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1. Introduction 

The continuous improvement and application of information system technologies have 
become widely recognized by the industry as critical for maintaining a competitive 
advantage in the marketplace (Shin et al., 2006). It is also recognized that improvement and 
application activities are the most efficient and cost-effective when implemented during an 
early process/product design stage. Data mining (DM) has emerged as one of the key 
features of many applications in computer science. Often used as a means for predicting the 
future directions and extracting hidden limitations and specifications of a product/process, 
DM involves the use of data analysis (DA) tools to discover previously unknown and valid 
patterns and relationships from a large database. Most DM methods for factor selection 
reported in literature may yield a number of factors associated with interesting response 
factors without providing detailed information, such as relationships between the input 
factor and response, statistical inferences, and analyses (Yang et al., 2007; Witten & Frank, 
2005). Based on this, Gardner and Bieker (Gardner & Bieker, 2000) suggested an alternative 
DA approach toward resolving semiconductor manufacturing problems in order to 
determine the significant factors. Furthermore, Su et al. (Su et al., 2005) developed an 
integrated procedure combining a DM method and Taguchi methods.  
DA is a term coined to describe the process of sifting through large databases for 
discovering interesting patterns and relationships. This field spans several disciplines such 
as databases, machine learning, intelligent information systems, statistics, and expert 
systems. Two approaches that enable the application of standard machine learning 
algorithms to large databases are factor selection and sampling. Factor selection is known to 
be an effective method for reducing dimensionality, removing irrelevant and redundant 
data, increasing mining accuracy, and improving result comprehensibility (Yu & Liu, 2003). 
Consequently, factor selection has been a fertile field for research and development since the 
1970s and proven to be efficient in removing irrelevant and redundant features, increasing 
efficiency in mining tasks, improving mining performance like predictive accuracy, and 
enhancing comprehensibility of the learned results. The factor selection algorithm performs 
a search through the space of feature subsets (Allen, 1974). In general, two categories of the 
algorithm have been proposed to resolve the factor selection problem. The first category is 
based on a filter approach that is independent of the learning algorithms and serves as a 
filter to sieve out the irrelevant factors. The second category is based on a wrapper 
approach, which uses an induction algorithm itself as part of the function evaluating the 
factor subset (Langley, 1994). Since most of the filter methods are based on a heuristic O
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algorithm for general characteristics of the data rather than a learning algorithm that 
evaluates the merits of the factor subsets as done by wrapper methods, filter methods are 
generally much faster and have more practical capabilities to utilize high dimensionality 
than wrapper methods.  
While a large number of factors are considered, there are three important issues when 
handling data analysis problems, namely, missing values, outliers, and noise factors. The 
results from DA that uses a number of data sets including many outliers may often be 
misleading. An outlier is an observation that lies outside of the overall pattern of a 
distribution (Bakar et al., 2006). Missing values can often seriously affect the data analysis 
results if a large number of factors and their associated missing values are ignored. Next, in 
many scientific and engineering fields, there are a number of data sets that are 
uncontrollable and difficult to handle, since the nature of the measurement of a performance 
variable may often be a destructive or very expensive characteristic, which is known as the 
noise factor (Yang et al., 2007).  
Existing studies in DM mostly focus on finding patterns in large data sets and further using 
them for organizational decision making (Yang et al., 2007). DM methods also may not 
discuss the robustness of solutions, either by considering data pre-processes for outliers and 
missing values or by considering uncontrollable noise factors.  
In order to address this limitation, we have developed an enhanced DA method 
incorporating the robust design (RD) principle. Among the process/product design 
methods currently studied in the science and engineering community, researchers often 
identify RD as one of the most effective methodologies for process/product improvement. 
Because of their practicability in reducing the inherent uncertainty associated with input 
factors and process performance, the widespread applications of RD techniques have 
resulted in significant improvements in process quality, manufacturability, and reliability at 
low cost. However, most RD methods reported in the literature may obtain the most 
favorable solution for a small number of given input control factors without considering the 
reduction in dimensionality for large databases. Although traditional RD methods consider 
the selection of potential significant factors when they confront a data set including many 
factors with an interesting response factor, the process is frequently far from the objective as 
individual egos because the selection process is based on drawing insight from a number of 
readily available sources relying on the practitioners’ opinion and their experience.  
For this reason, we propose an integrated approach called robust data mining (RDM), which 
can reduce the dimensionality of large data sets, may provide detailed statistical 
relationships among the factors, and robust factor settings, as shown in Fig. 1. This RDM 
approach has neither been adequately addressed in the literature nor properly applied in 
industrial processes. As a result, the primary objective of this paper is three-fold. First, the 
proposed RDM applies outlier test and expectation maximum (EM) algorithm to carry out 
the data pre-process. Then, the proposed RDM reduces the dimensionality to find the 
significant factors among a large number of input factors using correlation-based feature 
selection (CBFS) method and best first search (BFS) algorithm. These methods can evaluate 
the worth of a subset including the input factors by considering the individual predictive 
ability of each factor along with the degree of redundancy between the pairs of input 
factors. This method is far more effective than any other method when a large number of 
input factors are considered in a process design procedure. Finally, the proposed model 
utilizes the theory of robust design to handle noise factors using the concept of surrogate 
variables and response surface methodology (RSM). Our numerical example clearly shows 
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that the proposed RDM method can efficiently find significant factors and optimal settings 
by reducing the dimensionality.  
 

