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Abstract

According to Health Canada, foodborne disease is responsible of more than 4 million cases 
per year. In United States, more than 48 million people get sick, 128,000 are hospitalized 
and 3000 die every year in United States due to foodborne diseases according to the Center 
for Disease Control and Prevention. Cross-contamination from the raw materials, during 
the process or on working surface has to be rapidly detected. Good manufacturing prac-
tices (GMP) and hazard analysis critical control point (HACCP) can help to reduce the 
incidence of contamination. However, the development of sensitive and rapid methods of 
detection is still an important need. Standard culture-based methods request the consump-
tion of large amounts of media, are time-consuming and interferences can occur when 
samplings are done in complex food matrices. The polymerase chain reaction (PCR)-based 
methods are new technologies. These methods show high level of specificity and sensitiv-
ity because they can detect nucleic acid sequences of target bacteria. However, they require 
an expensive instrumentation and trained scientific technicians. This review is focusing on 
the development of new simple, sensitive, specific, and time-saving technologies in order 
to detect quickly foodborne pathogens for application in food industries.

Keywords: foodborne pathogens, rapid technologies, food industries, food safety

1. Introduction

Large-scale of foodborne outbreaks is still an ever-present threat to public health, particularly, 

for very young and elderly people as well as pregnant women, and people susceptible to a 

weakened immune system [1]. The global incidence of foodborne disease is difficult to estimate, 
but it has been reported that every year, foodborne pathogens cause millions of infections and 
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intoxications as well as thousands of deceases. Moreover, outbreaks generate billions of dollars 

in worth of damage, public health problems, and agricultural product losses [2].

The etiology was determined in the United States in the period from 1993 to 1997 and reported 

outbreaks showing that bacteria caused 75% of outbreaks and 86% of cases [3]. Furthermore, 

among the 31 pathogens identified as causing foodborne illnesses, Salmonella, Campylobacter, 

Staphylococcus aureus, Listeria monocytogenes, Clostridium perfringens, and Escherichia coli O157:H7 

have been incriminated for the large majority of illnesses, hospitalizations, and deaths [4]. 

Indeed, Salmonella spp., L. monocytogenes, E. coli O157:H7, and S. aureus are on the top of list for 

the largest number of outbreaks, cases, and deaths [5, 6].

The frequent occurrence of foodborne diseases in previous years is mainly based on five fac-

tors, inter-related, and difficult to control to a large degree involving environmental condi-
tions, health system including infrastructure social situation, behavior and lifestyles, health and 

demographic situation, and food supply system [7]. Although pathogen detection is a growing 

concern for three main application areas including water, environment quality control [8, 9], and 

clinical diagnosis, food industry still remains the major area concerned with 38% of the relative 

number of works appeared in the literature about the detection of pathogenic bacteria [10].

In industrialized countries, the public health authorities set up strict measures and regula-

tions for food control systems such as hazard analysis critical control point system (HACCP) 

and good manufacturing practice (GMP) in order to overpower the spread of these diseases 

at the level of the food processing and the food supply system. HACCP is a method of food 

safety assurance based on the application of good hygiene practices. The HACCP system 

identifies any additional or more specific control measures necessary in food operations, 
places an additional emphasis on those points of good hygienic practices, foresees corrective 

measures if monitoring results indicate a loss of control, and finally provides more training 
and responsibility to operators [7]. Thus, the detection of foodborne pathogenic bacteria is an 

important key to the prevention and the control of some hazardous points in food processing 

or supply systems. Traditional detection methods may take up to a week to yield a confirmed 
result, challenging many researchers to gear their efforts toward the development of rapid 
methods for obtaining analytical results in the shortest time. The present chapter attempts 
to compare the different methods of pathogens detection currently used in food industry as 
measures of prevention from foodborne diseases. Certainly, it is essential to be well informed 

about the different methods of pathogens detection but this is as much interesting to find out 
the possible sources of contamination.

