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Abstract

The memristor has quite a reputation as a missing circuit element. It is a powerful
candidate for next-generation applications after being first implemented in HP’s laborato-
ries. At this point, mathematical models were needed for the analysis of the memristor,
and a lot of studies were done on this subject. In this chapter, mathematical modeling and
simulations of the memristor device have been emphasized. Firstly, linear drift and
nonlinear drift models have been described on the basic HP model. The window functions
used in the nonlinear drift model have been widely examined. Different from HP model,
the Simmons tunnel barrier and the threshold adaptive memristor model (TEAM) have
been also mentioned. As a result, the most widely used modeling techniques have been
described in detail.

Keywords: memristor modeling, HP model, linear drift model, nonlinear drift model,
window functions, exponential model, Simmons tunnel barrier model, TEAM

1. Introduction

In the circuit theory, it refers to the existence of three basic circuit elements that define connec-

tions between basic circuit parameters such as current (i), voltage (v), charge (q), and magnetic

flux (φ). These are resistor, inductor, and capacitor. However, a circuit element that determines

the relationship between the charge and the magnetic flux is not defined. The fourth funda-

mental circuit element representing this relation was firstly presented by Chua in mathemati-

cal terms in 1971 with the name of the memristor (memory + resistor) [1]. In 2008, a group of

researcher from HP laboratories announced that they were physically producing memristor

[2]. In Figure 1, the relationship between fundamental circuit elements and basic circuit

parameters is shown.
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Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The relationship between current, voltage, charge, and flux for the memristor is given by:

v tð Þ ¼ M q tð Þ
� �

i tð Þ (1)

M q
� �

¼ dφ q
� �

=dq (2)

i tð Þ ¼ W φ tð Þð Þv tð Þ (3)

W φð Þ ¼ dq φð Þ=dφ (4)

where M(q) has the unity of resistance and W(φ) has the unity of conductance [1].

Memristor has properties that are different from other fundamental circuit elements and can only

be seen in a memristor such as nonvolatile memory effect, passivity, and pinched hysteresis loop.

When Eqs. (1) and (2) are opened, Eqs. (5) and (6) can be written as follows:

v tð Þ ¼ M

ð

t

�∞

i tð Þdt

0

@

1

A i tð Þ (5)

i tð Þ ¼ W

ð

t

�∞

v tð Þdt

0

@

1

Av tð Þ (6)

Eqs. (5) and (6) show that the memristance value is related to the history of the current passing

through the memristor. That is, when the current passing through the memristor is cut off, it

remains at the value of the memristance value. The memristance value starts to change from

the last value when it provides the current again to memristor. In other words, the memristor

Figure 1. Linkage between four fundamental circuit elements and basic circuit parameters such as current (i), voltage (v),

charge (q), and magnetic flux (φ).
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has a nonvolatile memory effect. On the other hand, memristor is not an element that stores

energy [3, 4].

Memristor is similar to resistor with memory. It shows a nonlinear resistance characteristic that

the charge parameter is state variable [5].

Another distinguishing feature of the memristor is that the I-V change shows the pinched

hysteresis loop characteristic. A memristor fed by a bipolar periodic signal always exhibits a

pinched hysteresis I-V characteristic that passes through the origin. As the frequency of the

excitation signal increases, the hysteresis lobe area decreases monotonically. When the frequency

tends to infinity, the pinched hysteresis loop shrinks toward a single-valued function [6, 7].

The memristor, with being a passive circuit element, has a unique ability to remember the state

of resistance that it possesses by maintaining the relationship between voltage and current

time integrals. Due to these features, they are being nominated for many different applications

such as resistive memories, soft computing, neurocomputing, etc.

Different materials and techniques are used at the point of producing the memristor. The

memristor structures produced from different materials can be given as example, such as

titanium dioxide (TiO2) memristor [2], zinc oxide memristor [8, 9], silicon oxide memristor

[10], and GST (Ge2Sb2Te5) memristor [11].

2. Modeling of memristor

2.1. HP memristor model

Memristor-based applications require a suitable model for analysis and simulation of the system.

When looking at the literature, the HP memristor model where the memristor mechanism based

on the drift of oxygen vacancies is widely used. The memristor model developed by HP Lab is

composed of Pt/TiO2/Pt structure as shown in Figure 2. Here, the TiO2 layer in which the one side

doped with positive charged-rich oxygen vacancies (TiO2�x) is placed between two platinum

layers [2].

The doped part of the TiO2 layer exhibits a low resistance behavior, while the undoped part

exhibits a high resistance behavior. As a result of the appropriate excitation on this structure,

Figure 2. Structure of memristor reported by HP Lab [2].
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the ionic drift between the doped part and the undoped part results in a dynamic change in the

width of the doped region. That is, the width of the doped region is taken as a state variable.

