
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Chapter 2

An Adaptive Lightweight Security Framework Suited
for IoT

Menachem Domb

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.73712

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Menachem Domb

Additional information is available at the end of the chapter

Abstract

Standard security systems are widely implemented in the industry. These systems con-
sume considerable computational resources. Devices in the Internet of Things [IoT] are
very limited with processing capacity, memory and storage. Therefore, existing security
systems are not applicable for IoT. To cope with it, we propose downsizing of existing
security processes. In this chapter, we describe three areas, where we reduce the required
storage space and processing power. The first is the classification process required for
ongoing anomaly detection, whereby values accepted or generated by a sensor are clas-
sified as valid or abnormal. We collect historic data and analyze it using machine learn-
ing techniques to draw a contour, where all streaming values are expected to fall within
the contour space. Hence, the detailed collected data from the sensors are no longer
required for real-time anomaly detection. The second area involves the implementation
of the Random Forest algorithm to apply distributed and parallel processing for anomaly
discovery. The third area is downsizing cryptography calculations, to fit IoT limitations
without compromising security. For each area, we present experimental results support-
ing our approach and implementation.

Keywords: IoT, anomaly detection, entropy, machine learning, random forest,
cryptography, RSA

1. Introduction

The area of the Internet of Things [IoT] is rapidly growing, raising severe security concerns to

the entire network. Due to its high traffic volume and real-time operation, a security frame-

work is essential. The system should timely predict possible attacks and react accordingly.
Standard security systems are widely implemented in the industry. These systems consume

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

considerable computational resources and cannot operate in IoT devices (i.e., sensors) due

to their very limited memory and computation power. To cope with these limitations, two

alternatives come to mind, i.e., the development of novel security measures tailored to IoT

[1] or downsizing existing security processes to enable properly operation in IoT devices. We
apply the latter option as it is highly recommended to use proven algorithms, which have
been extensively analyzed and tested, while new algorithms exposes the user to vulnerability.

We introduce lightweight versions of several known security processes. We analyze each
relevant process and its corresponding limitations, and then we divide each complex and

large process into a collection of smaller processes. These small processes are distributed and

executed by sensors connected to the same network, based on its available capacity. Once all

small processes are completed, we collect the partial results and input them into a comple-

mentary process that integrates the partial results to compose the desired result. The final
result is the same as if the original process was generated. In this chapter, we describe three

areas, where we minimize the required storage space and processing power. The first is the
classification process required for ongoing anomaly detection, whereby values accepted or
generated by a sensor are classified as valid or abnormal. We collect historic data and analyze
it using machine learning techniques to draw a contour, and all streaming values are expected

to fall within the contour space. The detailed collected data are no longer required, thereby

considerably reducing the storage space. The second area involves the implementation of the

Random Forest algorithm to apply distributed and parallel processing for anomaly discovery,

resulting in the use of limited processing power. The third area is downsizing cryptography

calculations, such as RSA, a public-key cryptosystem, to fit IoT limitations. The rest of this

chapter is divided into three sections, one dedicated to each downsized area. In the last sec-

tion, we conclude this chapter.

The rest of this chapter is organized as follows: In Section 2, we describe the preparation

stage of the classification process, which minimizes the need for the entire historic data and
then the anomaly detection processes using the outcome of the previous stage. In Section 3,

we describe the use of the Random Forest algorithm for distributed and parallel process-

ing of automatic classification and anomaly detection. In Section 4, we present an improved
implementation of RSA to allow high class cryptography that runs in an IoT configuration. In
Section 5, we conclude this chapter and discuss our ongoing and future work.

2. Classification framework for data streaming anomaly detection

To predict the behavior of a system, we usually examine its past data to discover common

patterns and other classification issues. This process consumes considerable computational
power and data storage. In this section, we describe an approach and a system, which requires

much less resources without compromising prediction capabilities and accuracy. It employs

three basic methods: a common behavior graph, the contour surrounding the graph, and

entropy calculation methods. When the system is about to be implemented for a specific
domain, the optimized combination of these three methods is considered, such that it fits the
unique nature of the domain and its corresponding type of data. In addition, we present a

Internet of Things - Technology, Applications and Standardization32

framework and a process that will assist system designers in finding the optimal methods for
the case at hand. We use a case study to demonstrate this approach with meteorological data
collected over 15 years to classify and detect anomalies in new data.

This section is organized as follows: We begin by defining the problem, proceed with vari-
ous solutions proposed in the literature, and then present our adjustable contour approach.

We then show how it is applicable for IoT. We proceed with a case study demonstrating the
build-up of the contour and how it is used for instant anomaly detection. We conclude with
a summary of the section.

2.1. Problem definition

The problem we attempt to solve is the optimization of the amount of sampling data collected
to maintain a proper balance between the quantity of sampling data and the information

extracted from it. The problem statement focuses on extracting concepts, methods, rules, and

measurements, so that at the end of the process, the original sampling data become redundant

and no longer need to be stored. However, to keep improving and adjusting the extracted

items to natural changes in the behavior of the sampled mechanism, we incorporate in the

approach an ongoing learning process. In addition, in the study, we concentrate on time-

dependent streaming sampling data, divided by fixed periods, so that we can repeat the anal-
ysis process for each period/cycle. Thus, while there are many classification algorithms using
time series sampling, the aim is not to compare the performance of yet another classifier, but
rather present a flexible method to compactly represent the data with several parameters that
can be chosen and adjusted. We suggest an independent framework that allows a flexible
adaptation of the contour to the nature of the given domain. Indeed, some of the reviewed

works, such as Reeves et al. [6], can be revised and adjusted to the problem statement and

serve as a valid alternative to the approach we present. We are striving for the best sampling
strategy given sequential data, generated from IoT devices.

