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Abstract

We present a case study of the FitzHugh–Nagumo (FHN) type model with a strongly
asymmetric activation function. The proposed model is an electronically rather than a
biologically inspired approach. The asymmetric exponential model imitates the shape of
spikes in real neurons better than the classical FHN model with a cubic van der Pol
activation function. An array of mean-field coupled non-identical FHN type oscillators is
considered. The effect of mutual synchronization (phase locking) of units, originally
oscillating at their individual frequencies, is demonstrated. Several feedback control
methods, including stable tracking filter technique, mean field nullifying, and repulsive
coupling are shown either to stabilize unstable equilibrium states or to suppress syn-
chrony of the coupled FHN oscillators. The stability of the equilibrium states is analyzed
by employing the eigenvalues, obtained from the characteristic equation, and by using the
diagonal minors of the Routh–Hurwitz matrix. Nonlinear differential equations are solved
numerically.

Keywords: nonlinear dynamics, spiking neuron model, FitzHugh�Nagumo oscillator,
arrays of coupled oscillators, equilibrium states, synchronization, control methods

1. Introduction

The stability of any either natural or artificial system is a valuable and desired property.

Therefore, the control of dynamical systems, in particular stabilization of their unstable equi-

librium (UEQ) states, is an important problem in basic science and engineering applications,

if periodic or chaotic oscillations are unacceptable behaviors. Usual control methods, based

on proportional feedback control [1, 2] require knowledge of a mathematical model of a
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dynamical system or at least the exact coordinates of the UEQ in the phase space for the

reference point. However, in many real complex systems, especially in biology, physiology,

economics, sociology, and chemistry neither the full reliable models nor the exact coordinates

of the UEQ are a priori known. Moreover, the position of the UEQ may change with time

because of external unknown and unpredictable forces. In these cases, adaptive, that is model-

independent and reference-free methods, automatically tracing and stabilizing unknown UEQ,

can be helpful [3–5].

Synchronization is a universal and very common phenomenon, widely observed in nature,

science, engineering, and social life [6]. Coupled oscillators and their arrays, exhibiting syn-

chrony, range from pendulum clocks to various biological populations. In many cases, syn-

chronization plays a positive role. However, sometimes, it has an unfavorable impact. Strong

synchronization of neurons in human brain is an example. It is assumed that synchrony of

spiking neurons in a neuronal population causes the symptoms of the Parkinson’s disease and

essential tremor [7]. Therefore, development of the methods and practical techniques for

controlling, more specifically, for suppressing synchrony of coupled oscillators, in general,

and particularly with possible application to neuronal arrays, is of great importance [8–10].

A variety of adaptive feedback methods for stabilizing UEQ of nonlinear dynamical systems

have been described in literature. Here, we mention only some of them, e.g., derivative control

technique [11–13], stable filter technique [3, 4, 14–17], unstable filter technique [18–20], and

combined filters techniques [21–23]. A comprehensive list and an overview of control methods

developed to stabilize UEQ states can be found in [24]. We note that the above mentioned

techniques deal with single unstable dynamical systems. Stabilization of a network of coupled

oscillators has been considered in a recent paper [25].

Suppression of synchrony in arrays of oscillators by means of feedback methods has been

described in many papers [7–10, 26–29]. More publications and discussion on the feedback

techniques for control of synchrony are presented in [24, 25].

Another way to avoid synchrony in arrays of oscillators is a non-feedback method using

external periodic drive at relatively high frequency (much higher than the natural frequency

of the oscillators). In neurology, it is known as deep brain stimulation (DBS), applying about

150 Hz periodic pulses to certain brain areas [30]. It is a clinically approved therapy for

patients with the Parkinson’s disease symptoms. However, mechanism of the DBS is not fully

understood. There are several papers considering the Hodgkin–Huxley and the FitzHugh–

Nagumo models and demonstrating that high frequency forcing can stabilize the UEQ of the

neuronal oscillators and thus inhibit spiking cells [31–33].

In this chapter, we present a case study of the FitzHugh–Nagumo (FHN) type model with a

strongly asymmetric activation function (Section 2). An array of mean-field coupled non-

identical FHN type oscillators is considered in Section 3. The effect of mutual synchronization

(phase locking) of units originally oscillating at their individual frequencies is demonstrated.