Data Mining Method

Begin

Determine
Responses

(y’s)

Determine
Control

Factors (x’s)

Determine
Noise

Factors (z’s)

�Identify response type (S-,N-,L-type)
�Identify specifications (USL and LSL)
�Identify desired target values (for mean & variance)

Missing value?

End

�Alternate between performing an expectation (E) 
step and a maximization (M) step

�Obtain estimated values through iteration of the 
EM algorithm

CBFS/BFS:
Compute Evaluation

Function of the
Proposed Subset 

�Reduce the dimensionality of large data sets 
�Find significant factors related to each response

RSM:
Develop Fitted Functions
for the Mean & Variance

of  each Response

�Identify the detailed statistical relationships among a 
number of input factors and their associated responses 

Optimization:
Develop Priority-Based
Multivariate RD model

�Determine constraints and goals
�Determine a prioritization scheme
�Construct objective functions
�Obtain optimal factor settings (x*)

Multidisciplinary Robust Design (RD)

E-Step:
Compute an

Expectation of
the Likelihood

Convergence?

M-Step:
Compute the

MLE of 
the Parameters

Yes

No

Yes

No

�Check missing values

�Evaluate convergence of likelihood values

Outlier Test �Check the outliers

Surrogate Variables �Handle the noise factors

 
Fig. 1. Overview of the RDM model 

2. Stage I: data mining method 

2.1 Data pre-process 

The issues of outliers and missing values are the two most important problems in the data 
pre-process procedure. As shown in Fig. 2, the proposed procedure conducts outlier tests to 
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detect the outliers in a large number of data sets. If the results of the outlier tests include a 
number of unusual observations, these outliers are deleted and regarded as missing values. 
To address the missing values, the EM algorithm is utilized. 
 

INPUT Outlier Test

Xi is outlier

Xi=xi+1

Xi=null

EM Algorithm OUTPUT

Results (Data 

Sets from the

preprocess

Yes

NoRow

Data Set

 

Fig. 2. Proposed data pre-process procedure 

2.1.1 Outliers test in data mining 

Recently, a number of studies have been conducted on an outlier test for large datasets, 
which can be categorized into (1) the statistical approach, (2) distance-based approach, and 
(3) deviation-based approach (Bakar et al., 2006). 
The statistical approach to outlier detection assumes a distribution or probability model for 
the given data set and then identifies the outliers with respect to the model using a 
discordancy test (Witten & Frank, 2005). One of the drawbacks of the statistical approach is 
the requirement of knowledge about the parameters of the data set, such as data distribution 
(Bakar et al., 2006). However, the distance-based approach is based on two parameters that 
are given in advance using the knowledge about the data or may be changed during the 
iterations to select the most representative outliers. Deviation-based methods identify the 
outliers by examining the main characteristics of the objects in a group. Objects that 
“deviate” from this description are considered outliers. Hence, in this approach, the term 
deviation is typically used to refer to outliers (Witten & Frank, 2005). 

2.1.2 Expectation Maximization (EM) algorithm 

The EM algorithm is used in statistics for finding the maximum likelihood estimates of 

parameters in probabilistic models, where the model depends on the unobserved latent 

variables (Pernkopf, 2005). The EM alternates between performing an expectation (E) step, 

which computes the expectation of the likelihood by including the latent variables as if they 

were being observed, and a maximization (M) step, which computes the maximum 

likelihood estimates of the parameters by maximizing the expected likelihood found in the E 

step. The parameters found in the M step are then used to begin another E step, and the 

process is repeated. 