The input given is a set of time series: D = {d (1), d (2), …, d (n)}, where each time series d(i) contains

pairs (timestamp and numeric value). The required output is an optimal set Dw = {a
1
, a

2
, …, a

m
},

where ai can be any sampling item, such as a minimal data set, trends, graphs, measurements,

or rules, which strongly represents and supports the purpose of the original data set D.

We consider the set Dw and the full data set D as containing the same information, if they pro-

duce the same classifier. That is, if f (d) = fw (d) ∈ {−1, 1} for every new data series d, where f is a

classifier learned from D and fw is a classifier based on Dw. For instance, we can judge whether

a series of yearly temperatures represent an El Nino (EN) year or not, or whether a series of sen-

sor data is characteristic of a suspected intrusion or not. Here, we consider two sets D and Dw

as containing the same (or similar) information if both can predict the future pattern of an ini-
tial series d. That is, we can use either D or Dw to predict a future item dn with similar accuracy.

2.2. Literature review

Real-world data typically contain repeated and periodic patterns. This suggests that the data
can be effectively represented and compressed using only a few coefficients of an appropriate

An Adaptive Lightweight Security Framework Suited for IoT
http://dx.doi.org/10.5772/intechopen.73712

33

basis. Mairal et al. [2] study modeling data vectors as sparse linear combinations of basic ele-

ments generating a generic dictionary and then adapt it to specific data. Jankov et al. [3] pres-

ent an implementation of a real-time anomaly detection system over data streams and report

experimental results and performance tuning strategies. Vlachos et al. [4] formulate the prob-

lem of estimating lower/upper distance bounds as an optimization problem and establish the

properties of optimal solutions to develop an algorithm which obtains an exact solution to the

problem. Sakurada and Yairi [5] use auto-encoders with nonlinear dimensionality reduction

for the anomaly detection task. They demonstrate the ability to detect subtle anomalies where

linear PCA fails. Reeves et al. [6] present a multi-scale analysis to decompose time series and

to obtain sparse representations in various domains. Chilimbi and Hirzel [7] implement a

dynamic pre-fetching scheme that operates in several phases. The first is profiling, which
gathers a temporal data reference profile from a running program. Next, an algorithm extracts
hot data streams, which are data reference sequences that frequently repeat in the same order.

Then, a code is dynamically injected into appropriate program points to detect and pre-fetch

the hot data streams. Finally, the process enters the hibernation phase where the program

continues to execute with the added pre-fetch instructions. At the end, the program is deop-

timized to remove the inserted checks and pre-fetch instructions and control returns to the

profiling phase. Lane and Brodley [8] claim that features can be extracted from object behav-

ior and a domain heuristic. Experiments show that it detects anomalous conditions, and it is

able to identify a profiled user from other users. They present several techniques for reducing
70% of the storage required for user profile. Kasiviswanathan et al. [9] proposed a two-stage

approach based on detection and clustering of novel user-generated content to derive a scal-

able approach by using the alternating directions method to solve the resulting optimization

problems. Aldroubi et al. [10] show that for each dataset there is an optimized collection of

cells spanning the entire space and so generate the optimized sampling set.

The common underlying idea of the reviewed approaches is the definition of the problem
they are aiming to solve. The problem attempted to be solved is optimizing the size of the
collected sampling data so that it keeps the proper balance between the quantity of sampling

data and the information extracted from it.

2.3. Contour-based approach

Briefly, we analyze sampling data collected over several periods. We divide the period into
time-units. For example, for a period of a year, we divide it into daily time-units. For each

time-unit, we extract one value that represents it. This is done by averaging the samples col-

lected during the time-unit. In the example, we may calculate the average value of all samples

of that day. We may also decide to select one of the samples to represent the day, e.g., the first
or last sample. We then calculate the average value for each time-unit from the collected val-
ues for the same time-unit in all periods, resulting in an average value for a given time-unit.

We repeat this process for all time-units in the period and obtain a graph that represents the
average values for an average and common period.

Assuming we have the average graph line for an average period, we now calculate the contour

around this average. The generated contour represents the standard range of values, such that

an unanalyzed period can be compared to this contour. If its graph value is completely within

Internet of Things - Technology, Applications and Standardization34

the contour, the period is a standard period. If it is completely out of the contour, then it is

purely not standard. If the sections of the graph are within the contour, while others are out of

it, we use an entropy measure to calculate the overall “distance” of the given period from the

standard contour. Assuming an existing entropy threshold, we can decide whether the period

is a standard one or not. We apply the same concept at the unit level and decide whether a
specific time-unit in a period is within the standard or not. This specific check is relevant, for
example, to anomaly detection of IoT behavior.

In conclusion, the entire process is based on three key elements: the average graph per period,

the contour around the average graph, and an entropy value representing the overall distance

of a period from the contour. Each of these elements—average, contour, and entropy—can

be one of the several possibilities. For the contour, a simplistic choice would be minimum

and maximum (min-max) values. Alternatively, the SD or confidence interval (CI) could be
employed. These three elements affect each other, and every choice of such a triplet—average,
contour, and entropy—will produce a different behavior of the compressed classifier. The
object is to find the best triplet that will be able to disregard the original data after extracting
the representative contour, without compromising the ability to successfully analyze future

series. In our work, we consistently use the arithmetic average and classical entropy and focus

on finding the best contour.

2.3.1. Finding the optimal contour

We begin with a supervised learning approach, for classification, in which each time series
is labeled as one of two classes. To demonstrate, using the data set from the experiments,

the time series are year-long recordings of temperature samplings, labeled as positive, if the

corresponding year was an EN year, or otherwise negative. We now describe in detail the
process of building the classifier, with emphasis on finding the optimal contour.

Constructing the best contour is described in Figure 1. We begin with raw data collected
during N periods, where each record corresponds to a specific time-unit. These cycles have
already been classified positive or negative according to some classification criteria. These
classified cycles will later be used to determine the best contour.