As the width of the doped region approaches zero (w!0), the memristor goes to a high

resistance state (HRS), and as the width of the doped region approaches D (w!D), the

memristor goes to a low resistance state (LRS) as shown in Figure 3 [3].

Since the memristor’s dimensions are very small (in few nm), it causes a change in the doped

region even with a small stimulation applied. Thus the resistance of the memristor varies

between HRS and LRS [3].

2.2. Linear drift model

In the model known as the linear drift model, the relation between the current and the voltage

of the memristor is defined by the following equation:

v tð Þ ¼ Ronx tð Þ þ Roff 1� x tð Þð Þ½ � i tð Þ (7)

x tð Þ ¼
w tð Þ

D
∈ 0; 1ð Þ (8)

where Ron and Roff are the values of the resistance for w(t) = D and w(t) = 0, respectively [2, 8, 9].

From Eq. (7), the value of memristance can be expressed by

M q tð Þ
� �

¼
v tð Þ

i tð Þ
¼ Ronx tð Þ þ Roff 1� x tð Þð Þ (9)

As shown in Figure 3, the state of change of the memristor resistance is represented by x(t)

value in Eq. (8). The speed of movement of the boundary between the doped layer and

undoped layer is expressed as dx/dt with Eq. (10) [12, 13]:

dx tð Þ

dt
¼ μv

Ron

D2
i tð Þ (10)

where μv is the average drift mobility of the charges. If Eq. (10) is taken integral for time, the

following expression is derived:

Figure 3. Representation of the HRS and LRS states of the memristor. (a) LRS and (b) HRS.
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x tð Þ ¼ μv

Ron

D2
q tð Þ (11)

If Eq. (11) is put in its place in Eq. (9), the following memristance expression is achieved:

M q tð Þ
� �

¼ Ronμv

Ron

D2
q tð Þ þ Roff 1� μv

Ron

D2
q tð Þ

� �

(12)

This expression can be written as

M q tð Þ
� �

¼ Roff 1� μv

Ron

D2
q tð Þ

� �

(13)

if the left side of the total expression is neglected because Ron < < Roff [2].

Through this model, the characteristics of the memristor can be observed by the simulations as

shown in the ongoing part. The following values are used for the simulations performed in this

section. μv = 10�14 m2s�1 V�1, D = 10 nm, initial value of w is 3 nm, input signal Vinput = Vo.sin

(ωt) where Vo = 1 V and f = 1 Hz (ω = 2πf), Ron = 100 Ω, and Roff = 160 kΩ. Figure 4 shows the

change of the current and voltage of the memristor with time for the given parameter values. The

pinched hysteresis loop in the I-V plane shown in Figure 5 is one of the fingerprint characteristics

of the memristor. Figure 6 shows the relationship between state variable and memristance. This

indicates that the memristance depends on the state variable x. This figure also shows that the

state variable is limited between 0 and 1. In Figure 7, the change of memristance with applied

voltage is seen.

As shown in Figure 8, as the frequency increases, the I-V pinched hysteresis loops become

narrower. As the frequency increases toward infinity, the I-V characteristic seems to be a linear

resistance characteristic. Figure 9 shows the variation of the I-V characteristic for different

amplitude values of the excitation signal.

2.3. Nonlinear drift model and window functions

The linear drift model supposes that the state variable (x) of the memristor is proportional

to the charge flowing through the memristor. This proportion is acceptable to the interface

between the electrodes and the interface between the doped and undoped parts of the

memristor. The position of the doped part changes with the applied input signal. Furthermore,

the linear drift model assumes that the vacancies have the freedom to move along the all length

of the memristor. These assumptions made in the HP model have been greatly simplified,

neglecting some basic laws. The reported literature shows that the drift of vacancies is not

linear in the region near the boundary interfaces. The reason is that even a small excitation

signal can create a large electric field causing nonlinear drift of the vacancies near the bound-

ary interfaces in the memristor. Another problematic situation related to the linear drift model

is that the state variable (x) never reaches zero, indicating that oxygen vacancies are not
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present in the memristor. Similarly, the doped region cannot cover the entire length of the

memristor, because there will be no undoped part and the memristor will not work in this way

[3, 14, 15].

Figure 4. Change of the current and voltage of the memristor with respect to time.

Figure 5. I-V pinched hysteresis loop of the memristor.
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In order to provide nonlinearity for the boundary problems mentioned above, functions called

window function are introduced. This function is implemented by rearranging the expression

Eq. (10) as

Figure 6. Change of the state variable and memristance of the memristor with respect to time.