2. Sources of contamination

Foodborne diseases are induced by the consumption of foods or water contaminated by 

pathogens [11]. Figure 1 shows most of the pathways leading to the presence of foodborne 

pathogens in daily food products for nowadays consumers. These food products include 

fresh produce such as fruits, vegetables, herbs, seeds and nuts, milk and dairy products, meat 

products as well as poultry and eggs. From the preharvest phase, most of these products go 
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through either a local distribution directly from the farmer to the consumer, or a wider dis-

tribution to the industry. In industrialized countries, consumers get these raw materials for 

home use through the supermarkets. In all cases, food is an excellent source of energy and 

nutrition, not only for human and animals but also for the proliferation of microorganisms.

The contamination by the fresh produce has been well discussed by [2]. Food manufactur-

ing mostly relies on fresh produce, as raw materials that offer to consumers a wide range of 
benefits such as nutrients, vitamins, and fibers. From farm to fork, the contamination of fresh 
produce by pathogens may occur at any stage during transformation process from the prehar-

vest to the postharvest phase. In the field, contamination can occur through some elements of 
nature (water, soil, seeds, insects, dust, etc.) whereas the central part of contamination during 

the postharvest phase is related to handlers and equipment during processing, transportation, 

and preparation [12]. The risk for this kind of products is that they are usually consumed in 

raw state or not heat-treated, avoiding the elimination of pathogens before consumption [13]. 

Salmonella spp., pathogenic E. coli, L. monocytogenes, S. aureus, Shigella spp., Yersinia spp., and 

Clostridium spp. are the main pathogens contaminating fresh produce.

In another side, as described by [14], healthy cattle may hideaway in their liver, kidneys, lymph 
nodes, and spleen human pathogenic microorganisms. From slaughtering, the first step in 
meat processing, carcasses are exposed to microorganisms present in animal intestinal tracts 

and consequently contaminate other cut surfaces and carcasses. Thus, carcass contact surfaces, 

Figure 1. Potential flow of food contamination (adapted from [61]).
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water, air, and staff during processing and distribution channels are potential sources of con-

tamination in meat and meat products. Concerning poultry products, critical steps that may 

lead to contamination are defeathering and evisceration with higher probability in case of con-

taminated hands and toll workers. The pathogens that threaten these products are Salmonella 

and Campylobacter. L. monocytogenes is the most incriminated pathogen in the contamination 

of dairy products, which are vulnerable to the risks from udders of cows and milk equipment.

It is obvious that the high volume of food production may lead to a greater likelihood of 

a cross-contamination as previously described and consequently a high spread of the dis-

ease. This finding was also supported by [15] mentioning that in industrialized countries, the 

amounts of outside food consumption including international travels as well as the increasing 

demand for minimally processed ready-to-eat (RTE) products increase the risk of foodborne 

diseases. In a large case-control, 20% of infections with E. coli O157:H7 was associated to eat-

ing at a table-service restaurant, 35% of infections with S. enteritidis with egg consumption in 

a restaurant, and 35% were attributed to eating chicken prepared out of home.

Although fresh produce, red meat, poultry and milk are the raw materials not only for food 

industry and restaurants, but also for supermarkets. However, supermarket RTE food prod-

ucts themselves are the raw materials for consumers’ homemade meals [16]. To avoid cross-

contamination from raw materials, it is essential to wash hands, tools, and prepare surfaces 

before and after processing. Also, food products that are already prepared/cooked have to 

be refrigerated at 4°C. However, hot foods should be kept above 60°C. Besides, it is recom-

mended to split large volumes of food into small portions for rapid cooling in the refrigerator 

as well as heating whole canned foods before tasting. Otherwise, there is a high increase in 

the consumption of street food and consequently in the need of more food service establish-

ments [7].

The large number of interconnected factors increases the risks of cross-contaminations. To 

control the spread of these pathogens, first there is a need for monitoring the contamination 
of raw materials from suspected sources to the end of the supply chain by applying hygiene 

and sanitation practices and also the advent of new rapid technologies of detection.

3. Conventional methods

According to [17], conventional microbiological methods are usually performed for the isola-

tion and enumeration of pathogens in food samples. Nowadays, these standard culture meth-

ods are still considered as the “gold standard” as they are sensitive, inexpensive, and give 

both qualitative and quantitative information on the number and the nature of microorgan-

isms present in food samples.