The process is divided into four stages. In stage one, we use a selected average method and calcu-

late the average graph line representing the N given cycles. This is done horizontally by calculat-

ing the average of the values related to the same time-unit across all N cycles. For example, we

calculate the average of the values for January 1st across the various years. Doing so for all time-
units will generate the average graph line. In stage two, we select several distance calculation

methods, and for each method, we construct its associated contour. This is done by calculating

the distance value for each distance method, e.g., the min-max difference, SD, and CI. Taking the

distance value, we add and subtract it from the average line to get the contour around the aver-

age. We repeat this process for all distance methods. At this stage, we have constructed several
contours around the average line. The goal now is to select the contour, which is most effective in
classifying unclassified cycles. This is done in stages three and four. In stage three, we calculate
the prediction power for each contour and select the one with the highest prediction power. This

is done by summing, for each contour, the number of cases in which its prediction was right and

calculating the average entropy of these correctly classified cycles. We do the same for wrong

An Adaptive Lightweight Security Framework Suited for IoT
http://dx.doi.org/10.5772/intechopen.73712

35

predictions. In stage four, we use one entropy method with an associated threshold value. An

unclassified cycle with an entropy value lower than the threshold will be classified positive and
otherwise negative. For each contour, we calculate the entropy of the given classified cycles. The
result is a set of entropy values, where some are below the threshold and others are above it.

a. We repeat this for all classified cycles. We then sum up the number of correct predictions
and their total entropies. We do the same for wrong predictions. We then subtract the total
wrong numbers from the correct numbers. We repeat this process for all the constructed
contours and select the contour with the highest prediction power.

b. Calculating the entropy.

The entropy of a period, given a contour, is calculated as follows:

• Marking for every timestamp whether the cycle’s value at that timestamp is below,

within, or above the contour.

• Calculating the frequency of each of these three possibilities: below (p
1
), within (p

2
), and

above (p
3
)

• Using these as a ternary probability distribution, its entropy is calculated according to

the formula: p
1
 log(p1) + p

2
 log(p2) + p

3
 log(p3)

• The entropy measure is expected to return its minimum value at the two extreme cases:

When the cycle graph is entirely contained within the contour and when the cycle graph
lies entirely outside of the contour. All other cycles are expected to fall mostly within the

contour, and those which diverge enough from the contour, will have a high entropy

value which will lead to the right conclusion

Figure 1. Process of finding the optimal contour.

Internet of Things - Technology, Applications and Standardization36

c. Classifying a cycle/period

Figure 2 describes the process of classifying unlabeled data cycles, as listed below:

1. Apply the given data cycle to the contour and match it according to timestamps.

2. Noting for each timestamp whether the data point is below the contour, within it, or

above it.

3. Marking these cases respectively as −1, 0, and +1.

4. Calculating the frequencies of each of the three values: −1 (p1), 0 (p2), and +1(p3).

5. Calculating the entropy of the distribution defined by p1, p2, and p3.

6. Classifying as belonging to the contour, if the entropy is below the threshold deter-

mined in the learning phase.

2.3.2. Advantages of the proposed technique

The proposed technique has several advantages over other methods. The technique is a fam-

ily of sampling methods and is defined by the three parameters described above. It is reason-

able to expect that different datasets will require different parameters for the best sampling.
Different combinations can be tested and evaluated to ensure optimal treatment of the data.
The technique we propose is therefore flexible and adjustable and thus suits every given data
set. Secondly, this technique can be applied not only for classification but also for prediction
of time series.

Thirdly, the technique can be used to evaluate reliability of data online. In cases of high fluc-

tuations or sharp changes in the cycle graph, which do not conform to either of the two class

contours, suspicion may arise that the reliability of the data has been compromised. This can

indicate that the sensor is damaged or that there has been a security breach.

Fourthly, the approach allows self-learning and automatic adjustments in cases of common

behavior changes and a new standard has been established. Lastly, occasionally, a post-mortem
may be run to check the system’s reaction to actual behavior and thereafter adjust the system

parameters accordingly.

2.4. Anomaly detection for IoT security

IoT devices generate time-related data, i.e., structured records containing a timestamp and

one or more numeric values. In many cases, we can identify recurrent time frames where the

system behavior has a repetitive format. Hence, IoT data have a structure to which the con-

tour approach is highly applicable.

IoT security utilizes common data patterns and quantitative measurements. Based on the
identified patterns and measurements, we can extract logical rules that will be executed once
an exception is discovered. An exception may be any violation of predefined patterns, mea-

surements, and other parameters, which represent normal, standard, and permitted behavior.

An Adaptive Lightweight Security Framework Suited for IoT
http://dx.doi.org/10.5772/intechopen.73712

37

In IoT, there is an abundance of possible patterns, starting with column level patterns up to
a super internet controlling several IoT networks. The goal is to find the methods and tools
to define standard patterns and how they can be identified. Once this is done, we can apply
the contour method. In our work, we show a two-dimensional contour. Using the same con-

cept, we can expand it to be a multi-dimensional contour. This case is common where there

is a dependency among several columns within one record and the same applies for the case

where there are dependencies among networks of IoT systems.

2.5. Case study

In the following case study, we used meteorological data collected on EN years (positive

class) and NEN years (negative class) from 1980 to 1998. For the positive contours, we took

data from the EN years 1982, 1983, 1987, 1988, 1991, and 1992. All other years in the range were

NEN years. We tested three methods for generating contours: (a) max-min over all cycles;
(b) average cycle ± SD; and (c) CI.

Figures 3 and 4 depict the contours for NEN years. Figure 3 shows the NEN contour in black

according to the average ± SD and depicts how EN years diverge from this contour, as compared

Figure 2. Classifying a cycle.