Figure 7. Change of the memristance of the memristor with respect to voltage.
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dx tð Þ

dt
¼ μv

Ron

D2
i tð Þ f x tð Þð Þ (14)

The function f(x) should have zero at the limits of the memristor (x = 0 and x = 1) and

maximum value at the middle of the memristor (x = 0.5) [11]. An effective window function

should satisfy the following conditions for modeling of nonlinearity [16]:

Figure 8. I-V pinched hysteresis loops of the memristor for Vo = 1 V and different frequency values.

Figure 9. I-V pinched hysteresis loops of the memristor for f = 1 Hz and different Vo values.
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• The function should take account of the boundary situation at the top and bottom elec-

trodes of the memristor.

• The function should provide nonlinear drift across the entire active area of the memristor.

• The function should ensure linkage between the linear and nonlinear drift models.

• The function should be scalable in the interval of fmax(x) can be obtained such that

0 ≤ fmax(x) ≤ 1.

• The function should include the control parameter to set the model.

Many different window functions are proposed as a result of the studies carried out in order to

provide these criteria.

2.3.1. Joglekar’s window function

Joglekar’s window function can be given as

f xð Þ ¼ 1� 2x� 1ð Þ2p (15)

where p is the control parameter which changes the flatness of the f(x) curve around its

maximum value at x = 0.5 and is a positive integer [17].

In Figure 10, the change of window function proposed by Joglekar for different p values is

shown. The characteristic of this function is similar to the rectangular window function by

increasing p value, and the nonlinear drift effect is reduced. The disadvantage of Joglekar’s

window function is the cling situation of the state variable at the boundaries, and it is difficult

to change the window function due to the zero value at both boundaries. That is, the nonlinear

drift problem is solved, but the boundary lock is not taken into account. When memristor

arrives in Ron or Roff terminal condition, this state will be maintained forever due to zero value

taken from the window function [13, 14].

2.3.2. Biolek’s window function

Biolek has introduced a window function that provides a solution for model errors (the cling

situation of the state variable at the boundaries) of Joglekar’s window function. Biolek’s window

function is expressed as follows:

f xð Þ ¼ 1� x� stp �ið Þ
� �2p

(16)

stp ið Þ ¼
1, i ≥ 0

0, i < 0

�

(17)

where p is positive integer and i is the memristor current [18].

Figure 11 shows the variation of the window function proposed by Biolek for different p

values. The proposed window function by Biolek depends not only on the state variable but
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also on the current flow through the memristor. Thus, the problem of boundary lock is

resolved. However, this window function does not include the scalability factor, so the maxi-

mum value of the window function cannot be set to a lower or greater value [13].

Figure 10. Joglekar window function for different p values.

Figure 11. Biolek’s window function for different p values.
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2.3.3. Prodromakis’ window function

Prodromakis’ window function is

f xð Þ ¼ j 1� x� 0:5ð Þ2 þ 0:75
h ip� �

(18)

Figure 12. Prodromakis’ window function for j = 1 and different p values.

Figure 13. Prodromakis’ window function for p = 10 and different j values.
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where p and j are a positive real number [16]. In Figure 12, the change of Prodromakis’

window function for j = 1 and different p values is shown. Figure 13 shows the variation of

the Prodromakis’ window function for p = 10 and different j values.

Prodromakis proposes a solution for the scalability problem in the aforementioned by the

presented window function. Prodromakis’ window function provides a connection to the linear

dopant drift model for sufficiently large values of p. However, the model built by Prodromakis

still contains the problem of boundary lock [13].

2.3.4. Zha’s window function

This function has been introduced by Zha as a new window model so that boundary lock,

scalability, and nonlinear effects can be met at the same time. Zha’s window function is

expressed as follows:

f xð Þ ¼ j 1� 0:25 x� stp �ið Þ
� �2

þ 0:75
h ip� �

(19)

where stp(i) is given in Eq. (17) and p and j are positive real numbers [13]. Zha’s window

function for j = 1 and different p values in Figure 14 is shown. Figure 15 shows the Zha’s

window function for p = 10 and different j values.

2.3.5. Comparison of window functions

In this section, the simulation results have been given over the nonlinear drift model of the

window functions given in the previous sections. Figure 16 shows the change of window

Figure 14. Zha’s window function for j = 1 and different p values.
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functions according to state variable x for p = 10 and j = 1 values. In Figure 17, I-V character-

istics have been plotted for the window functions in Figure 16. In Figure 18, the change of the

memristance of the memristor with the applied voltage for the window functions of Figure 16

has been presented. For simulations using these window functions, μ
v
= 10�14 m2s�1 V�1,

D = 10 nm, initial value of w is 3.145 nm, input signal Vinput = Vo.sin(ωt) where Vo = 1.2 V and

f = 1 Hz (ω = 2πf), Ron = 100 Ω, and Roff = 160 kΩ.

Figure 15. Zha’s window function for p = 10 and different j values.