Let Y denote the random vector corresponding to the observed data y, having a probability 

density function of g(y; ψ), where ψ = (ψ1,…, ψd)T is a vector of unknown parameters within 

the parameter space Ω. The observed data vector y is viewed as being incomplete and is 

regarded as an observable function of the complete data. The notion of incomplete data 

includes the conventional sense of missing data. Let x denote the vector containing the 

augmented or complete data. Let gc(x; ψ) denote the probability density function of the 

random vector X corresponding to the complete-data vector x. Then, the complete-data log-

likelihood function that could be formed for ψ if x were fully observable is given by 
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 log ( ) log ( ;  )c cL g= xψ ψ  (1) 

Formally, we have two sample spaces α and β and many-to-one mapping from α to β. 

Instead of observing the complete-data vector x in α, we observe the incomplete-data vector 

y = y(x) in β. It follows that  

 
( )

( ;  ) ( ;  ) ,cg g d
α

= ∫ y
y x xψ ψ  (2) 

where α(y) is the subset of α determined from the equation y = y(x).  
The EM algorithm approaches the problem of solving the incomplete-data likelihood 
function indirectly by proceeding iteratively in terms of the complete-data log likelihood 

function log Lc(ψ). As this function is unobservable, it is replaced by its conditional 

expectation given y by using the current fit for ψ. On the (k+1)-th iteration, the E and M 
steps are defined as follows (McLachlan, 1996):  
 

E-step. Calculate ( ; )kQ ( )ψ ψ , 

where { }( ; ) log  ( ) .k

k

cQ E L( )
( ) = y

ψ
ψ ψ ψ  

M-step. Choose 1k( + )ψ  to be any value of ∈ψ Ω  that maximizes ( ; )kQ ( )ψ ψ ; that is, 

 
1( ; ) ( ; )k k kQ Q( + ) ( ) ( )≥ψ ψ ψ ψ  for all ∈ψ Ω . 

The E and M steps are alternated repeatedly until the difference 1( ) ( )k kL L( + ) ( )−ψ ψ  changes 

by an arbitrarily small amount in the case of convergence of the sequence of likelihood 

values { }( )kL ( )ψ . An overview of the EM algorithm is shown in Fig. 3. 

 

 

Fig. 3. Overview of the EM algorithm used in data pre-processing 

2.2 Data mining procedure 
2.2.1 Correlation-Based Feature Selection (CBFS) method 

CBFS is a filter algorithm that ranks the subsets of the input features according to a 

correlation-based heuristic evaluation function. The bias of the evaluation function is toward 

the subsets that contain a number of input factors, which are not only highly correlated with 

a specified response but also uncorrelated with each other (Xu et al., 2004). Among the input 

factors, irrelevant factors should be ignored because they may have low correlation with the 

given response. Although some selected factors are highly correlated with the specified 
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response, redundant factors need to be screened out because they are also highly correlated 

with one or more of these selected factors. The acceptance of a factor depends on the extent 

to which it predicts the response in areas of the instance space not already predicted by 

other factors. The evaluation function of the proposed subset is  

 FR

FF( 1)
s

n
EV

n n n

ρ
=

+ − ρ
 (3) 

where EV, 
FRρ , and 

FFρ  represent the heuristic evaluation value of a factor subset S 

containing n factors, mean of the factor-response correlation (F∈S), and mean of the factor-

factor inter-correlation, respectively. Further, 
FF( 1)n n n+ − ρ  and 

FRnρ  indicate the 

prediction of the response based on a set of factors and redundancy among the factors, 
respectively. In order to measure the correlation between two factors or a factor and 
response, an evaluation of a criterion called symmetrical uncertainty is conducted (Hall, 
1998).  
The symmetrical measure represents that the amount of information gained about Y after 
observing X is equal to the amount of information gained about X after observing Y. 
Symmetry is a desirable property for a measure of the factor-factor inter-correlation or 
factor-response correlation. Unfortunately, information gain is not apt for factors with more 

values. In addition, 
FRρ  and 

FFρ  should be normalized to ensure they are comparable and 

have the same effect. Symmetrical uncertainty can minimize the bias in information gain 
toward features with more values and normalize its value within the range [0, 1]. The 
coefficient of symmetrical uncertainty can be calculated as  

 
SUC 2.0

( ) ( )

gain

H Y H X

⎡ ⎤
= ∗ ⎢ ⎥+⎣ ⎦

 (4) 

where 

2( ) ( ) log ( ( ))
y Y

H Y P y P y
∈

= −∑
 

2( | ) ( ) ( | ) log ( ( | ))
x X y Y

H Y X p x p y x p y x
∈ ∈

= −∑ ∑
 

gain = H (Y) – H (Y|X) = H (X) – H (X|Y) = H (Y) + H (X) – H (X, Y) 
and where H(Y), p(y), H(Y|X), and gain represent the entropy of the specified response Y, 
probability of y value, conditional entropy of Y given X, and information gain—a 
symmetrical measure that reflects additional information about Y given X, respectively. 