Internet of Things - Technology, Applications and Standardization38

to the NEN year—1995. The 1992 and 1988 (EN years) show clear divergence from the contour

while 1995 (a NEN) is more contained within the contour. This is nicely captured by the entropy

values, which for 1992 was 0.4266 and for 1988 was 0.3857—above the threshold, leading to the
conclusion that they are not NEN years—while for 1995, the entropy was 0.3631—significantly
lower than those of the EN years, leading to the correct conclusion that 1995 was indeed a NEN

year.

Figure 4 shows two contours: the min-max contour and the average ± SD contour. The Y-axis

in these graphs is the temperature value, and the X-axis is the time. Within each contour, the
year 1995 (a NEN year) is graphed. Its entropy is 0.3631 for the average SD contour and 0.2932

for the min-max contour. Both are the threshold, which leads to the correct conclusion that it
should indeed be classified as NEN.

In the case study, we compared the constructed contours, by using the average graph ± SD

and the average graph ± min-max. For the SD contour, we obtained a significant entropy
value difference between a classified EN case and a NEN case. In comparison, the min-max
contour resulted in close values of entropy for the EN cycle and the NEN cycle. Thus, the abil-

ity to differentiate between two extreme situations using entropy depends on the parameter
used to build the contour.

2.6. Section summary

In this section, we dealt with the classification problem of an unclassified cycle of IoT stream-

ing data. We introduced the contour approach to draw the borders around the standard area
representing a specific class. If there was an unclassified cycle, we measured its distance from

Figure 3. EN cycles on NEN average ± SD contour.

An Adaptive Lightweight Security Framework Suited for IoT
http://dx.doi.org/10.5772/intechopen.73712

39

the contour using an entropy formula. Then, we compared the result to a predefined thresh-

old. If the entropy value is below the threshold, the cycle is of the same class.

We propose a process for constructing the best contour that will presumably classify the cor-

rect underlying class. The process is based on three measurement methods: average, distance,

Figure 4. NEN contours—min-max and SD.

Internet of Things - Technology, Applications and Standardization40

and entropy. For each method, there are several alternate formulas that we may use. Each

combination of these three methods may result in different contour and hence different
entropy value for the same unclassified cycle. We select the combination with the maximum
difference between positive and negative values.

In addition to the initial construction of the class contours from the given data, we suggest

ongoing improvements of the initial contours. Namely, we recalculate the class averages and

their contours to refine and revise the contours for improved classification performance.

In this manner, we are able to improve the contour approach, in reference to several aspects,

such as determining the minimal number of classified cycles required to define the best
contour, expanding the use of the contour to discover early trends or discover significant
changes in behavior and adjusting the contour accordingly, exploring the possibility of

dividing one cycle into several segments, and associating a different contour method to
each segment.

3. Lightweight adaptive random forest for rule generation and
execution

The volume of transmitted data over the various sensors continuously grows. Sensors typi-
cally are low in resources of storage, memory, and processing power. Data security and pri-

vacy are part of the major concerns and drawbacks of this growing domain. An IoT network

intrusion detection system is required to monitor and analyze the traffic and predict possible
attacks. Machine leaning techniques can automatically extract normal and abnormal patterns
from a large set of training sensors data. Due to the high volume of traffic and the need for
real-time reaction, accurate threat discovery is mandatory. This section focuses on designing a

lightweight comprehensive IoT rules generation and execution framework. It is composed of

three components, a machine learning rule discovery, a threat prediction model builder and

tools to ensure timely reaction to rules violation and unstandardized and ongoing changes in

traffic behavior. The generated detection model is expected to identify exceptions in real time
and notify the system accordingly.

We use random forest (RF) as the machine learning platform for the discovery of rules and
real-time anomaly detection. To allow RF adaptation for IoT, we propose several improve-

ments to make it lightweight and propose a process that combines IoT network capabili-

ties, messaging and resource sharing, to build a comprehensive and efficient IoT security
framework.

The rest of this section is organized as follows: We begin with an introduction followed by
the relevant literature review. We then discuss rules extraction using machine learning tech-

niques. We present random forest as the most suitable ML for IoT. We proceed with various
improvements, utilizing RF and IoT attributes. We then outline an experiment that executes
RF building and its corresponding classifications using 15 different configurations, each based
on a unique combination of the number of processors and the forest size.

An Adaptive Lightweight Security Framework Suited for IoT
http://dx.doi.org/10.5772/intechopen.73712

41

3.1. Introduction

IoT is a network of objects, consisting of sensors, Internet, software, and exchange of data.

This generates critical issues of security, which must be addressed. Since to date there is no

standard for sensors, any system under development at this stage must consider the pos-

sibility that soon a standard will be defined, and the systems must be able to easily adjust
to it. Along with the limited processing power and the fact that the security issues must be

dealt with in real time, we realize the immediate need for a flexible and lightweight solution.
The solution should be dynamic, open, scalable, distributed and decentralized. The analysis

discovers patterns and measurements from the data, which are then translated into anomaly
detection rules associated with actions to be executed when a rule is violated. The rules are

then deployed in the IoT devices. When data are received from, or transmitted to an IoT
device, the rules are executed. If the result is positive, the corresponding action is triggered to

cope with the situation.

3.2. Literature review

Mansoori et al. [11] proposed a systematic process for retrieving fuzzy rules from a given

data set. To improve performance, the retrieved rules are then crystallized based on its

effectiveness and applicability. Dubois et al. [12] use Sugeno integrals, which are qualitative

criteria aggregations where it is possible to assign weights to groups of criteria. They show

how to extract if-then rules that express the selection of situations based on local evaluations

and rules to detect bad situations. Sumit-Gulwani, Hart, and Zorn [13] deal with convert-

ing data into an appropriate layout, which requires major investment in manual reformat-

ting. The paper introduces a synthesis engine to extract structured relational data. It uses

examples to synthesize a program using an extraction language. Bharathidason et al. [23]

presented a fast and compact decision rules algorithm. The algorithm works online to learn

rule sets. It presents a technique to detect local drifts by taking advantage of the modularity

of the rule sets. Each rule monitors the evolution of performance metrics to detect a concept

drift. It provides useful information about the dynamics of the process generating data,

faster adaptation to changes, and generates more compact rule sets. Jafarzadeh et al. [15]

used averaging techniques to propose a method in which a previous algorithm for associa-

tion rules mining is improved upon to specify minimum support. It uses fuzzy logic to dis-

tribute data in different clusters and then tries to provide the user with the most appropriate
threshold automatically. Limb et al. [16] used Fuzzy ARTMAP and Q learning to build a

data classification and rule mining model. To justify the classification, the model provides a
fuzzy conditional rule. Q-values are used to minimize QFAM prototyping. Mashinchi et al.