Several feedback control methods, including stable tracking filter technique (Section 4), mean

field nullifying (Section 5), and repulsive coupling (Section 6) are shown either to stabilize

UEQ states or to suppress synchrony of the coupled FHN type oscillators.
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2. Single FHN type oscillator

An extremely simple electrical circuit, imitating a single spiking neuron, is sketched in Figure 1.

The negative resistance Rn can be implemented by means of a negative impedance converter

[34]. Typical train of spikes from its output is presented in Figure 2.

We apply the Kirchhoff’s laws to electrical circuit in Figure 1, use the Shockley current–voltage

characteristic for the diode, and introduce the following dimensionless quantities:

x ¼ VC

V∗
, y ¼ rIL

V∗
, t ! t

ffiffiffiffiffiffi

LC
p , α ¼ r

Rnj j , β ¼ r

r
, γ ¼ Ir

V∗
, δ ¼ ISr

V∗
, μ ¼ qV∗

nkBT
, r ¼

ffiffiffiffi

L

C

r

, (1)

where V* = 1 V, kB is the Boltzmann constant, T is the absolute temperature (in K), q is the

elementary charge, kBT/q is the thermal potential (≈ 25 mVat room temperature, T = 293 K), n is

a diode ideality factor, sometimes called emission coefficient (assumed value n = 2). Then,

differential equations, convenient for analysis and numerical integration, are derived:

_x ¼ F xð Þ � y� γ,

_y ¼ x� βy:

(2)

Activation function F(x) in Eq. (2) is a strongly asymmetric one (Figure 3):

F xð Þ ¼ αxþ δ exp �μx
� �

� 1
� �

: (3)

Figure 1. Circuit diagram of the electronic analog of spiking neuron. Rn is a negative resistance.

Figure 2. Voltage spikes from the circuit in Figure 1, generated by means of Electronics Workbench Professional software.

Rn = � 680 Ω, D is a semiconductor diode (BAV99 type) with saturation current IS = 10 nA (δ = 10�5), L = 100 mH,

C = 100 nF, (r = 1 kΩ), r = 50 Ω (β = 0.05), I = 1 mA (γ = 1).
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F(x) essentially differs from the odd function FFH(x) = x�x3/3, introduced by FitzHugh [35] and

used in many later papers, e.g., in [28]. It also differs from the asymmetric three-segment

[x < �1, �1≤ x ≤ 1, x > 1] piecewise linear function FPL(x) = αx + d(x + 1)H(�x–1) + g(x–1)H(x–1)

suggested in [36], where d >> g and H(u) is the Heaviside unit step function, i.e., H(u > 0) = 1, H

(u ≤ 0) = 0. In contrast to the FPL(x), the F(x) is a smooth function, and therefore it seems a more

realistic option.

For αβ < 1 and

γ <<
1� αβ

μβ
ln δ�1 (4)

the equilibrium solution of Eq. (2) is given by the fixed point coordinates

x0 ¼ �
βγ

1� αβ
, y0 ¼ �

γ

1� αβ
: (5)

Due to the exponent in the activation function F(x), strong inequality (4) practically can be

replaced with a simple inequality:

γ ≤
1� αβ

2μβ
ln δ�1

: (6)

Note empiric factor 2 is in the denominator. Eqs. (2), linearized around the fixed point (5), read

_x ¼ αx� y,

_y ¼ x� βy:
(7)

The corresponding characteristic equation is

λ2
� α� β

� �

λþ 1� αβ ¼ 0: (8)

Figure 3. Activation function F(x) from formula (3). α = 1.5, δ = 10�5, and μ = 20. Black dot on the curve marks the

equilibrium coordinate x0 = �0.12 from formula (5) at β = 0.1 and γ = 1.
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It has two eigenvalues

λ1,2 ¼
α� β
� �

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α� β
� �2

4
� 1� αβ
� �

s

¼
α� β
� �

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αþ β
� �2

4
� 1

s

: (9)

If α > β, then both real parts of the eigenvalues, Reλ1,2 are positive, proving that the equilib-

rium (x0, y0) is an unstable fixed point. If α + β > 2, it is a node, and if α + β < 2, it is a spiral.

Numerical solution of nonlinear equation Eq. (2) is presented in Figure 4.