On the other side, conventional methods are time-consuming considering all basic pre-

enrichment, enrichment, and plating steps needed. They mainly rely on specific media to 
enumerate and isolate viable bacterial cells in food. The pre-enrichment of the food samples, 

in a non-selective or selective broth culture, can be used to increase the number of injured 
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but viable bacteria that can be a potential threat to human health, to a detectable level [18]. 

Pre-enrichment recover a larger proportion of bacteria from food matrices and is usually 

followed by sublethal stressors such as heating, cooling, acids, or osmotic shocks [19]. In 

addition to that, the occurrence of toxin production in food requires that the cell pathogen 

concentration reaches a specific level as much as 5 log CFU/g of Staphylococcus aureus and 

Bacillus cereus, 3 log CFU/g of Clostridium botulinum (CFU referring to colony-forming unit). 

Thus, all existing detection technologies have to be preceded by an enrichment step [20].

Enrichment steps (selective enrichment and selective plating) may require an additional period 

of 8–24 h before the enumeration or the detection can be completed and mostly they will be 

followed by biochemical screening and serological confirmation [21]. A variety of chromo-

genic and fluorogenic culture media are available for selective isolation and differentiation of 
food-associated spoilage bacteria by incorporation of enzyme substrates. As no single micro-

biological test, among these standard culture methods, provides a confirmed identification 
of any unknown microorganism, there is a need for several additional series of analysis [22].

Conventional methods can be laborious too as they usually require the preparation of cul-

ture media and colony counting with the most probable number (MPN) method [23]. The 

duration of these methods depends on the ability of the microorganisms to grow in pre-

enrichment, selective enrichment, and selective plating media. This process is often slow and 

takes 48–72 hours for preliminary identification and more than a week for the confirmation 
of the pathogen species [4].

Qualitative culture methods are only used to determine the absence or presence of microor-

ganisms in food samples. However, the quantitative ones are preferred for enumeration. The 

limit of detection (LOD) or sensitivity, the minimum amount of detectable cells, is defined 
by the presence of microorganisms in 25 g of food examined for qualitative methods and a 

concentration of <10–100 MPN of bacteria per gram or >10–100 viable counts for quantitative 

methods [24] considering that the LOD for plating methods is 1 CFU/g.

Regarding the high spread of foodborne pathogens illness, the inspection regulations are very 

strict with the requirements for process control. The LOD for food pathogens is restricted to 1 

cell per unit of food sample [25]. Depending on the target pathogen and the food sample, the 

analytical unit may be considered from 25 to 325 g.

These methods are recognized for their low cost and ease of use that are relatively interesting 

compared to alternative methods [21]. Despite these traditional methods are still used due to 

their high selectivity [10], they are laborious, time-consuming, and may be limited by their low 

sensitivity [26] compared to other rapid methods. In addition, there is a probability that false 

negative results may occur due to viable but nonculturable (VBNC) cells.

The challenge of pathogen detection in food matrix, as reported by [23, 17], resides in the pres-

ence of pathogens in low numbers and uniformly distributed in a food heterogenic matrix 

with the presence of non-pathogenic microorganisms that may interfere with the identifica-

tion step. Food matrices can be found in different physical states (powder, liquid, gel, or semi-
solid) and contain a wide range of ingredients that may interfere with the detection.

Foodborne Pathogens Detection: Persevering Worldwide Challenge
http://dx.doi.org/10.5772/intechopen.74421

57



Figure 2. Mapping of rapid detection technologies for foodborne pathogens [32].

4. Alternative methods for the detection of foodborne pathogens

To overcome the limitations of conventional methods, various rapid methods have been 

developed and are commercially available to meet the needs of food industry. Considering 

that commercialized rapid detection methods should be validated from a recognized organi-

zation such as the Association Française de Normalisation (AFNOR) in the European Union 

or the Association of Analytical Communities (AOAC International) in the United States, 

most kits of detection are validated according to their the sensitivity and specificity [27]. 

Ideally for industrial applications, rapid methods should be characterized by their specificity, 
high sensitivity, and fast performance. Nowadays, current rapid methods are able to detect 

pathogens in raw and processed foods in low numbers to avoid the risk of infection, which 

are more time-efficient, labor-saving, and prevent human errors [28]. Currently, the range of 

detection time for available rapid methods is estimated from a few minutes to a few hours. 

