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Abstract

All living organisms have evolved by developing concomitant physiological and behav-
ioral adaptations to environment. Through these processes, biological rhythms, such as 
reproduction, can be synchronized by environmental cues, which include not only the 
light/dark cycle itself but also the feeding pattern. These adaptations depend on two 
highly conserved and interrelated systems: an endogenous timing system and the hypo-
thalamic-pituitary-adrenal (HPA) axis. In mammals, the biological circadian rhythms 
are controlled by a “master oscillator,” the suprachiasmatic nucleus of the hypothala-
mus (SCN). Through neural signals to paraventricular nucleus of hypothalamus (PVN), 
the SCN also modulates the activation of the HPA axis, ultimately resulting in the cir-
cadian rhythm of glucocorticoid secretion by the adrenal cortex. Glucocorticoids, in 
turn, are well known for their important role in the regulation of energy homeostasis. 
Accordingly, obese animals exhibit increased glucocorticoid levels and are more sus-
ceptible to glucocorticoid-induced anabolic effects. In parallel, glucocorticoids modulate 
reproductive function and fertility: at physiological levels, glucocorticoids control the 
timing of puberty onset and gonadal steroidogenesis, as well modulate the immune sys-
tem, which determines conception and pregnancy progression. However, stress-induced 
glucocorticoid secretion may exert a dual effect on reproductive function.

Keywords: glucocorticoids, hypothalamus, energy homeostasis, reproductive function, 
circadian rhythm
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1. Introduction

Glucocorticoids are steroid hormones produced by the intermediate layer of the adrenal gland 

cortex (fasciculate zone) under the stimulation by the adrenocorticotropic hormone (ACTH), 

released from the anterior pituitary. ACTH secretion, in turn, is stimulated by corticotrophin-

releasing hormone (CRH), produced by hypothalamic neurons and released into the portal 

pituitary capillary system. CRH, ACTH, and glucocorticoids (mainly cortisol in humans) inte-

grate the hypothalamus-pituitary-adrenal (HPA) axis [1], whose activity influences a broad 
range of physiological functions such as metabolism, immune and inflammatory responses, 
as well as central nervous system activity [2].

The intracellular actions of glucocorticoids are mediated by the interaction with glucocorti-

coid (GR) and mineralocorticoid (MR) nuclear receptors, which hold great structural homol-

ogy and are both ligand-driven transcription factors. In the cytoplasm of target cells, MRs and 

GRs exist at their unbound form; upon hormone binding, the receptor-ligand complex then 

translocates to the nucleus to modulate gene transcription [3]. It has been assumed that GR 

primarily mediates the reactive feedback during stressful episodes, whereas MR mediates the 

axis feedback during the nadir phase of the circadian rhythm [4].

MR and GR have also been identified in association with neuronal membranes [5], a signaling 

mechanism that is apparently shared by other steroid receptors [6]. Supporting this evidence, 

Evanson and coworkers [7] showed that stress-induced corticosterone secretion in rats is rap-

idly inhibited by the intrahypothalamic dexamethasone administration and that previous 

conjugation of dexamethasone to bovine serum albumin did not prevent dexamethasone-

induced inhibition of ACTH release in stressed animals. Therefore, besides MR and GR being 

mostly known for their intracellular, delayed genomic role, these results make increasingly 

evident that these receptors can also mediate rapid, nongenomic signaling.

Indeed, transmembrane GRs seem to be upstream of a complex network controlling neuronal 

activity. It has been demonstrated that dexamethasone-induced activation of postsynaptic 

G-protein coupled receptors produces a rapid suppression of excitatory postsynaptic inputs 

in neurosecretory hypothalamic neurons [8, 9]. These effects were shown to be dependent 
upon the activation of nonconventional retrograde neurotransmission, mediated by the pro-

duction of membrane-derived lipid mediators (endocannabinoids) and a gaseous modulator 

[nitric oxide (NO)]. These nongenomic glucocorticoid actions would accomplish, within the 

hypothalamus, for rapid, retrograde inhibition of glutamatergic (by endocannabinoids) and 

stimulation of GABAergic (by NO) signaling. Therefore, this simultaneous and rapid glu-

cocorticoid-mediated and synapse-specific inhibition potentially impacts all the homeostatic 
responses initiated within hypothalamic nuclei in response to stress.