[17] proposed a granular-rules extraction method to simplify a data set into a granular-

rule set with unique granular rules. It performs in two stages to construct and prune the

granular rules. Yang H. et al [18] proposed an anomaly detection algorithm of Quick Access

Recorder (QAR) data, based on attribute support of a rough set. The method retains the
time characteristics of QAR data and strengthens the relation between the condition and

decision attributes. Tang [19] described an approach of data mining with Excel, using the

XLMiner add-in. This is an example of mining association rules to illustrate all the steps

Internet of Things - Technology, Applications and Standardization42

of this approach. Tong S and Koller D. [20] introduced an algorithm for choosing which

instances to request next, in a setting in which the learner has access to a pool of unlabeled
instances and can request the labels for some number of them. The algorithm is based on

a theoretical motivation for using support vector machines (SVMs). Osungi et al. [21] pro-

posed an active learning algorithm that balances exploration by dynamically adjusting the

probability to explore each step. Lang T et al. [22] proposed an active learning method for

multi-class classification. The method selects informative training compounds to optimally
support the learning progress. Bharathidason et al. [23] improved the performance and the

accuracy by including only uncorrelated high performing trees in a random forest.

The reviewed literature focuses on improvements to known rule discovery mechanisms, such

as machine learning, to transform them into lightweight systems that can be executed in lim-

ited resources settings. In most cases, the proposed solutions remain for general purposes but
can run with less required resources. We are seeking a solution that takes advantage of the
unique IoT attributes and utilizes them to build a combined comprehensive framework for
IoT security.

3.3. Rules generation and deployment process

The process consists of seven stages (see Figure 1). Stage 1 collects training data from the

IoT network, removes irrelevant records, and complements data in records with missing

data. In stage 2, we apply discovery techniques to extract important measurements and

patterns. Stage 3 consists of generating a rule for each measurement and pattern. In stage 4,
we evaluate the effectiveness of each rule with a set of training data. If the number of times
a rule has been executed is below a given threshold, the rule is removed from the rules set.

Next, in stage 5, we check the completeness and the integrity of the generated set of rules.

Rules that contradict another rule are removed and missing rules are added. Stage 6 runs a

simulation with the same training data with the presumption that all the designated rules

will be executed. Finally, in stage 7, we deploy the generated rules set. At this point, the

system is ready to accept the IoT traffic data in real time and automatically check it against
the set of rules.

3.4. Extracting rules from training data

A typical sensor record contains the sensor ID, timestamp, and one or more values per feature.

The main source for extracting rules is data collected from the concrete processes involved in

the explored domain. The significance to IoT is taking the accurate decision in real time and
react in real time to security alerts, notifications, automation, and predictive maintenance. To
ensure the completeness and the integrity of the generated set of rules, we use a consistent

multi-layer process of accumulating rules, starting with the simplest rules up to the most

complicated and multi-stage rules. Simple rules are extracted at the single feature level, and

then we proceed with rules extracted from a combination of any number of features having

a common relation, such as features of sensors sharing the same workflow. The generated
rules at this level relate to basic data such as maximum, minimum, average, standard devia-

tion, median, and most frequent value. More complex relations, such as proportions among

An Adaptive Lightweight Security Framework Suited for IoT
http://dx.doi.org/10.5772/intechopen.73712

43

subsequent values, sequence trends, and significant patterns, require reasoning capabilities
and can be reached by machine learning and data mining techniques. The outcomes are mea-

surements, thresholds, and patterns used to draw the corresponding decision trees. These
decision trees tend to grow fast, consuming large storage, and memory space along with

high runtime when pruning and analyzing it to find the specific rule. The depth of the tree
grows linearly with the number of variables, but the number of branches grows exponentially

with the number of states. Decision trees are useful when the number of states per variable

is limited. It becomes complicated when the state of the variables depends on a threshold or

complex computations. Communicating this rationale requires labeling every edge and then

tracing the tree path to understand the logic incorporated in it. Complex event processing

(CEP) engines are popular in IoT. They support matching time series data patterns that origi-
nate from different sources. However, they suffer from the same modeling issues as trees and
pipeline processing.

Rule engines have two major drawbacks in the context of IoT, the logic representation

is not compact and the use of it requires much processing power and time. We will cope
with these drawbacks in two ways. 1. Reduce the number of decision trees and improve

the search navigation scope, resulting in a reasonable and acceptable search time. 2.

Utilize IoT attributes and functionality to optimize the tree navigation flow and process

sharing.

In the following sections, we present the random forest machine learning and propose several

improvements where the known drawbacks are removed.

3.5. Decision automation using random forest

Random forest employs bootstrap aggregation for training. While the predictions of a single
tree are sensitive to noise in its training set, the average of many uncorrelated trees is not.

Bootstrap sampling is a way of decorrelating the trees by showing them different training
sets. Many trees reduce the depth and width of each tree and so save pruning and analysis

time, which suit IoT constraints.

