages of growing metal oxide nanostructures for FRC application,

extensive research efforts have been made to investigate their growth process as well as their

functional performance in FRC [39–41].

During the hydrothermal process, the metal oxide “seeds” are firstly deposited on the surface

of carbon fiber by immersing the carbon fibers in the solution of metal salts. Afterwards, the

seed-loaded carbon fibers are annealed at elevated temperature in atmospheric pressure, in

order to improve the adhesion between the seeds and the fibers. Then the treated carbon fibers

are immersed in a “growth solution” which contains the metal salts and organic polyamines

(e.g., hexamethylenetetramine, HMTA). The growth process is then proceeded by heating the

solution in a glass beaker at elevated temperature on a hotplate. Or a stainless-steel autoclave

can be used if higher temperature and pressure are needed. The zinc oxide (ZnO) and copper

oxide (CuO) nanowires, titanium dioxide (TiO2) nanorods synthesized by using the hydro-

thermal method are shown in Figure 7. Similar to the growth of nanocarbons, structural

control over the as-grown metal oxide nanostructures can be achieved by tuning the concen-

tration of the “seeding solution,” loading quantity of the metal oxide “seeds,” as well as the

time of growth (Figure 7c and f).

2.3. Mechanical properties of carbon fibers with surface-grown nanostructures

The carbon fibers with carbon ormetal oxide nanostructures grown on the surface are eventually

subject to the mechanical testing, in order to reveal their functional performance in enhancing

the interfacial bonding strength within the FRC and the mechanical strength of the whole FRC.

Figure 7. SEM images of metal oxide nanostructures grown on carbon fiber by using hydrothermal method: (a, d) ZnO

nanowires, (b, e) TiO2 nanorods and (c, f) CuO nanowires [12, 36, 37]. The CuO nanowires in (c) were synthesized from

10 mM seeding solution while the nanowires in (f) were synthesized from 50 mM seeding solution.
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In a typical process, the carbon fibers are chopped into smaller fibers with less dimensions

(length ≦ 2 mm), which are subsequently mixed or blended with the matrix materials, such as

epoxy and polypropylene. The mixtures are then cast in a mold with applied pressure and

subsequently solidified by either curing or compression molding to form the FRC. Mechanical

testing, including tensile strength, modulus, shear strength and compressive strength, are

applied to the nanostructured carbon fiber reinforced polymer composites (CFRC) and the

representative results are shown in Table 4. It is found that the as-grown CNTs and CNFs are

capable of increasing the mechanical strength of the whole CFRC to a great extent, while the

metal oxide nanowires can significantly improve the interfacial strength between the carbon fiber

and polymer matrix.

3. Nanostructures grown on carbon fibers for energy storage and green

energy electrodes

Similar to the growth of metal oxides, secondary nanostructures composed of the compounds

of transition metals and non-metals can also be grown on the surface of carbon fiber to extend

Materials Tensile strength

(MPa)

Modulus

(GPa)

Interfacial shear

strength (MPa)

Maximum increment (%) Reference

CNT-CF 27 1.07 133% in tensile strength [11]

ZnO NW 3.34 33.87 113% in shear strength [12]

CNF 23.9–24.8 0.75–0.79 [33]

CNT 17% in fracture toughness [23]

CuO NW 42.8% in tensile strength [36]

TiO2 NR 200.5 45% in tensile strength [37]

ZnO NW 209.5% in loss factor [43]

ZnO NR 50% in loss factor [44]

CNT 300% in conductivity [45]

CNT 510% in conductivity [46]

CNT 56% in loss factor [47]

CNT 69% decrease of crack propagation [48]

CNT 18.1 45% in shear strength [49]

CNT 127% in impact energy dissipation [50]

CNT 30% in shear strength [51]

SiO2 NP 52 44% in shear strength [52]

Graphene 173% in shear strength [53]

Table 4. Mechanical properties of carbon fiber with different nanostructured materials grown on its surface. NWrefers to

nanowires while NR and NP refer to nanorods and nanoparticles, respectively. The “shear strength” shown in table refers

to interfacial shear strength.
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its range of application to energy storage and green energy electrodes. The intrinsically high

electrical and thermal conductivity, chemical inertness and flexibility make carbon fiber an

ideal electrode substrate for the fabrication of high-performance hybrid electrodes that are

capable of catalyzing targeted electrochemical reactions in harsh conditions effectively, effi-

ciently and stably. The state-of-the-art research has been focused on using the carbon fiber

hybrid electrodes in supercapacitors, lithium-ion batteries and water-splitting [54–56]. To