2.2.2 Best First Search (BFS) algorithm 

In many literatures, finding the best subset is seldom achieved in many industrial situations 
when using an exhaustive enumeration method. In order to reduce the search spaces for 
evaluating the number of subsets, one of the most effective methods is the BFS method—a 
heuristic search method that implements the CBFS algorithm (Langley, 1994). This method 
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is based on an advanced search strategy that allows backtracking along a search space path. 
If the path being explored begins to look less promising, the BFS algorithm can backtrack to 
a more promising previous subset and continue searching from there. The procedure for 
using the proposed BFS algorithm is given below:  
 

Step 1. Begin with the OPEN list containing the start state, CLOSE list empty, and BEST ← 
start state (put the start state to BEST).  
Step 2. Let a subset θ = arg max EVS (subset), (get the state from OPEN with the highest 
evaluation EVS).  
Step 3. Remove s from OPEN and add to CLOSE.  
Step 4. If EVS (θ) ≥ EVS (BEST), then BEST ← θ (put θ to BEST). 
Step 5. For each next subset ξ of θ that is not in the OPEN or CLOSE list, evaluate and add to 
OPEN.  
Step 6. If BEST changed in the last set of expansions, go to step 2. 
Step 7. Return BEST.  
 

The evaluation function given in equation (3) is a fundamental element of CBFS that 
imposes a specific ranking on the factor subsets in the search spaces. In most cases, 
enumerating all the possible factor subsets is extremely time-consuming. In order to reduce 
the computational complexity, the BFS method is utilized to find the best subset. The BFS 
method can start with either no factor or all the factors. The former search process moves 
forward through the search space adding a single factor into the result, and the latter search 
process moves backward through the search space deleting a single factor from the result. 
To prevent the BFS method from exploring the entire search space, a stopping criterion is 
imposed. The search process may terminate if five consecutive fully expanded subsets show 
no improvement over the current best subset. The overview of the CBFS and BFS methods is 
shown in Fig. 4. 
 

Data sets

Data sets after factor reduction

Entropy

Information gain

Symmetrical uncertainty

factor-response

x1 x2 … xn-1 xn

response

factor-factor

x1 x2

xn-1 xn….

Evaluation of subset

OPEN

CLOSE

EVS (θ ) ≥ EVS (BEST )?

Improvement?

start

BEST← start state

θ = arg max EVS (subset)

θ

next ξ of θ in OPEN or CLOSE?

Yes

End

Return BEST

No
Yes

No

Stop criteria

remove

add

y

 
Fig. 4. Overview of the DM method 
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3. Stage II: robust design 

3.1 Surrogate variables 

The surrogate variable technique is a subbranch of the screening inspection method. 
Generally, the nature of measurements or observations on a response (i.e., a dependent 
variable) may be exceptionally expensive, destructive, or difficult to obtain, forcing a 
reduction in the overall sample size used to fit the model. To avoid these without 
dramatically increasing the cost of the experiment, one may use cheaper or more easily 
collected “surrogate” variables to supplement the expensive input factors.  
In our approach, the noise factors of significant factors—both in response and in input—are 
referred to the destructive or very expensive performance variables to be measured. By 
using CBFS, we can easily find the candidate surrogate variables from the redundancy 

factors for every noise factor. Fig. 5 shows two cases of surrogate (k, i, n, m ∈ int). One is 
when one of the interesting responses yn exhibits the characteristics of noise, while another 
interesting response ym is not only highly correlated to the noise one but also controllable; 
the surrogate between yn and ym can be considered. Another is when we focus on a specific 
interesting response yk corresponding to some input factors (xk, xi,…, xn), where factor Xi is 
noise; however, factor x1 is neither noise and irrelevant to Xi nor corresponding to the 
interesting response yk. Then, x1 will be the available surrogate variable candidate for xi. 
 