The algorithm has two key parameters: the number of K trees to form a random forest
and the number of features F, randomly sampled features for building a decision tree. For

large and high dimensional data, a large K should be used. Estimating the performance
of random forest for one core is based on the following parameters: # trees [K], # features
[F], # rows [R], and maximum depth [D]. The estimated runtime is influenced by the num-

ber of features. Hence, keeping only the most important features lowers the number of

records and maintains the maximum depth low, which will improve the overall random

forest performance.

Random forest performance is better than the classical tree decision algorithm. However, it
may still be insufficient for IoT due to the memory space and processing power it requires.
Hence, building a lightweight RF process and utilizing IoT networking are required.

In the following section, we describe four proposals that make random-forest lightweight.

Internet of Things - Technology, Applications and Standardization44

3.6. Improving RF performance and consumption of resources

a. Randomization may cause occurrence of redundant, irrelevant or even contradicting trees,

which may lead to redundant searches or even to the wrong decision. Therefore, selection

of trees with high classification accuracies leads to improved performance and better deci-
sion accuracy. A decision process is effective when the difference among the relevant alter-

natives is significant. RF contains many decision trees, where each of them may contribute
to the final decision. Many such trees generally require wider searches and thus expand the
decision process. On the one hand, reducing the number of the searched trees will shorten

the process but on the other hand may increase the probability of making the wrong deci-

sion. Therefore, a selection criterion for removing the “redundant” trees is required. An

initial approach is to remove similar trees as correlated trees hardly contribute to reaching

the correct decision. Thus, for effective RF decisions, we strive to remove uncorrelated trees
[14]. The correlation between two trees may be defined in various ways, such as:

1. Distance—we transform the tree into a sequence of values, and then we apply a hash-

ing function on this sequence and get a score. Two trees are correlated if the difference
between the scores is below a predefined threshold.

2. Common components—count the number of similar components and compare.

3. Empirically by removing the tree and trying a vast number of cases, we will reach the

same decisions as we would if the tree was included, which means that the tree has no

effect on practical decisions.

b. Prioritize trees by simulation using labeled and already classified cases.

Instead of removing trees, we propose prioritizing them. The prioritization can be an em-

pirical study of the historical use and effectiveness in true/false decisions. Another way is
to run a Monte-Carlo intensive simulation and prioritize trees accordingly.

3.7. Prioritize trees by its threat level

We define several security levels: low, normal, high, and emergency. For each level, we associate
the most effective trees and the order of the trees to be visited. For each network, we designate
a security manager device, which collects messages from its network devices, assesses it, and

determines the network security level. When the network is initiated, the designated level is
low. As time passes, messages arrive at the security manager device, which analyzes the input

and decides to change the security level. Then, a message is distributed requesting a security

level change. Once the level is changed, the local system activates the new tree search schedule.

3.8. Messaging assisted, best trees selection

MQTT is a lightweight messaging protocol, over TCP, adjusted to the IoT domain. Given

MQTT, we can utilize the IoT network itself to improve performance. We use it to transfer
messages and data from one device to another. For example, in case of a suspicious occasion

An Adaptive Lightweight Security Framework Suited for IoT
http://dx.doi.org/10.5772/intechopen.73712

45

detected by one of the sensors, using the protocol, the device sends alert messages to other

members. The messages include data strings and unique data patterns that receivers should
expect to receive and thus detect a malicious situation. The message may also include the

most effective trees that may cope with the suspected threat.

When suspicious data reach a sensor, it is analyzed locally, and the best tree sequence is
identified. This device sends a message to the security manager, containing the data with
the detected anomaly and the sequence of trees to visit and act accordingly. The messaging

protocol is an adjustment of HTTP.

3.9. Experiment using the random forest in an IoT

In this section, we describe a comprehensive test, simulating the building of various random

forests and then runs several classification cycles for a given set of anonymous records. We
used a computer with eight processors running the random forest PMI platform with 10–1000

trees per forest. It contained a random forest builder, an anonymous records classification
process, and a configuration tool. We sought the best configuration, suitable for the optimized
performance and accuracy of a random forest simulation. A configuration in this context is
measured by the combination of the number of processors and the number of trees in a for-

est. For the simulation, we used 500 anonymous records and 3350 already classified samples,
where each sample has 95 attributes. We ran 30 test cycles where each cycle represented a
unique configuration—number of processors: 2, 4, 6, 8, and 16 and the number of trees per
forest: 10, 100, 250, 500, 750, and 1000. For comparison, all test cycles used the same data set.

In cases of similar trees, we ran a process that removes similar trees. The performance of the

entire 30 test cycles is evaluated by its accuracy and processing time.

Figures 5 and 6 show that accuracy, performance of each of the processes and combined are

best achieved when using 10 trees per forest and 8 processors. Based on the above simulations,
it seems that for the example at hand, using a relatively small number of trees per forest and

multi-core processors is recommended for optimal performance and high accuracy. However,

this may not be the common case. Therefore, prior to implementing RF-based anomaly detec-

tion, it is recommended that a simulation test be run with the main data. In addition, we

propose a prototype of an IoT environment. The prototype is composed of one server and six

Arduino OS devices. We built two configurations, A and B. In configuration A, all the devices
are connected via WIFI 14 to the server, where the data transmission between two devices is
done through the server. The entire RF is loaded in the server while the devices have one tree

installed in them. The data flow of an incoming event in configuration A can be one of the fol-
lowing: 1. An event arrives at a device, the device forwards it to the server, which then runs

the RF and classifies the event. 2. An event arrives at a device and the device forwards it to the
server. The server forwards it to all devices. Each device checks the event against the appropri-

ate local tree and sends the result to the server. The server then counts the results and sends the

reply to the sender, which acts accordingly. The flow in configuration B is as follows: An event
arrives at a device, the device propagates it to other devices, checks it against its own tree,

and propagates the results back to the sender. The sender classifies the event and acts accord-

ingly. To test the feasibility of the prototype, we used the trees built by the simulation tool and

loaded it to the server and devices accordingly. We transmitted 500 events to the devices in

Internet of Things - Technology, Applications and Standardization46

a round robin schedule. The resulting accuracy level was similar to the level we found in the

previous simulation. Performance was out of the scope of the prototype stage. Nonetheless,

we did not notice streaming interruptions or delays. In future work, we intend to design and

perform consistent and comprehensive tests of the device and other similar devices. Based on
the results, we will be better able to determine which rules are to be executed in real time and
which are to be executed online or in batch mode.