3. Array of FHN type oscillators

An array of isolated (non-coupled) oscillators is given by

_xi ¼ F xið Þ � yi � γ,

_yi ¼ xi � βiyi,
(10)

F xið Þ ¼ αxi þ δ exp �μxi
� �

� 1
� �

: (11)

Here and elsewhere i = 1, 2, …, N. Note that the structure of function F(x) and parameters α, δ,

and μ are the same for all oscillators, whereas the damping parameters βi in Eq. (10) are

intentionally set different for each oscillator to make them slightly non-identical units.

Now we introduce interaction between oscillators. To be specific, we consider mean-field cou-

pling, which is also called “star” coupling in electronics (Figure 5):

Figure 4. Waveforms x(t) from Eq. (2) with α = 1.5, γ = 1, δ = 10�5, and μ = 20 for different damping β. (Top) β = 0.05 and

(bottom) β = 0.1. Note, different inter-spike periods in the two plots.
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_xi ¼ F xið Þ � yi � γþ k xh i � xið Þ,

_yi ¼ xi � βiyi,
(12)

Here, k = r/R* is the strength of coupling and

xh i ¼
1

N

XN

i¼1

xi: (13)

Typical phase portraits for isolated and coupled (synchronized) oscillators are shown in Figure 6.

Intricate phase trajectories in Figure 6 (left) indicate that the oscillators are not synchronized,

but oscillate at their individual frequencies, whereas simple closed loop in Figure 6 (right)

Figure 5. Diagram of mean-field coupled oscillators. R* are coupling resistors and CN is a coupling node.

Figure 6. Phase portraits. N = 24, α = 1.5, β i = 0.05 + 0.001i, γ = 1, δ = 10�5, and μ = 20. (Left) Isolated oscillators either from

Eq. (10) or Eq. (12) with k = 0, and (right) coupled oscillators from Eq. (12) with k = 1.

Figure 7. Waveform of the mean-field variable <x> from Eq. (12). N = 24, α = 1.5, β i = 0.05 + 0.001i, γ = 1, δ = 10�5, and

μ = 20. Coupling (k = 1) is switched on at t = 100.
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proves that oscillators are in synchrony (phase-locked), i.e., oscillate at the same frequency. For

synchronized oscillators, the phase difference is not necessarily zero (the phase portrait is not

fine diagonal), but it does not change with time. The mean variable <x> for the two cases is

shown in Figure 7. The amplitude of mean-field variable <x> is relatively low for isolated

oscillators (k = 0), but becomes large for synchronized state (k = 1).

4. Stabilizing equilibrium states in array of oscillators

When an external capacitor is applied to the coupling node CN (Figure 8), the overall system

becomes (2 N + 1)-dimensional system:

_xi ¼ F xið Þ � yi � γþ k z� xið Þ,
_yi ¼ xi � βiyi,

_z ¼ ωf xh i � zð Þ:
(14)

Here, z is a dimensionless dynamical variable related to voltage across the external capacitor

C0, z = VC0/V*, the mean <x> is given by formula (13), and ωf is the dimensionless cut-off

frequency of the filter composed by R* and C0.

Analysis of the high-dimensional system is very complicated. Therefore, we consider a mean-

field approach. We average all terms in Eq. (14) over all oscillators i = 1, 2,…, N:

_xh i ¼ Fh i � yh i � γþ k z� xh ið Þ,
_yh i ¼ xh i � βy

� �

,

_z ¼ ωf xh i � zð Þ:
(15)

Here,

xh i ¼ 1

N

X

N

i¼1

xi, yh i ¼ 1

N

X

N

i¼1

yi, Fh i ¼ 1

N

X

N

i¼1

F xið Þ, βy
� �

¼ 1

N

X

N

i¼1

βiyi, ωf ¼
N

ffiffiffiffiffiffi

LC
p

R∗C0
: (16)

Figure 8. Diagram of mean-field coupled oscillators with a stabilizing capacitor C0. Stable RC filter is composed of

coupling resistors R* and capacitor C0 (see formulas (16)).
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Eq. (15) is not suitable to describe full dynamics of the system. However, we can exploit it to

find equilibrium coordinates. If inequality (6) is valid for all oscillators with different βi, the

steady-state equations read

0 ¼ x0h i � y0
� �

� γþ k z0 � x0h ið Þ,

0 ¼ x0h i � βy0
� �

,

0 ¼ x0h i � z0:

(17)