 

Fig. 5. Concepts of surrogate variables for input factors and responses 

3.2 Response Surface Methodology (RSM) 

RSM is a statistical tool that is useful for modeling and analyses in situations where the 
response of interest is affected by several factors. RSM is typically used to optimize the 
response by estimating an input-response functional form when the exact functional 
relationship is unknown or is very complicated. For a comprehensive presentation of RSM, 
Box et al. (Box et al., 1998) and Shin and Cho (Shin & Cho, 2005) provided insightful 
comments on the current status and future direction of RSM.  
In many industrial situations, a manufacturing or service process often contains both control 
and noise factors that cannot be handled (Montgomery, 2001). Supposing that there are k 
controllable variables x = [

1 2
, ,...,

k
x x x ] and r noise variables z = [

1 2
, ,...,

r
z z z ], the response 

model incorporating both control and noise factors can be given by 

 ( , ) ( ) ( , )y f h ε= + +x z x x z  (5) 

Run 

Y (Interesting Responses) 

  y1  …   yk  …    ym   yn  … 

1 

2 

� 

� 

� 

 

Surrogate

Variable 

Surrogate 

Variable 

X (Input Factors) 

x1 …  xk  xi … xn  … 
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where f(x), h(x, z), and ε denote the portion of the model that involves only the control 
factors, term involving the main effects of the noise factors and the interactions between the 
control and noise factors, and random error assumed to be normally distributed with zero 
mean and certain variance, respectively. The detailed calculation of h(x, z) is 

 
1 1 1

( , )
r k r

i i ij i j

i i j

h z x zγ δ
= = =

= +∑ ∑∑x z  (6) 

where γi and δij are the coefficients of noise factors and interactions between the control and 

noise factors, respectively. Denoting the variance of the noise variables as 2

z
σ  and assuming 

that the noise variables and random errors ε  have zero covariance, the mean response 

model by taking the expectation of the response model in equation (5) can be derived as 
follows: 

 ( )ˆ[ ( , )] ( )E y fμ= =
z

x z x x  (7) 

By using Taylor series expansion, the variance model for the response can be simplified as 
follows: 

 ( )
2

2 2

1

( , )
ˆ[ ( , )]

r

z

i i

y
Var y

z
σ σ σ

=

⎛ ⎞∂
= = +⎜ ⎟∂⎝ ⎠

∑z

x z
x z x  (8) 

where 2σ  is the mean-square error on the analysis of variance (ANOVA). 

3.3 Robust Desirability Function (RDF) model 

The quality of pharmaceutical products is often judged on multiple responses that are not of 
the same type. Pharmaceutical quality characteristics typically have one of the three possible 
goals and are therefore categorized as follows:  
1. Smaller-the-better (S type): Minimize the quality characteristic of interest.  
2. Nominal-the-better (N type): The quality characteristic of interest has a specific target 

value.  
3. Larger-the-better (L type): Maximize the quality characteristic of interest.  
Hence, a special multi-objective optimization model is required. It must be able to handle all 
the three types of quality characteristics simultaneously and consider robustness to reduce 
both process bias and variability. To address these issues, we propose a RDF model that can 
resolve the design problems involving multiple responses of several different types by 
considering the effect of noise factors. Our proposed model integrates the desire function 
(DF) that involves a popular approach to formulate and resolve the problem as a multi-
objective optimization problem into the mean-squared error (MSE) approach, yielding 
robust solutions by considering a tradeoff between the process mean and variability. 
Detailed descriptions on desirability function and MSE model can be found in (Myers, 2002) 
and (Cho, 1994).  
Let S, N, and L represent the indexes of the S-, N-, and L-type quality characteristics, 
respectively. For MSEkS-related S-type characteristics, the maximum allowable value 

( max
kSMSE ) is specified, while for MSEkL-related L-type quality characteristics, the maximum 
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allowable value ( max
kLMSE ) is specified. It is noted that the maximum value ( max

kNMSE ) 

needs to be specified for MSEkN-related N-type quality characteristics. Suppose we denote 

the lower and upper bounds for the control factors as ,  i ix x
% &

, respectively, and represent the 

maximum and minimum allowable values for the S-, N-, and L-type quality characteristics 

as ( ) ( ), , , ,
,  

k S N L k S N L
y y
% &

, respectively. Denoting the target values and weights for desirability 

of the k-th S-, N-, and L-type characteristics by τk(S, N, L) and wk(S, N, L), respectively, we 
propose the following RDFs:  

 

1/

1

,

k
n

kt

k

Maximize D d  for t S  N and L type

=

⎡ ⎤
  = = − − −⎢ ⎥

⎢ ⎥⎣ ⎦
 ∏  (9) 
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Constraints     and    for 1,  2, ,  i i i kt kt ktx x x y y y i h≤ ≤ ≤ ≤ =% & % & …  

Note that the objective function D, called the RDF, uses the geometric mean of the 
individual desirability. It is possible to design a function where the values exceeding the 
threshold, but still rather less than the target, are only slightly penalized by choosing 0 < w< 
1; higher w values are assigned when you need penalize even further. This allows 
optimization to take into account the relative importance of each quality characteristic or 
response, while selecting the most appropriate form of the partial desirability function. 