4. Lightweight public key cryptographic processor suited for IoT

Due to the vast number of IoT devices and high transmission volumes, a robust and adap-

tive cryptography system is required. However, since IoT devices have limited memory and

computation power, they are unable to execute public key cryptographic systems. To cope

Figure 5. Results of running the 30 classification processes.

Figure 6. Accuracy and combined results of running the 30 classification processes.

An Adaptive Lightweight Security Framework Suited for IoT
http://dx.doi.org/10.5772/intechopen.73712

47

with this limitation, we propose a lightweight RSA process. A combination of symmetric

and asymmetric encryption systems is commonly used by the industry. Symmetric encryp-

tion systems require moderate computation resources and consequently are already used

in IOT. However, asymmetric public key encryption requires vast computation resources,

and as a result cannot be executed by most IOT devices. In this section, we describe a light-

weight RSA encryption, where three improvements are incorporated: acceleration of modular

exponentiation calculation, parallel and distributed multi-core processing, and splitting the
original message if the message length is very long. After each part is completed, the system

collects the intermediate results and loads them into a consolidation and integration process,

which generates the result. We ran comprehensive encryption and decryption processes on
messages of various lengths. The results prove that lightweight RSA is ready to be incorpo-

rated in IoT devices.

The rest of this section outlines the relevant literature review. Then, we describe an example

of smart modular exponential calculation, which runs efficiently in an IoT architecture.

4.1. Literature review

Lin et al. [24] proposed the execution in parallel on CPU/GPU hybrids, of the Montgomery

algorithm, to improve RSA performance and security. Fadhil and Younis [25] proposed a

hybrid system, running RSA on multi-core CPU and multi GPU cores. For comparison pur-

poses, they implemented variants of RSA, Crypto++, and the sequential counterpart. Multi-

thread CPU improved performance by 6, over the sequential CPU implementation, and with

GPU, it improved 23 times over the sequential implementation. The throughput gained for

1024 bits was ~1800 msg/sec, and for 2048 bits, it was ~250 msg/sec. Yanga et al. [26] suggested

a parallel block Wiedemann algorithm in cloud to enhance the performance of GNFS and
reduce communication costs, involved in solving large and sparse linear systems over GF.

4.2. Example of the acceleration of a modular exponentiation calculator

The calculation of “a factor b modulo n” is the heart of RSA cryptography and is also the most

resource consuming component. Dividing this calculation into smaller parts will allow dis-

tributed and parallel processing of this calculation, where each smaller part is calculated by

one sensor and later is integrated to obtain the result of “a factor b modulo n.” The underlying

concept is the following conceptual equation: ((a mod n) * (b mod n)) mod n = (a*b) mod n.

This concept is used by the following algorithm to calculate modular exponentiation. Step 1:

Translate the input into a binary number. Step 2: Start at the rightmost digit, let k = 0, for each

positive digit calculate the value of 2^k, Step 3: Calculate mod n of the powers of two ≤ b, Step
4: Use modular multiplication properties to combine the calculated mod n values. Steps 2 and
3 can be executed in parallel by several connected sensors. The results from the sensors are

then sent to the sensor requested the encryption/decryption, to execute step 4 and obtain the
final result. Using a network of 7688 devices, we ran a comprehensive test, which proves the
feasibility of executing RSA using parallel and distributed processing.

Internet of Things - Technology, Applications and Standardization48

5. Conclusion

Connecting sensors to the Internet exposes the entire network to malicious penetrations.

This is due to poor computation resources in standard sensors, which do not allow the exe-

cution of robust security systems. Hence, lightweight primitive systems should be imple-

mented in IoT. To maintain current Internet security level, we adjusted implementations of

known security concepts and mechanisms, which contribute to the security of the Internet

of things. In this chapter, we focused on three key security elements where downsizing is

feasible without compromising security: (a) Eliminating the frequent use of detailed data

in the classification process. (b) Adjusted random forest machine learning to work in a dis-

tributed and parallel mode, when building the forest and during the detection process. (c)

Adjust RSA cryptography calculations which are executed in parallel and distributed. The

proposed solutions have smaller footprints, are efficient, and in most cases demonstrate bet-
ter performance. We prove that downsizing and parallel processing are the most appropriate
approaches for implementing comprehensive concepts for proper operation in constrained

environments of IoT.

We are currently working on expanding current research areas. For example, additional
improvements in RF implementation and exploring other machine learning technologies to

check its applicability to IoT anomaly detection. We are exploring other asymmetric cryp-

tography systems to check their applicability to IoT. In parallel, we are investigating authen-

tication methods and technologies to discover a suitable one for IoT, or we are considering

building an IoT-specific authentication.