2. Glucocorticoids and the circadian rhythm

All living organisms have evolved by developing concomitant physiological and behavioral 

adaptations to environment. Through these processes, biological rhythms, such as reproduction,  
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can be synchronized by environmental cues or “zeitgebers,” which include not only the light/

dark cycle itself but also the feeding pattern. These adaptations depend on two highly con-

served and interrelated systems: an endogenous timing system and the HPA axis [10, 11].

The HPA axis circadian maturation may occur at early ages, influenced by prenatal and post-
natal environmental synchronizers [12, 13]. In mammals, the biological circadian rhythms 

are controlled by a “master clock,” the suprachiasmatic nucleus of the hypothalamus (SCN), 

which receives external information via the retinohypothalamic tract and synchronizes the 

“peripheral clocks,” located in almost all organs and tissues [14].

The interaction between the circadian timing system and the HPA axis occurs at different 
signaling levels. Through neural signals to paraventricular nucleus of hypothalamus (PVN), 

the SCN also modulates the secretion of CRH, arginine vasopressin [(AVP), an ACTH secreta-

gogue], and ACTH, ultimately resulting in the circadian rhythm of glucocorticoids secretion 

by the adrenal cortex [15]. The SCN also influences adrenal sensitivity to ACTH through the 
autonomic nervous system, in a second level of interaction [16].

The molecular machinery for the cell-autonomous circadian clock depends on transcriptional 

feedback loops. The two core clock proteins—CLOCK and BMAL1—form a heterodimer 

that activates the transcription of their target genes, Period (Per) and Cryptochrome (Cry). The 

proteins encoded by the genes Pers and Crys interact with the heterodimer CLOCK/BMAL1, 

inhibiting their own transcription. The genes Rev-erbα and Rorα also modulate this transcrip-

tional loop, creating a repetitive and self-sustainable cycle of almost 24 h [17].

At transcriptional level, glucocorticoids synchronize central oscillators in some areas of the 

brain [18], influencing the expression of clock genes in response to a series of conditions. 
Glucocorticoids also modulate the circadian rhythm of peripheral oscillators [19–21], regulat-

ing the expression of clock genes through genomic actions mediated by activated GR [22]. 

Per1 and Per2 contain glucocorticoid-responsive elements (GREs), whereas Rev-erbα and Rorα 

are negatively regulated by glucocorticoids [23].

Additionally, the transcriptional activity of GR is reduced in response to acetylation of mul-

tiple lysine residues mediated by the CLOCK protein [24]. The CLOCK/BMAL1 heterodimer 

physically interacts with the ligand-binding domain (LBD) of the α-subunit of the glucocor-

ticoid receptor (GRα) and represses the transcription of glucocorticoid-responsive genes [24, 

25]. Furthermore, the posttranslational acetylation of GRα by CLOCK appears to repress the 
activation of genes targeted by GRα [25]. Taken together, these findings suggest that CLOCK/
BMAL1 heterodimer behaves as a negative regulator of GRα in peripheral tissues, antagoniz-

ing the physiological actions of circulating glucocorticoids [24].

An interesting example of the complex interaction between the HPA axis and peripheral oscil-

lators is provided by the modification of the daily dietary pattern, which is considered a pow-

erful “zeitgeber” for the diurnal rhythm of glucocorticoid secretion [26, 27]. In rats, which are 

nocturnal animals, the change in dietary schedule to the light period results in the inversion of 

the circadian rhythm of the HPA axis, producing a corticosterone peak in the morning. This evi-

dence reinforces the hypothesis that HPA axis activity is influenced not only by photic synchro-

nizers such as the light/dark cycle but also by nonphotic clues, such as feeding episodes [28, 29].
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Therefore, it is quite reasonable to assume that glucocorticoid signaling might somehow 

reset peripheral clocks in response to changes in feeding pattern [22]. However, larger phase 

shifts were observed in adrenalectomized (ADX) mice and rats submitted to daytime feed-

ing, suggesting that glucocorticoids in fact inhibit rather than promote phase adjustments of 

peripheral oscillators to daytime feeding [20]. Based on this finding, it has been hypothesized 
that nutrient-sensing molecules, such as sirtuin-1 (SIRT1) and AMP-activated protein kinase 

(AMPK) may also act as clock-resetting signals in response to altered feeding time [30].