4. Numerical example 

To effectively demonstrate the implementation of our proposed methodology, actual case 
studies of processes that produce a placebo tablet have been conducted in which a number 
of design variables were considered. The data used in this numerical example is obtained 
from a continuous real-time tablet manufacturing process. The tablet manufacturing process 
is classified into three stages, namely, flow, compression, and ejection. In the first step, 

www.intechopen.com



Robust Data Mining: An Integrated Approach 

 

69 

granules are fed to be compressed into tablets; at the compression stage, granules are 
compressed into tablets. At the ejection stage, the tablets are ejected. The objective of this 
study is to commonly optimize each desired bias and variability value of three tablet quality 
characteristics including friability (y1), hardness (y2), and disintegration (y3). Then, based on 
prior information about the system under investigation, it logically follows that the first 
pressure (x1) to remove air in the granules, second pressure (x2) to produce tablets, first 
dwell time (x3) to remove air in the granules, second dwell time (x4) to produce tablets, 
speed to remove the first punch (x5), speed to remove the second punch (x6), speed to eject 
tablets (x7), amount of overfill (x8), amount of dust (x9), and particle size (x10) are the control 
factors and humidity (z1) and temperature (z2) are the noise factors considered in this study. 
Friability refers to the brittleness of a tablet and it is measured as the percentage of material 
lost as it passes through a motorized rotary drum. The effect of the motorized rotary drum 
allows researchers to predict how the tablets will withstand packaging and transportation. 
Hardness is an important quality characteristic because it is a major concern in tablet 
manufacturing. A soft tablet will cause problems during compression and a hard tablet can 
damage teeth. Lastly, disintegration refers to the time (in minutes) that is required for a 
tablet to dissolve in a suitable liquid at 37°C and is an estimator of how effectively the tablet 
will release its ingredients within the body. Hardness is measured by applying a uniform 
force (measured in Newtons) on the tablet until it breaks. In this particular case, the quality 
characteristics of interest have conflicting objectives, as shown in Table 1. In order to satisfy 
the goals of all the three quality characteristics, the goal programming approach is used to 
establish that the hardness objective is the most important and the friability objective is the 
least important. Table 2 shows the data from the tablet manufacturing process. The data set is 
an incomplete-data set and each of the five factors—x1, x3, x5, x7, and x9—have a missing value. 
 

Quality characteristic Units 
Imp. 

Rating 
Goal Type Lower limit Upper limit 

Friability (F) % 3 Minimize S-type 0.4 10 
Hardness (H) N 1 Target Value (50) N-type 20 80 

Disintegration (D) Min 2 Maximize L-type 0.5 10 

Table 1. Quality characteristics of friability (F), hardness (H), and disintegration (D) 

No. x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 z1 z2 y1 y2 y3 

1 4.57 29.69 0.77 2.74 0.27 0.29 0.34 13.23 0.13 134.46 52.08 20.82 4.14 38.79 6.54 

2 4.48 38.51 0.75 3.82 0.26 0.47 0.48 21.33 0.12 139.32 41.28 27.42 7.92 67.24 13.19 

3  30.58 0.65 4.51 0.23 0.31 0.56 14.04 0.13 138.78 57.60 21.12 4.68 40.71 8.23 

4 4.66 32.34 0.78 4.47 0.27 0.53 0.56 23.76  140.67 49.44 22.14 6.66 63.55 11.28 

5 3.77 34.99 0.63 3.90 0.22 0.28 0.49 12.42 0.15 138.24 52.32 24.06 8.55 82.50 14.17 

6 3.95 29.84  4.11 0.23 0.46 0.51 20.79 0.13 135.54 61.68 16.74 3.72 33.62 6.74 

7 4.48 42.19 0.75 3.63 0.26 0.51 0.45 22.95 0.14 132.30 63.36 23.52 8.58 82.48 14.17 