Here,

x0h i ¼
1

N

X

N

i¼1

x0i, y0
� �

¼
1

N

X

N

i¼1

y0i, βy0
� �

¼
1

N

X

N

i¼1

βiy0i, β
� �

¼
1

N

X

N

i¼1

βi: (18)

There is a problem in Eq. (17) with the term <βy0> βy0
� �

. In general, <βy0> 6¼ <β> < y0>. How-

ever, if the ranges of the multiplicands βi and y0i in (18) are considerably different (in our case,

the individual equilibrium coordinates y0i, in comparison with βi, much weaker depend on i),

then <βy0> ≈ <β> <y0>. Similarly to a single oscillator, considered in Section 2, for αβi < 1, the

equilibrium coordinates are

x0h i ¼ �
β
� �

γ

1� α β
� � , y0

� �

¼ �
γ

1� α β
� � , z0 ¼ x0h i: (19)

Linearization of Eqs. (15) around the equilibrium coordinates yields:

_xh i ¼ α xh i � yh i þ k z� xh ið Þ,

_yh i ¼ xh i � β
� �

yh i,

_z ¼ ωf xh i � zð Þ:

(20)

The corresponding characteristic equation is

λ3 þ h2λ
2 þ h1λþ h0 ¼ 0, (21)

where

h2 ¼ �αþ β
� �

þ kþ ωf , h1 ¼ 1� α β
� �

þ β
� �

k� α� β
� �� �

ωf , h0 ¼ 1� α β
� �� �

ωf : (22)

Numerical solution of Eq. (21) is presented in Figure 9 for different values of the coupling

parameter k. The equilibrium is stable, if the real parts of all three eigenvalues are negative,

Reλ1,2,3 < 0.

Necessary and sufficient conditions of stability can be found analytically from the Hurwitz matrix

H ¼

h2 h0 0

1 h1 0

0 h2 h0

0

B

@

1

C

A
: (23)
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The Routh–Hurwitz stability criterion claims that the system is stable, if all diagonal minors of

the matrix H are positive:

Δ1 ¼ h2 > 0, Δ2 ¼ h2h1 � h0 > 0, Δ3 ¼ h0Δ2 > 0: (24)

The first minor is Δ1 > 0, if

k > k1 ¼ α� β
� �

� ωf : (25)

For α = 1.5, βi = 0.05 + 0.001i, and ωf = 0.1, the threshold is k1 = 1.34.

The second minor Δ2 is more cumbersome and yields quadratic equation:

β
� �

k2 þ dkþ g ¼ 0: (26)

where

d ¼ 1� 2α β
� �

þ β
� �2

� α� 2 β
� �� �

ωf ,

g ¼ � α� β
� �� �

1� α β
� �

� α� β
� �� �

ωf þ ω2
f

h i

:

(27)

Eq. (26) has an analytical solution

k2,3 ¼ �
d

2 β
� ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2

4 β
� �2

�
g

β
� �

v

u

u

t , (28)

which provides two different values. For α = 1.5, βi = 0.05 + 0.001i, and ωf = 0.1, the values

are k2 = 1.44 and k3 = �12.3. Eventually, we evaluate the threshold kth = max(k1, k2, k3) = 1.44.

It is in a very good agreement with numerical value of kth obtained from Reλ1,2,3(k)

in Figure 9.

Figure 9. Real parts of the eigenvalues from Eq. (21). N = 24, α = 1.5, βi = 0.05 + 0.001i, <β> = 0.0625, and ωf = 0.1. Arrow in

the plot indicates the threshold coupling parameter kth = 1.44, where the largest eigenvalues become negative.

Controlling Equilibrium and Synchrony in Arrays of FitzHugh–Nagumo Type Oscillators
http://dx.doi.org/10.5772/intechopen.74337

245



Once Δ2 > 0, the inequality for the third minor Δ3 > 0 can be replaced simply with h0 > 0. This

can be further simplified to (1–α<β>) > 0, since ωf > 0 by definition. Finally, we come to

inequality α<β> <1, which satisfied by itself, because it was already used as an assumption to

derive the equilibrium coordinates; see formulas (19).

Numerical results from Eqs. (14), demonstrating dynamics of equilibrium stabilization, are

presented in Figure 10.

5. Mean-field “nullifying” technique

A straightforward way to desynchronize the mean-field coupled oscillators is to “nullify” the

mean field at the coupling node CN, i.e., to remove the reason of synchronization. The

corresponding diagram is shown in Figure 11.