Nevertheless, the sensitivity and specificity still have to be improved for testing foods sam-

ples without the needs to be pre-enriched before analysis [29]. Indeed, the enrichment step is 

considered as the main limitation in most of the methods but remains essential for the revival 

of stressed or injured cells, the differentiation of viable from nonculturable cells and the dilu-

tion of inhibitors present in the food sample [30].

Rapid detection methods can be categorized into biosensors, immunological methods, and 

nucleic acid-based methods (Figure 2). Simple polymerase chain reaction (PCR), multiplex PCR, 

real-time PCR, nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal 
amplification (LAMP), and oligonucleotide DNA microarray are classified as nucleic-based 
methods. Biosensors-based methods include optical, electrochemical, and mass-based biosen-

sors. Finally, enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay are 
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recognized as immunology-based methods [31]. Several publications have already detailed the 

principle of each of these methods [4, 28, 31–33]. However, the aim of this work is to focus on the 

advantages and limitations of these methods for application in food industry. With the develop-

ment of new methods, immunology-based methods and PCR become categorized as conven-

tional techniques for the detection of pathogens [34].

4.1. Nucleic acid-based methods

Nucleic acid-based methods prevent ambiguous or wrongly interpreted results. They operate 

by detecting specific deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sequences in the 
target pathogen and hybridizing the target nucleic acid sequence to a synthetic oligonucle-

otide, which is complementary to the target sequence [4]. Invented 20 years ago, simple PCR 

[35] is widely used for the detection of L. monocytogenes [36], E. coli O157:H7 [37], S. aureus [38], 

Campylobacter jejuni [39], Salmonella spp. [40], and Shigella spp. [41]. The presence of sufficient 
numbers of target molecules, the purity of the target template, the complexity of food matrices 

containing potential inhibitory compounds may affect the reliability of PCR amplification [42].

Through the years, PCR techniques have undergone significant improvements for faster 
detection with the development of real-time PCR for monitoring PCR amplification products, 
in addition to the methods of simultaneous detection such as multiplex PCR and oligonucle-

otide DNA microarray that can detect up to five or more pathogens simultaneously [43] such 

as Salmonella enteritidis, S. aureus, Shigella flexneri, L. monocytogenes, and E. coli O157:H7 [44].

Presently, as shown in Table 1, there is an important selection of commercially available kits 

based on nucleic acid methods for the detection of foodborne pathogens. However, although 

these techniques are automated for reliable results and characterized with high sensitivity and 

specificity, they induce some disadvantages such as difficulties to differentiate viable from non-

culturable cells and the design of the primers. In some case, they require trained staff in order 
to minimize the occurrence of cross-contamination. According to [45], the isothermal amplifi-

cation method for nucleic acids, NASBA, and an amplification system for RNA analytes (e.g., 
viral genomic RNA, mRNA, or rRNA) could be extended from viral diagnostics to the gene 

expression and cell viability. Despite, the low cost of these methods and the non-requirement 

of thermal cycling system, post-NASBA product detection is still considered labor-intensive.

Otherwise, the LAMP method, can provide a large amount, usually 103 higher to simple PCR, 

of DNA with rapidity under isothermal conditions [4], lower detection limits compared to con-

ventional PCR [46, 47] and higher specificity due to the use of four primers targeting six specific 
regions [48].

4.2. Immunology-based methods

The most successful and popular technology in the field of the detection of bacterial cells, 
spores, viruses, and toxins is represented by immunological methods. This technology is faster, 

more robust, and has the ability to detect contaminating organisms as well as their biotox-

ins. However, they are less specific and less sensitive than nucleic acid-based detection [49]. 