8 4.40 27.64 0.74 4.60 0.26 0.31  14.04 0.12 138.78 53.28 21.48 6.54 57.39 11.07 

9 5.02 28.37 0.84 3.59  0.41 0.45 18.36 0.13 131.76 51.60 21.42 4.95 46.52 8.59 

B  B  B  B  B  B  B  B  B  B  B  B  B  B  B  B  

100 5.02 32.78 0.84 3.02 0.30 0.32 0.38 14.31 0.15 148.23 57.36 22.98 8.12 47.03 4.56 

Table 2. Data set for the tablet manufacturing process 
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4.1 Stage I: EM algorithm for data pre-process 

DA using the EM algorithm provides the results of the data pre-treatment for the missing 

values in order to conduct the DM procedure. Table 3 lists the estimated mean, standard 

deviation, and value after performing 25 iterations of the EM algorithm using the SPSS 

software package. Consequently, reasonable values based on the estimated mean, standard 

deviation, and covariance parameters for the five missing values among the twelve factors 

are found to be (x1, x3, x5, x7, x9) = (3.86, 0.66, 0.30, 0.58, 0.14). 
 

Significant factors Estimated mean Estimated standard deviation Estimated values 

x1 4.44 0.35 3.86 
x3 0.74 0.06 0.66 
x5 0.26 0.02 0.30 
x7 0.49 0.10 0.58 
x9 0.13 0.01 0.14 

Table 3. Estimated mean, standard deviation, and value after performing 25 iterations of the 
EM algorithm 

4.2 Stage II: DM for dimensionality reduction 

The CBFS method, a DM technique, was used to seek the highly correlated factors 

associated with interesting responses (i.e., friability, hardness, and disintegration) by 

reducing the dimensionality related to a large number of factors and removing irrelevant 

and redundant data. As shown in Table 4, data mining results obtained using the Weka 

software package indicate that two uncorrelated factors (i.e., x2 and z2), four uncorrelated 

factors (i.e., x1, x2, x9, and z2), and three uncorrelated factors (i.e., x2, x9, and z2) are 

significant for y1, y2, and y3, respectively. Among these solutions, the temperature (z2) often 

cannot be controlled in the tablet manufacturing process. Consequently, we consider z2 as 

the noise factor, and consider the others input factors (i.e., x1, x2, and x9) among the DM 

results as the control factors. 
 

Responses 
DM 

y1 y2 y3 

Search method Best first Best first Best first 

Search direction forward forward forward 

Total number of subsets evaluated 64 79 67 

Selected factors x2, z2 x1, x2, x9, z2 x2, x9, z2 

Table 4. DM results for responses y1, y2, and y3 

4.3 Stage III: results of multidisciplinary RD using RSM 

Based on the results of the significant factor selection, RSM was performed by using the 

MINITAB software package to identify comprehensive relationships among a large number 

of factors and their associated responses. DA using the RSM provides the following fitted 

polynomial models for each quality characteristic: 

 

2 2 2

1 1 2 9 2 1 2 9

1 2 1 9 1 2 2 9 2 2 9 2

= 18.63+14.84 +0.07 175.15 0.30 0.77 +0.02 +2840.08

+0.34 139.15 0.01 11.37 0.05 +18.24

Sy x x x z x x x

x x x x x z x x x z x z

− − − −
− − − −

 (10) 
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2 2 2

2 1 2 9 2 1 2 9

1 2 1 9 1 2 2 9 2 2 9 2

= 149.00+132.40 1.50 1665.40 3.20 6.70 +0.20 +26047.70

+3.20 1281.40 0.00 90.90 0.50 +167.30

N
y x x x z x x x

x x x x x z x x x z x z

− − − − −

− − − −
 (11) 

 

2 2 2

3 1 2 9 2 1 2 9

1 2 1 9 1 2 2 9 2 2 9 2

= 22.35+21.98 +0.07 297.09 0.56 1.16 +0.03 +4477.10

+0.55 216.36 +0.00 17.50 0.08 +28.53

Ly x x x z x x x

x x x x x z x x x z x z

− − − −
− − −

 (12) 

The response models for y1S, y2N, and y3L are adequate for use as a response function since 

the results yield 76.2, 77.4, and 76.1% R-sq, respectively. Let 
2

2

z
σ , 2

1Sσ , 2

2Nσ , and 2

3Lσ  denote 

the variance of the noise variables and mean-square error of the ANOVA values for 

friability, hardness, and disintegration, respectively. Using equations (10)–(12), the fitted 

polynomial models of the mean and variance can be written as 

 
( ) 2 2 2

1 1 2 9 1 2 9

1 2 1 9 2 9

ˆ 18.63+14.84 +0.07 175.15 0.77 +0.02 +2840.08

+0.34 139.15 11.37

S x x x x x x

x x x x x x

μ = − −

− −

x
 (13) 