accomplish the requirements for these applications, various types of hybrid catalysts have been

grown on the surface of carbon fibers either by electrochemical deposition or electrodeless

deposition. However, most of these materials can be categorized as the hybrids of transition

metals and non-metals, including MnO2, MoS2, NiP, FeS2, CoSe2, NiCo2S4, etc., [54–59]. Similar

to the growth of metal oxides, the hydrothermal method is widely adapted for growing the

hybrid electrode catalysts. Other methods, such as in-situ redox process and thermal annealing,

are also used to grow the hybrid catalysts [60, 61]. However, in order to obtain hybrid catalysts

with desired elemental composition, additional steps such as vulcanization, selenization and

phosphorization are required. The representative SEM images of the hybrid catalysts grown on

carbon fibers are shown in Figure 8.

Based on their elemental composition, the applications of the as-grown hybrid catalysts can

be categorized as supercapacitor, lithium-ion battery and water-splitting. For example, the

metal oxides (e.g., MnO2) are well-suited for supercapacitors and metal dichalcogenides (e.g.,

MoS2) with layered structures are suitable for lithium-ion batteries, while metal phosphorus

based catalysts (e.g., NiP) are suitable for water splitting. The carbon fiber-based hybrid

electrodes demonstrate high electrocatalytic performance in these applications, as shown in

Table 5.

Figure 8. SEM and magnified images of hybrid nanostructured catalysts on the surface of carbon fibers: (A, E) NiP

nanoflakes; [56] (B, F) whisker-like MnO2 arrays; [62] (C, G) MoS2 nanosheets; [61] (D, H) Co3O4 nanonet [63].
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4. Conclusion and future work

The growth of nanostructured materials on the surface of carbon fibers can significantly

improve the interfacial mechanisms of the carbon fiber-based composites as well as introduc-

ing additional advanced functions to the carbon fiber substrate. The growth of one dimen-

sional nanocarbons and nanostructured metal oxides on carbon fibers results in greatly

enhanced tensile strength, interfacial shear strength, impact resistance and damping when

being used in fiber reinforced composites. On the other, by growing hybrid nanostructured

catalysts on carbon fibers, high performance electrodes with outstanding electrocatalytic prop-

erties can be facilely prepared, which further extends the applications of carbon fiber-based

electrodes to supercapacitors, lithium-ion batteries and water splitting cells. In order to further

improve the functional performance of the carbon fibers grown with surface nanostructures,

future research in the related fields should pay attention to tailor the morphology and compo-

sition, as well as the orientation, spacing and thickness of the as-grown nanostructure.

Materials Applications Performance Reference

NiCo2S4
nanotube

Supercapacitor Discharge areal capacitance of 2.86 F cm�2 at 4 mA cm�2 [54]

FeS2 Lithium

battery

Discharge density of 1300 Wh kg�1 [55]

NiP Water splitting 250 mV OP for 100 mA cm�2 cathodic current density; 0.3 V OP for OER

current of 50.4 mA cm�2

[56]

PPy-MnO2 Supercapacitor 69.3 F cm�3 at 0.1 A cm�3; 6.16 � 10�3 Wh cm�3 at 0.04 W cm�3 [57]

MoS2 nanofilm Water splitting 216 mV OP for 100 mA cm�2 cathodic current density [58]

CoSe2 NP Water splitting 180 mV OP for 100 mA cm�2 cathodic current density [59]

MnO2 Supercapacitor Volume capacitance of 2.5 F cm�3; energy density of 2.2 � 10�4 Wh cm�3 [60]

MoS2 NS Lithium-ion

battery

Discharge capacity of 971 mA h g�1 [61]

MnO2 arrays Supercapacitor Capacitance of 274.1 F g�1 at 0.1 A g�1 [62]

Co3O4 nanonet Supercapacitor Capacitance of 1124 F g�1 at 25.34 A g�1 [63]

MnO2 Supercapacitor Capacitance of 467 F g�1 at 1 A g�1 [64]

CuO NF Supercapacitor Capacitance of 839.9 F g�1 at 1 mV s�1; energy density of 10.05 Wh kg�1

and power density of 1798.5 W kg�1

[65]

Nickel copper

hydroxide

Supercapacitor 770 F g�1 at 5 mA cm�2; energy density of 33 Wh kg�1 at a power density

of 170 W kg�1

[41]

WP NR Water splitting 230 mV OP for 100 mA cm�2 cathodic current density [66]

Table 5. Applications and performance of different hybrid nanostructured catalysts grown on carbon fiber. OP refers to

overpotential, while NS refers to nanosheets, NF refers to nanoflowers.
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