Compared to traditional counting methods, antibody-based methods generate less assay time 

Foodborne Pathogens Detection: Persevering Worldwide Challenge
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Pathogen Method Commercially available kits Sensitivity Catalog 

number

Sample matrix Company

Staphylococcus PCR BAX® System Real-time PCR 

assay

104 CFU/mL, after 

enrichment

D12762689 Powdered infant formula, ground beef, 

soy protein isolate

HYGIENA

Salmonella spp. PCR BAX® System Standard PCR 

assays for Salmonella

104 CFU/mL, after 

enrichment

D11000133–

D14368501

Poultry, dairy, fruits, vegetables, bakery 

products, pet food and environmentals

HYGIENA

Salmonella spp. Real-Time PCR BAX® System Real-time PCR 

assay for Salmonella

104 CFU/mL, after 

enrichment

D14306040 Meat, poultry, dairy, fruits, vegetables, 

bakery products, pet food and 

environmentals

HYGIENA

E. coli O157:H7 Multiplex PCR BAX® System PCR assay for 

E. coli O157:H7 MP

104 CFU/mL, after 

enrichment

D12404903 Raw ground beef, beef trim, produce HYGIENA

Salmonella DNA 

hybridization 

test

GeneQuence® for Salmonella 1–5 CFU/25 g 6700 - Food and environmental samples NEOGEN

stx and eae genes – 

STEC Screening

Real-time PCR 

assay

BAX® System Real-Time PCR 

STEC Assay

104 CFU/mL, after 

enrichment

D14642964 Raw ground beef, beef trim, produce HYGIENA

E. coli O26, O111, 

O121 -

Real-time PCR 

assay

104 CFU/mL, after 

enrichment

D14642970 Raw ground beef, beef trim, produce HYGIENA

E. coli O45, O103, 

O145

Real-time PCR 

assay

104 CFU/mL, after 

enrichment

D14642987 Raw ground beef, beef trim, produce HYGIENA

E. coli O157:H7 Real-time PCR 

assay

BAX® System Real-Time PCR 

Assay for E. coli O157:H7

104 CFU/mL, after 

enrichment

D14203648 Raw ground beef, beef trim, produce HYGIENA

Listeria spp. PCR BAX® System Listeria spp 105 CFU/mL, after 

enrichment

D11000147 Food and environmentals HYGIENA

Listeria spp. (except 

L. grayii)

PCR BAX® System PCR Assay for 

Genus Listeria 24E

104 CFU/mL, after 

enrichment

D13608135 Dairy, meat, fish, vegetables, 
environmentals

HYGIENA

Listeria species Real-time PCR 

assay

BAX® System Real-Time PCR 

Assay for Genus Listeria

104 CFU/mL, after 

enrichment

D15131113 Dairy, ready-to-eat meat, seafood, 

vegetables, environmentals

HYGIENA

Listeria monocytogenes PCR BAX® System PCR Assay for 

L. monocytogenes

105 CFU/mL, after 

enrichment

D11000157 Variety of food types HYGIENA
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Pathogen Method Commercially available kits Sensitivity Catalog 

number

Sample matrix Company

Listeria monocytogenes PCR BAX® System PCR Assay for 

L. monocytogenes 24E

104 CFU/mL, after 

enrichment

D13608125 Dairy, meat, fish, vegetables, 
environmentals

HYGIENA

Listeria monocytogenes Real-time PCR 

assay

BAX® System Real-Time PCR 

Assay for L. monocytogenes

104 CFU/mL, after 

enrichment

D15134303 Dairy, ready-to-eat meat, seafood, 

vegetables, environmentals

HYGIENA

Listeria spp. DNA 

hybridization 

test

GeneQuence® for Listeria 1–5 CFU/25 g 6708 Food and environmental samples NEOGEN

Listeria monocytogenes DNA 

hybridization 

test

GeneQuence® for L. 

monocytogenes

1–5 CFU/26 g 6709 Food and environmental samples NEOGEN

Table 1. Commercially available nucleic acid-based methods for the detection of foodborne pathogens (adapted from [32]). Foodborne Pathogens D
etection: Persevering W

orldw
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but present a lack of ability to detect microorganisms in “real-time” mode if the quantity of 

pathogens is not high enough to provide real-time information. As reported by [50], problems 

that may emerge are the low sensitivity of the assays, low affinity of the antibody to the patho-

gen or other analytes being measured, and potential interference from contaminants.