The literature clearly reveals feeding as a potent synchronizer of HPA axis activity in murines 

and the insight into this relationship for humans is not so clear. A study performed in male 

volunteers before and during Ramadan, the ninth month of the Muslim calendar, during 

which food intake is restricted to 9 p.m., showed that serum cortisol levels rose in the after-

noon, whereas the morning cortisol rise was delayed, with a higher morning peak and a 

sharper decline, suggesting mealtime as a synchronizer also in humans [31]. A recent report 

reinforced this hypothesis, demonstrating profound changes in the diurnal expression of 

CLOCK in Ramadan practitioners [32]. On the other hand, obese women submitted to hypo-

caloric diet in different restricted feeding patterns demonstrated no significant changes in 
the circadian rhythm of cortisol secretion regardless the meal timing [33]. These conflicting 
results could be related to gender differences as well as the duration of feeding/restriction 
protocol, possibly indicating that a longer duration of altered feeding pattern could be also 
necessary to evoke those HPA axis changes.

Another line of evidence that has been recently revisited is the relative importance of envi-

ronmental light (either natural or artificial) as one important “zeitgeber” for cortisol circadian 
rhythm in humans. Indeed, occasional or sustained (i.e., shift work, exposure to artificial light 
from electronic devices, etc.) alterations in the timing of the sleep-wake cycle or light exposure 

can lead to changes in circadian hormonal organization (including cortisol and melatonin 

secretion) and may contribute to negative health outcomes, such as obesity [34].

In summary, the endogenous timing system and the HPA axis modulate each other’s activity 

through multilevel interactions, which ultimately coordinate homeostasis with the various 

environmental challenges. Therefore, uncoupling of these systems alters internal regulatory 

mechanisms and promotes pathologic changes in virtually all organs and tissues, especially 

those implicated in energy metabolism. Despite the significant progress that has been made 
during the past few years on the knowledge of molecular mechanisms underlying this multi-

level communication, most of the physiologic and pathophysiologic aspects of this interplay 

remain to be elucidated.

3. Glucocorticoids and energy homeostasis

Energy homeostasis is basically defined as the balance between energy intake and expendi-
ture, being regulated by central and peripheral factors. Feeding behavior is homeostatically 

controlled by peripheral factors (such as leptin and insulin, known as adiposity signals), as well 

as by gut-derived signals, classically known as satiety signals [35]. Leptin and insulin medi-

Corticosteroids28



ate the long-term control of energy homeostasis, by acting primarily in hypothalamic neurons 

that express orexigenic or anorexigenic neuropeptides [35]. Neuropeptide Y (NPY) and agouti-

related protein (AgRP) in the arcuate nucleus of the hypothalamus (ARC), and orexins and 

melanin-concentrating hormone in the lateral hypothalamic area, constitute the classical hypo-

thalamic orexigenic pathway. The hypothalamic anorexigenic circuit, in turn, includes proopi-

omelanocortin (POMC) and cocaine and amphetamine-regulated transcript (CART) in the ARC, 

and CRH and oxytocin (OT) in the PVN. On the other hand, brainstem areas, mainly the nucleus 

of the tractus solitarii (NTS), receive immediate information about the meal from satiety sig-

nals [mechanical and chemical stimulation of stomach and small intestine, as well as hormones 

released during a meal, as cholecystokinin (CCK)], and thus acutely regulate meal size [36].

Glucocorticoids appear as critical hormones regulating energy balance, given their participa-

tion in the metabolism of glucose, lipids, and proteins, as well as in the control of food intake 

and body weight gain and composition. As evidenced before, feeding also plays a key role 

as a rhythmicity synchronizer of the HPA axis [37], the amount of food ingested also being 

related to glucocorticoid secretion [38]. On a reciprocal way, increases in circulating gluco-

corticoids, in consequence to stress, therapeutic strategy, or Cushing’s disease, lead to an 

enhancement in food intake and body weight gain, in addition to increased glucose produc-

tion, decreased glucose transport and utilization, decreased protein synthesis, and increased 

muscular protein degradation [39, 40]. Long-term glucocorticoid treatment in intact rodents 

also induces the development of obesity, as well as other physiological hallmarks of metabolic 

syndrome, such as increased plasma leptin and insulin, increased plasma triglycerides, and 

impaired glucose tolerance [41, 42].