 
( ) 2

1 1 2 9 1 1 2 1 9

2 2

2 2 9 9

ˆ 1.23+0.04 +0.19 69.39 +0.63e-3 +0.63e-2 2.31

+0.02 11.56 +2109.30

S
x x x x x x x x

x x x x

σ = − −

−

x
 (14) 

 
( ) 2 2

2 1 2 9 1 2

2

9 1 2 1 9 2 9

ˆ = 149.00+132.40 1.50 1665.40 6.70 +0.20

+26047.70 +3.20 1281.40 90.90

N
x x x x x

x x x x x x x

μ − − − −

− −

x
 (15) 

 ( ) 2 2

2 2 9 2 2 9 9
ˆ =122.10+20.29 6788.37 +1.59 1060.68 +177452.10N x x x x x xσ − −x  (16) 

 
( ) 2 2 2

3 1 2 9 1 2 9

1 2 1 9 2 9

ˆ = 22.35+21.98 +0.07 297.09 1.16 +0.03 +4477.10

+0.55 216.36 17.50

L x x x x x x

x x x x x x

μ − − −

− −

x
 (17) 

 ( ) 2 2

3 2 9 2 2 9 9
ˆ =3.56+0.57 202.59 +0.04 28.94 +5160.51L x x x x x xσ − −x  (18) 

where ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 3 3
ˆ ˆ ˆ ˆ ˆ ˆ,  ,  ,  ,  ,  and S S N N L Lμ σ μ σ μ σx x x x x x  represent the fitted 

polynomial models for the mean and variance of friability, hardness, and disintegration, 

respectively. 
2

2

z
σ , 2

1Sσ , 2

2Nσ , and 2

3Lσ  are 6.34, 0.66, 57.18, and 1.57 from the ANOVA result 

for each quality characteristic, respectively. Equations (13)–(18) are used in the proposed 

RDF model. The target value for the process mean of friability, hardness, and disintegration 

are 0.4, 50, and 10, respectively (i.e., 1Sτ  = 0.4, 2Nτ  = 50, and 3Lτ  = 10]. Additionally, the 

constraints on x1, x2, and x9 can be expressed as  

 1 2 93 6   24 45   0.1 0 2x , x , x .≤ ≤ ≤ ≤ ≤ ≤  (19) 

We then convert the three quality characteristics into three MSEs of the same type. The 

target values and upper limits for the three MSE models are 0, 0, 0, 403.34, 3101.21, and 
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143.01, respectively. Suppose that the weights for the desirability of MSEs based on the 

friability, hardness, and disintegration are 1 (i.e., ( )1 2  and 3S , N , L
w  = 1).  

By utilizing the proposed RDF model, which makes the multi-objective optimization 
problem inherently easier to solve due to the fact that single-objective optimization 
approaches can be applied, the multi-objective optimization problem can be transformed 
into a single response problem. In order to resolve this single response problem to maximize 
the geometric mean of the individual desirability of MSEs, MINITAB can be used. Using the 

MINITAB package, the optimal solutions are found to be ( 1 2 9
 * * *x , x , x ) = (4.847, 41.315, 0.160). 

The optimal solution and predicted value of the mean and variability of each process for this 
case are listed in Table 10. 
 

Predicted Value 
Ingredients Optimal Solution Quality Characteristics ( )μ̂ x

 
( )2σ̂ x

 
First pressure (x1) 4.847 Friability (y1) 1.934 2.272 

Second pressure (x2) 41.315 Hardness (y2) 61.280 110.890 
Amount of dust (x9) 0.160 Disintegration (y3) 4.780 4.673 

Table 10. Optimal solutions for the tablet manufacturing process 

7. Conclusion 

In this paper, we developed a RDM method by integrating a DM method for pre-processing 
unclear data and finding significant factors into a multidisciplinary RD method for 
providing the best factor settings. Based on the results of the DM method, we found 
important factors for placebo tablet manufacturing among a large data set. By using the BFS 
method, the CFBS method in its pure form is exhaustive, but the use of a stopping criterion 
expedites the probability of searching the entire data set. We then conducted RD 
optimization using the RSM and RDF methods, while incorporating an uncontrollable noise 
factor. We finally showed that the proposed RDM method could efficiently find significant 
factors and optimal settings by reducing the dimensionality through the numerical example. 
In order to examine the proposed RDM method, the consideration of different case studies 
can be a possible future research issue. 
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