Among other immunological methods, both of ELISA and lateral flow immunoassay are 
mainly used for the detection of foodborne pathogens. ELISA is specific and labor-saving as 
it allows the detection of bacterial toxins and can handle large number of samples. However, 

this technology presents several disadvantages such as the need of trained staff and the pos-

sibility of false negative results due to the cross-reactivity with closely related antigens. As 

immunoassays rely on the specific binding of an antibody to an antigen, the response of the 
test depends on the amount of the antigen in the sample and the availability of the binding 

sites. Thus, the low sensitivity of this technology, in the field of the detection of foodborne 
pathogens, requires a pre-enrichment step to reach a detectable level of antigen in the sample 

as well as a labeling of antigens and antibodies [51, 52]. On the other hand, lateral flow assay 
is low cost, reliable, easy-to-operate, sensitive, specific, and allows the detection of bacterial 
toxins but still requires labeling of antigens and antibodies [4]. Commercialized kits of these 

two techniques are summarized in Table 2. Toward the progress of rapid methods, new anti-

body-based methods have been coupled with other methods for pathogen detection, such as 

immunomagnetic separation on magnetic beads coupled with matrix-assisted laser desorp-

tion/ionization time-of-flight mass spectrometry (MALDI-TOF) for detection of staphylococ-

cal enterotoxin B [53] and combination of immunomagnetic separation with flow cytometry 
for the detection of L. monocytogenes [54].

4.3. Biosensors

Nowadays, the use of biosensors is increasing in the field of food pathogen detection using 
nucleic acid- and immunology-based methods considered as conventional ones. In recent 

years, there has been much research activity in the area of biosensors development for detect-

ing pathogenic microorganisms. Compared to standard methods, biosensors are more favor-

able for checking food safety, throughout the production process, due to their real-time 

response [55]. Biosensors are powerful analysis tools covering a wide range of applications 

particularly food quality monitoring, disease detection, toxins of defense interest, environ-

mental monitoring, soil quality monitoring, drug discovery, and prosthetic devices [56].

As defined by [35], biosensor devices are constituted with two main parts: the bioreceptor (bio-

logical material recognizing the analyte) and the transducer (converting the bio-recognition 

energy into optical or electrical signals). A bioreceptor can be a microorganism, cell, enzyme, 

antibody, nucleic acid, aptamers, or biomimic. However, the transduction may be optical, elec-

trochemical, thermometric, piezoelectric, magnetic and micromechanical, or combinations of 

the above techniques.

The classification of the several types of biosensors is based on their bioreceptors or transduc-

ers, as described by [35]. Electrochemical, mass-based, and optical biosensors are the mainly 

used biosensors for the detection of foodborne pathogens [51], especially surface plasmon 
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Pathogen Method Commercially 

available kits

Sensitivity Catalog 

number

Sample matrix Company

Shiga Toxin-

producing 

 E. coli (STEC)

including

E.coli O157:H7 

and Verotoxin

Lateral flow 
Assay

Food check E.coli O157 

test kit, Carcass Sponge 

Kit, Assay Cassettes

1 CFU/375 g of 

ground beef

FCEC-001, 

FCEC-005, 

FCEC-006

Raw ground beef, beef trims and carcass Foodchek 

Systems Inc

RapidChekO E. coli 

O157 (including H7) 

Test Kit

1 CFU/25 g of food. 7,000,157, 

7,000,158, 

7,000,161, 

7,000,165

Boneless beef trim and ground beef Romer Labs

Transia Card E.coli 

O157

— — Raw ground beef

Raw beef product

Raisio 

Diagnostics

Reveal® for E. coli 

O157:H7

1 CFU/25 g; 

1 CFU/375 g

9714 NEOGEN

Enzyme-Linked 

Immuno Sorbent 

Assay

3MTM TecraTM E. coli 

O157 VIA

1–5 CFU/25 g 

sample

ECOVIA48 

ECOVIA96

NR 3 M Canada

Assurance® EIA EHEC — 4000 01 Meat, dairy, poultry, fruit, nuts, and more BioControl