On the other hand, anorexia and body weight loss are typically found in response to chronic 

glucocorticoid deficiency, as observed in Addison’s disease or primary adrenal insufficiency 
[43]. Similarly, removal of endogenous glucocorticoids by bilateral adrenalectomy (ADX) is 

a well-established experimental model to investigate the mechanisms underlying the hypo-

phagic effect of human primary adrenal insufficiency [44–46]. An increased expression of the 

anorexigenic neuropeptides CRH and OT is indeed found in the PVN of ADX rats [45, 46], 

together with a reduction in the expression of the orexigenic neuropeptides NPY and AgRP 

in the ARC [47]. Surprisingly, ADX was shown to reduce the expression of POMC and CART 

in the ARC, suggesting that ADX-induced hypophagia may be somehow dissociated from the 

expression of these neuropeptides [48].

Interestingly, although serum cortisol levels are not clearly increased in human obesity, circu-

lating corticosterone is enhanced in several murine obesity models, ADX being a very effec-

tive way to diminish hyperphagia and obesity under these experimental conditions [49, 50]. 

Reciprocally, obese animals seem to be more sensitive to the anabolic effects of glucocorti-
coids, evidenced by a higher response to CRH stimulation, as well as by enhanced basal and 

stimulated response to stress [51].

It is well established that glucocorticoids stimulate the drive to eat, and thus ADX-induced 

hypophagia involves, at least in part, a reduction on this stimulatory drive. However, glucocor-

ticoids also seem to participate in the short-term control of food intake, since the anorexigenic 

effect of ADX is also associated with the increased activation of satiety-related responses in 
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the brainstem, primarily implicated in the control of meal size [44, 45]. In this context, it has 

been already demonstrated that the hypothalamus and the brainstem are reciprocally intercon-

nected, and OT axonal projections from the PVN to the NTS were also enhanced following ADX 

[52]. Furthermore, the intracerebroventricular administration of type 2 CRH receptor and OT 

receptor antagonists reversed ADX-induced hypophagia and the increased activation of NTS 

neurons induced by feeding [45, 46, 52]. Actually, OT neurons of the PVN may act as down-

stream mediators of CRH effects on the enhanced meal-induced satiety induced by ADX [53].

Glucocorticoids are also known for their dual effects on lipid metabolism, which vary from 
lipogenic to lipolytic. White adipose tissue can be found in different regions of the body: in 
visceral or central depots (omental and mesenteric), found within the abdominal cavity asso-

ciated with digestive organs, and in subcutaneous depots, located under the skin. In response 

to excessive energy intake and limited energy expenditure, energy homeostasis is disturbed 

and subcutaneous adipose tissue is recruited by acting as a metabolic sink, where excess free 

fatty acids (FFAs) and glycerol are stored as triglycerides (TGs) in adipocytes. If the storage 
capacity of subcutaneous adipose tissue is exceeded or its ability to generate new adipocytes 

is impaired, lipid begins to accumulate in areas outside the subcutaneous tissue, originating 

as visceral adiposity [54].

Indeed, the net effect of glucocorticoids on lipid storage appears to depend on the physiologic 
context and the type of fat depot. Glucocorticoids increase lipolysis in mature adipocytes as a 

result of increased transcription and expression of the adipose triglyceride lipase (ATGL) and 

hormone-sensitive lipase (HSL). ATGL is predominantly responsible for the first step of the 
process [conversion of triacylglycerol (TAG) to diacylglycerol, with the consequent release 

of one FFA], whereas HSL converts diacylglycerol to monoacylglycerol [55]. The lipolytic 

actions of glucocorticoids occur primarily under fasting conditions, characterized by a low-

ratio insulin/glucagon, possibly through a permissive role on growth hormone- and catechol-

amine-induced lipolysis [56].