Author details

Menachem Domb

Address all correspondence to: dombmnc@edu.aac.ac.il

Ashkelon Academic College, Computer Science Department, Ashkelon, Israel

References

[1] Aldosari HM, Snasel V, Abraham A. A new security layer for improving the security of

internet of things (IoT). Inteernational Journal of Computer Information Systems and
Industrial Management Applications. 2016;8:275-283. ISSN: 2150-7988

[2] Mairal FB, Ponce J, Sapiro G. Online dictionary learning for sparse coding. In: Proceedings
of the 26th Annual International Conference on Machine Learning. Montreal, Quebec,

Canada: ACM; 2009. pp. 689-696

An Adaptive Lightweight Security Framework Suited for IoT
http://dx.doi.org/10.5772/intechopen.73712

49

[3] Jankov D, Sikdar S, Mukherjee R, Teymourian K, Jermaine C. Real-time high perfor-

mance anomaly detection over data streams: Grand challenge. In: Proceedings of the

11th ACM International Conference on Distributed and Event-based Systems. Tokyo,

Japan: ACM; 2017. pp. 292-297

[4] Vlachos M, Freris NM, Kyrillidis A. Compressive mining: Fast and optimal data mining
in the compressed domain. The VLDB Journal. 2015;24(1):1-24

[5] Sakurada M, Yairi T. Anomaly detection using autoencoders with nonlinear dimension-

ality reduction. In: Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning
for Sensory Data Analysis. ACM; 2014. p. 4

[6] Reeves G, Liu J, Nath S, Zhao F. Managing massive time series streams with multi-scale
compressed trickles. Proceedings of the VLDB Endowment. 2009;2(1):97-108

[7] Chilimbi TM, Hirzel M. Dynamic hot data stream prefetching for general-purpose pro-

grams. In: ACM SIG-PLAN Notices. Berlin, Germany: ACM; 2002;37(5):199-209

[8] Lane T, Brodley CE. Temporal sequence learning and data reduction for anomaly detec-

tion. ACM Transactions on Information and System Security (TISSEC). 1999;2(3):295-331

[9] Kasiviswanathan SP, Melville P, Banerjee A, Sindhwani V. Emerging topic detection
using dictionary learning. In: Proceedings of the 20th ACM international conference on

Information and knowledge management. ACM; 2011. pp. 745-754

[10] Aldroubi A, Cabrelli C, Molter U. Optimal non-linear models for sparsity andsampling.

Journal of Fourier Analysis and Applications. 2008;14(5-6):793-812

[11] Mansoori EG, Zolghadri MJ, Katebi SD. SGERD: A steady-state genetic algorithm for
extracting fuzzy classification rules from data. IEEE Transactions on Fuzzy Systems.
Aug 2008;16(4):1061-1071. ISSN: 1063-6706

[12] Dubois D, Durrireu C, Prade H, Rico A, Ferro Y. Extracting decision rules from quali-

tative data using sugeno integral: A case-study. In: Proceedings of the 13th European

Conference, ECSQARU 2015. Compiègne, France: Springer; Jul 2015;9161:14-24. ISBN:
978-3-319-20806-0; ISSN: 0302-9743

[13] Daniel W. Gulwani S, Hart T, Zorn B. FlashRelate: extracting relational data from semi-
structured spreadsheets using examples. In: Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation. Vol. 50, Issue. 6.
New York: ACM; Jun 2015. pp. 218-228

[14] Kosina P, Gama J. Very fast decision rules for classification in data streams. Data Mining
and Knowledge Discovery. Jan 2015;29(1):168-202. ISSN: 1384-5810

[15] Jafarzadeh H, Torkashvand R, Asgari C, Amiry A. Provide a new approach for min-

ing fuzzy association rules using apriori algorithm. Indian Journal of Science and
Technology. Apr 2015;8(S7):127-134. ISSN: 0974-6846

Internet of Things - Technology, Applications and Standardization50

[16] Pourpanaha F, Peng Limb C, Mohamad Saleh J. A hybrid model of fuzzy ARTMAP and
genetic algorithm for data classification and rule extraction. Elsevier, Expert Systems
with Applications. 2016;49(7):4-85

[17] Mashinchi R, Selamat A, Ibrahim S, Krejcar O. Granular-rule extra action to simplify
data. In: Intelligent Information and Database Systems. Vol. 9012 of the Series LNCS. Mar
2015. pp. 421-429. ISBN: 978-3-319-15704-7

[18] Yang H, Xiao C, Qiao Y. Study on anomaly detection algorithm of qar data based on

attribute support of rough set. International Journal of Hybrid Information Technology.
2015;8(1):371-382. DOI: http://dx.doi.org/10.14257/ijhit.2015.8.1.33. ISSN: 1738-9968. IJHIT
Copyright ⓒ 2015 SERSC

[19] Tang H. A simple approach of data mining in excel. In: 4th International Conference
Browse Conference Publications, IEEE Xplore; 2008

[20] Tong S, Koller D. Support vector machine active learning with applications to text clas-

sification. Journal of Machine Learning Research, Leslie Pack Kaelbling. 2001:45-66

[21] Osugi T, Kun D, Scott S. Balancing exploration and exploitation: A new algorithm for
active machine learning. In: Fifth IEEE International Conference on Data Mining. IEEE

Xplore, 2005. DOI: 10.1109/ICDM.2005.33

[22] Lang T, Flachsenberg F, Luxburg U, Rarey M. Feasibility of Active Machine Learning
for Multiclass Compound Classification. 2016. PMID: 26740007. DOI: 10.1021/acs.jcim.
5b00332

[23] Bharathidason S, Jothi Venkataeswaran C. Improving classification accuracy based on
random forest model with uncorrelated high performing trees. International Journal of
Computer Applications (0975-8887). Sep 2014;101(13)

[24] Lin C, Liu J, Li C-C, Chu P-W. Parallel modulus operations in RSA encryption by CPU/
GPU hybrid computation. In: Taiwan, Conference Paper, IEEE Xplore: 29. Jan 2015. DOI:
10.1109/AsiaJCIS.2014.25

[25] Fadhil HM, Younis MI. Parallelizing RSA algorithm on multicore CPU and GPU.

International Journal of Computer Applications (0975-8887). Feb 2014;87(6)

[26] Yanga LT, Huanga G, Jun Feng B, Xua L. Parallel GNFS algorithm integrated with par-

allel block Wiedemann algorithm for RSA security in cloud computing. Information
Sciences, Elsevier. 2016

An Adaptive Lightweight Security Framework Suited for IoT
http://dx.doi.org/10.5772/intechopen.73712

51