Listeria Enzyme-Linked 

Immuno Sorbent 

Assay

3MTM TecraTM Listeria 

VIA

1–5 CFU/25 g 

sample

or 1–5 CFU/swab

LISVIA48 NR 3 M Canada

Assurance Listeria EIA — 67,000–96 Environmental surfaces and food samples. BioControl

Lateral flow 
Assay

Reveal®2.0 for Listeria 1 CFU/analytical 

unit

9707 Food and environmental samples NEOGEN
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Pathogen Method Commercially 

available kits

Sensitivity Catalog 

number

Sample matrix Company

Salmonella spp Enzyme-Linked 

Immuno Sorbent 

Assay

3MTM TecraTM 

Salmonella Visual 

Immunoassay (VIA)

1–5 CFU/25 g 

sample

SALVIA48 All Foods 3 M Canada

3MTM TecraTM 

Salmonella ULTIMA 

VIA

1–5 CFU/25 g 

sample

SALULT96 All Foods 3 M Canada

MaxSignal® Salmonella 

Test Strip Kit

1x105 CFU 

- 1x106 CFU/mL

BO_1063–01 Food and Feed Products Bioo Scientific

Lateral flow 
Assay

RapidChek® Salmonella — 7,000,183–

7,000,167

Raw ground beef (25 g, 375 g), raw ground 

chicken, chicken carcass rinsates, liquid eggs, 

sliced cooked turkey, environmental samples 

and peanut butter.

SDIX

RapidChek® 

SELECT™ Salmonella

— 7,000,190–

7,000,195 

- 7,000,198

SDIX

RapidChek® 

SELECT™ Salmonella 

enteritidis

— 7,000,220–

7,000,222

Food samples SDIX

TRANSIA™ PLATE 

Salmonella gold

— SA0180 All foods BioControl

Reveal® 2.0 1 CFU/analytical 

unit

106 CFU/mL post 

enrichment

9706 Chicken carcass rinse, raw ground turkey, raw 

ground beef, hot dogs, raw shrimp, ready-to-eat 

meal products, dry pet food, ice cream, fresh 

spinach, cantaloupe, peanut butter, swabs from 
stainless steel surfaces, and sprout irrigation 

water

NEOGEN
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Pathogen Method Commercially 

available kits

Sensitivity Catalog 

number

Sample matrix Company

Staphylococcus 

aureus

Enzyme-Linked 

Immuno Sorbent 

Assay

3MTM TecraTM S. 

aureus VIA (3 M)

1–5 CFU/25 g 

sample

STAVIA96 Food samples 3 M Canada

3MTM TecraTM Staph 

Enterotoxin VIA (3 M)

1 ng/mL of sample 

extract

SETVIA48 Food samples 3 M Canada

Lateral flow 
Assay

TRANSIA® PlATe 

Staphylococcal 

Enterotoxins

0.25 ng S. 

enterotoxins/g 

sample

ST0796 Milk and dairy products BioControl

TRANSIA™ PLATE 

Staphylococcal 

Enterotoxins Plus

0.25 ng S. 

enterotoxins/g 

sample

ST0777 Milk and dairy products BioControl

TRANSIA™ PLATE 

Staphylococcal 

Enterotoxins ID

20–60 pg./mL of 

each serological 

group (A-E)

ST0712 Milk and dairy products, Meat, poultry and 

eggs, Seafood and other foods, Feed products

BioControl

TRANSIA®IAc 

Staphylococcal 

Enterotoxins

0.1 ng S.

enterotoxins/g 

sample

ST0705 Milk and dairy products BioControl

TRANSIA® TUBe

Staphylococcal 

Enterotoxins

0.5 ng S. 

enterotoxins/g

ST724B Milk and dairy products BioControl

NR: not reported.