Figure 16. Different window functions for p = 10 and j = 1.
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2.4. Exponential model

Even in the models described so far, the nonlinearity of the large electric field in the memristor

is still not taken into consideration. In [19], an exponential model that accounts the effect has

Figure 17. Change of I-V pinched hysteresis loops of the memristor for different window functions.

Figure 18. Change of the memristance of the memristor with respect to voltage for different window functions.
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been presented. In this model, the relation between the current of the memristor and the

voltage is defined as follows:

i ¼ x tð Þnβsinh αv tð Þð Þ þ χ exp γv tð Þð Þ � 1
� �

(20)

where β, α, χ, and γ are experimental fitting parameters. How the state variable can influence

the current is determined by the n parameter [12, 19]. According to Eq. (20), when the model is

ON state, asymmetrical switching behavior is shown (sinh part). When the OFF state, the

exponential part of the Eq. (20) has the dominant part of the current, which is similar to an

ideal PN junction [12, 14].

In this model, the differential equation of state variable is written as

dx tð Þ

dt
¼ a � v tð Þmf xð Þ (21)

where a and m are fitting parameters. f(x) can be any window function [14].

2.5. Simmons tunnel barrier model

The models described so far were based on the HP model, which consisted of two regions,

each of which was modeled as resistance. But Pickett presented another physical model of the

memristor as an alternative to the HP model, consisting of a resistor and an electron tunnel

barrier in series [20].

Figure 19 shows the memristor structure of the Simmons tunnel barrier model where w is the

tunneling barrier and Rs is the channel resistance.

w is the state variable of the model and can be written as

dw tð Þ

dt
¼

foffsinh
i

ioff

� �

exp �exp
w� aoff

wc
�

ij j

b

� �

�
w

wc

	 


, i > 0

fonsinh
i

ion

� �

exp �exp
w� aon

wc
�

ij j

b

� �

�
w

wc

	 


, i < 0

8

>

>

>

<

>

>

>

:

(22)

Figure 19. Memristor structure of Simmons tunnel barrier model.
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where foff, fon, aoff, aon, ioff, ion, and b are fitting parameters [20]. The fon value has an amplitude

order greater than foff. It is also effective in changing w in both parameters. The ion and ioff
parameters effectively limit the current threshold. In this model, a window function is not

required, because aoff and aon values force upper and lower bounds of x, respectively.

Although this model is the most accurate model for a memristor, it is a nongeneric model that

is defined for a particular type of memristor, which has a nonobvious relationship between

current and voltage [14].

2.6. ThrEshold Adaptive Memristor (TEAM) model

TEAM model is a memristor model with several assumptions for analysis simplification and

computational efficiency. These assumptions are as follows:

1. There is no change in the status variable for values below a certain threshold value.

2. A polynomial relationship is established between the current of memristor and the internal

state drift derivative instead of the exponential dependence.

Taking these assumptions into account, the derivation of the state variable is written as

dw tð Þ

dt
¼

koff �
i tð Þ
ioff

� 1
� �αoff

� foff wð Þ, 0 < ioff < i

0 , ion < i < ioff

kon �
i tð Þ
ion

� 1
� �αon

� fon wð Þ, i < ion < 0

8

>

>

>

<

>

>

>

:

(23)

where koff (koff > 0,) kon (kon < 0),αoff, and αon are constants, ioff and ion are current thresholds,

and w is the effective electric tunnel width. Dependency on state variable w by foff(w) and

fon(w) functions is provided. These functions can be thought of as window functions to limit

the state variable between won and woff. If we assume that the memristance changes linearly

with w as in Eq. (7), the relationship between current and voltage can be written as

v tð Þ ¼ Ron þ
Roff � Ron

woff �won
w�wonð Þ

	 


i tð Þ (24)

If we assume that the memristance changes exponentially with w, the relationship between

current and voltage can be written as

v tð Þ ¼ Rone
λ

woff�won
w�wonð Þ

� �

� i tð Þ (25)

where λ is fitting parameter [21]:

λ ¼ ln
Roff

Ron

� �

(26)
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3. Conclusion

This chapter describes the mathematical modeling and simulation of the memristor device.

Firstly, brief information about the historical development of the memristor has been given.

The emergence of the memristor idea and the formation of mathematical theory have been

mentioned. Then, information about the realization of the memristor as a physical element and

the HP memristor model has been given.

In the memristor applications, the memristor device must be mathematically modeled cor-

rectly for analysis and simulation studies. For this reason, mathematical modeling and model-

ing methods of the memristor have been emphasized.

We mainly focus on five different models such as linear drift model, nonlinear drift model,

exponential model, Simmons tunnel barrier model, and TEAM model. In addition, the differ-

ent window functions proposed for the nonlinear drift model have been examined. We pro-

vided simulation results for some of the models reviewed. The effects on the I-V characteristics

of the window functions have been shown graphically with simulation results.
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