We repeat here Eq. (12) from Section 3 for clarity and for comparison with Eq. (30):

_xi ¼ F xið Þ � yi � γþ k xh i � xið Þ,

_yi ¼ xi � βiyi

and emphasize that the mean-field value <x> by itself is not zero:

xh i ¼
1

N

XN

i¼1

xi 6¼ 0: (29)

The control technique implicates that the mean-field variable <x> is not fully nullified, but its

value at the coupling node CN, <x> CN is set zero:

Figure 10. Waveforms from Eq. (14). N = 24, α = 1.5, βi = 0.05 + 0.001i, γ = 1, δ = 10�5, μ = 20, ωf = 0.1, and k = 1.6. (Top)

Mean-field variable <x>, (bottom) control term z – <x>. Control is switched on at t = 300 (<x> in the coupling term is

replaced with z).
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_xi ¼ F xið Þ � yi � γþ k 0� xið Þ,

_yi ¼ xi � βiyi:
(30)

The coupling node is simply grounded, as sketched in Figure 11. Numerical results are shown

in Figure 12. Note that when the control is switched on, the value of actual mean-field variable

<x> becomes relatively small, but is not zero.

6. Repulsive coupling technique

An alternative method of desynchronization of coupled oscillators is the repulsive coupling,

also called “repulsive synchronization” technique [26]. Diagram is sketched in Figure 13.

Voltage at the coupling node xCN is found from the Kirchhoff’s law for current:

XN

i¼1

k xi � xCNð Þ � GxCN ¼ 0, (31)

xCN ¼
VCN

V∗
, G ¼

r

Rn
: (32)

Figure 12. Waveform of the mean-field variable <x> from Eq. (30). N = 24, α = 1.5, βi = 0.05 + 0.001i, γ = 1, δ = 10�5, μ = 20,

and k = 1. Control is switched on at t = 300 (xCN = <x> in the coupling term is replaced with xCN = 0).

Figure 11. Diagram of mean-field coupled oscillators with the coupling node CN grounded.
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Eq. (31) yields:

xCN ¼ kN xh i= kN þ Gð Þ: (33)

Evidently, for Rn = 0, the G ! ∞ and xCN = 0, as expected. It is the case considered in previous

Section 5. If Rn is negative, say it provides value of G = �2kN, then xCN = � <x>. It is the case of

so-called repulsive coupling:

_xi ¼ F xið Þ � yi � γþ k � xh i � xið Þ,

_yi ¼ xi � βiyi:
(34)

Numerical results are presented in Figure 14. Similarly to the mean-field “nullifying” tech-

nique, the mean <x> becomes small, which is a typical feature of either non-synchronized or

antiphase synchronized oscillators.

7. Conclusions

A modification of the FitzHugh–Nagumo (FHN) model of a spiking neuron has been pro-

posed. In the original model, developed by FitzHugh [35], the cubic activation function x–x3/3

Figure 13. Diagram of mean-field coupled oscillators with coupling node CN, grounded via resistor Rn.

Figure 14. Waveform of the mean-field variable <x> from Eq. (34). N = 24, α = 1.5, βi = 0.05 + 0.001i, γ = 1, δ = 10�5, μ = 20,

and k = 1. Control is switched on at t = 300 (xCN = <x> in the coupling term is replaced with xCN = � < x>).
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has been replaced with a strongly asymmetric exponential one. This function provides more

realistic shape of the membrane voltage spikes. Synchronization effect in an array of mean-

field coupled non-identical FHN type oscillators has been demonstrated.

Three methods for controlling arrays of coupled FHN type oscillators have been described:

• Stable filter technique aimed to damp spikes in coupled oscillators. It is based on replacing

the mean variable <x> at the coupling node with its filtered version z.

• Mean field nullifying technique, <x> = 0 (grounding the coupling node).

• Repulsive coupling technique, following the idea described in [26] and shown for an array

of Kuramoto 1D phase oscillators. It is based on replacing the mean-field variable <x> at

the coupling node with the inverse version “– <x>.”

The above control techniques have different physical mechanisms behind, ranging from stabi-

lization of the equilibrium states to desynchronization and antiphase synchronization. How-

ever, all of them ensure low value of mean-field variable in the array.
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