Table 2. Commercially available immunology-based methods for the detection of foodborne pathogens (adapted from [32]).
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Pathogen Method Commercially 

available kits

Sensitivity Sample matrix Company References

Escherichia coli O157:H7 Optical immunosensor based on 

selective antibody expressed by 
human cell line

CANARY™ system 500 CFU/g Lettuce Massachusetts 
Institute of 

Technology

[62]

Escherichia coli O157:H7 

and Salmonella

Eectrochemical 

immunosensor based 

on the assembly of three 

nanoparticle

Michigan State 

Electrochemical 

Biosensor

101 to 106 CFU/mL Fresh produce and 

meat products

Michigan State 

University

[63]

Detection of Salmonella 

and Campylobacter

Interferometric biosensor Georgia Tech 

Interferometric 

Biosensor

5000 CFU/mL for 

Salmonella

500 CFU/mL for 

Campylobacter

Poultry products Georgia Research 

Tech Institute

[62]

Staphylococcal 

enterotoxin B and 

Botulinum toxin A

Fluorescencent immunoassay 

biosensor

Naval Research 

Laboratory array 

biosensor

From 20 to 500 ng/mL 

for Botulinum toxin A

From 0.1 to 0.5 ng/

ml for Staphylococcal 

enterotoxin B

Tomatoes, sweet 

corn, beans and 

mushrooms

Naval Research 

Laboratory

[64]

Escherichia coli O157, 

Salmonella, Listeria and 

Campylobacter

Electro-immunoassay 

biosensor

Detex Pathogen 

Detection System

NR Chicken breast Molecular Circuitry 

Inc.

[65]

CANARY™: Cellular Analysis and Notification of Antigen Risks and Yields.

Table 3. Commercially available biosensor devices for the detection of foodborne pathogens (adapted from [22]).
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resonance (SPR) biosensors due to their high sensitivity [35]. Few commercial biosensors for 

the detection of foodborne pathogens are nowadays available. Table 3 presents the rare com-

mercially available devices of biosensors for food analysis [57]. Unlike nucleic-acid based 

methods and immunological methods, biosensors are easy-to-operate and they do not require 

any pre-enrichment step [58].

Optical biosensors are very suitable for the detection of pathogens substances in the food as they 

detect analytes with no need of special sample treatment even in complex matrices, in addition 

to the less interference and the low loss of signal. As described by [59], optical biosensors are 

based on the measurement of the change in amplitude, phase, frequency, or polarization of 

light. Also, optical devices are more specific and more sensitive than the other biosensors, with 
a compact design minimally invasive. However, the enhancement of stability of immobilized 

biocomponents is still a challenge. The main inconvenient of these biosensors is that their com-

mercialization is slower than other rapid methods due to several factors such as their high cost 

in quality assurance, stability, sensitivity issues, and instrumentation design [60].

Electrochemical biosensors, the second type of biosensors, can handle large numbers of 

samples and are label-free detection devices but they are low sensitive, and analysis may be 

interfered by food matrices in addition to many required washing steps, which is not suitable 

for analyzing samples containing low amount of microorganisms. Finally, mass-based bio-

sensors are cost-effective, easy-to-operate, label-free, and real-time detection devices but low 
specific and low sensitive with long incubation time of bacteria and many required washing/
drying steps, in addition to the regeneration of crystal surface that may be problematic [22].

5. Conclusion

The first step to ensure food safety resides in the prevention by raising industry and con-

sumer awareness. Few primary daily actions can prevent food diseases. Despite conventional 

methods are often regarded as the “Gold standard” for their specificity and reliability, in 
addition to their low cost and simplicity, they remain time-consuming and laborious. Over 

the years, many rapid methods for the detection and identification of foodborne pathogens 
have been developed to overcome the limitations of their conventional counterparts. Several 

different types of nucleic-based methods, immunology-based methods and biosensors have 
been developed and discussed in a large number of publications. Each one offers advantages 
depending on the target pathogen and the food sample. But also, several disadvantages have 

to be solved for practical applications in the food industry.

Compared to conventional microbiological methods, rapid commercially available technolo-

gies are sensitive enough to detect pathogens, which are expected to be more time-efficient, 
labor-saving, and able to reduce human errors significantly. Although they are expensive and 
require a trained technical staff, they are not practical for daily industrial uses.

Nowadays, novel detection methods are released regularly but their acceptance by the industry 

depends not only on speed but also on initial investment, cost, technical support, and usability. 
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Indeed, advanced researches have converged to rise to the challenge of developing new simple, 

sensitive, specific, and time-saving technologies of foodborne pathogens detection that could 
be mostly practical in food industry.
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