On the other hand, the lipogenic action of glucocorticoids is composed of several steps, start-

ing with increases in caloric and dietary lipid intake and followed by an increased storage of 

lipids in the adipose tissue. Glucocorticoids enhance both adipocyte hyperplasia (through 

increased differentiation of preadipocytes to mature adipocytes) and hypertrophy (through 
increased synthesis and storage of lipids) [57].

The glucocorticoid-mediated hypertrophic process is accomplished by the deposition of FFA 

and TAG, originated either from dietary intake (chylomicrons) or from liver secretion [very 

low-density lipoproteins (VLDL)] and by the parallel stimulation of lipoprotein lipase (LPL), 

which in turn hydrolyses circulating TAG and increases the amount of FFA available for 

ectopic lipid accumulation (liver, muscle, and visceral adipocytes) [58]. Interestingly, insulin 

seems to be crucial for some of these effects, since it potentiates glucocorticoid-induced effects 
on LPL. Furthermore, treatment with glucocorticoid decreases glucose uptake and metabo-

lism in the absence of insulin [59].

Additionally, glucocorticoids were also demonstrated to increase the secretion of VLDL 

by the liver (increasing TAG plasma levels), as well as to enhance de novo lipid production 
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in hepatocytes and adipocytes by stimulation of the key enzymes acetyl-CoA carboxylase 

(ACC) and fatty acid synthase (FAS) [55, 56, 58]. Furthermore, glucocorticoids stimulate the 

enzymatic routes for nicotinamide adenine dinucleotide phosphate (NADPH) generation, 

required for de novo lipogenesis [60].

Interestingly, these lipogenic effects of glucocorticoids are more effective in visceral than in 
subcutaneous tissue, since both LPL activity and the expression of GRs and MRs are greater 

in visceral compared to other adipose depots [61, 62]. In addition, elevated levels of type 1 

11-beta-hydroxysteroid dehydrogenase (11b-HSD1), the enzyme that generates active gluco-

corticoid from inactive metabolites, are found in the adipose depots of obese subjects [63, 64]. 

Accordingly, higher activity of 11b-HSD1 within visceral versus subcutaneous adipose tissue 

suggests that this enzyme may be another target to mediate the site-specific actions of glu-

cocorticoids in the adipose tissue [65]. Indeed, visceral adipose accumulation was observed 

in mice overexpressing 11b-HSD1, whereas inhibition of this enzyme improved metabolic 

parameters and reduced body weight in obese animals [66, 67]. Therefore, these results sug-

gest that elevated 11b-HSD1 activity might be one of the causes rather than one of the conse-

quences of visceral adiposity and obesity.

Furthermore, the glucocorticoid-induced increase in the circulating levels of TAG and FFA, 

besides producing dyslipidemia, is also known to restrict glucose utilization and leads to 

insulin resistance [68], resulting in other metabolic outcomes such as increased muscle pro-

teolysis and hepatic gluconeogenesis. This impairment of insulin-stimulated glucose uptake 

in response to chronic exposure to increased levels of glucocorticoids may also be explained 

by decreased expression of insulin receptor or the insulin receptor substrate 1 (IRS1), with the 

consequent decrease in insulin binding, and decreased type 4 glucose transporter (GLUT4) 

translocation to cell membrane [56].

Therefore, it is suggested that the anabolic actions of glucocorticoids in lipid metabolism 

occur through their effects on the turnover and uptake of FFAs in adipose tissue. Considering 
that LPL and 11b-HSD1 activities, as well as GR and MR expressions, are higher in visceral fat 

than in any other adipose depot, glucocorticoids are likely to contribute to central adiposity. 

This would be also facilitated by an increased insulin/glucagon ratio, exhibited by individuals 

under positive energy balance and/or elevated glucocorticoid levels. In summary, glucocor-

ticoids act though parallel prolipolytic, antilipolytic, and lipogenic mechanisms, with some 

of these mechanisms playing more important roles than the others depending on the physi-

ological condition, targeted adipose tissue, and dose and duration of glucocorticoid exposure.

4. Glucocorticoids and reproductive function

In mammals, the capacity to reproduce is crucial to ensure the species perpetuation and is 

dependent on a functional hypothalamic-pituitary-gonadal (HPG) axis. In males, there is a 

regular and continuous pulsatile release of gonadotrophin-releasing hormone (GnRH) from 

hypothalamic neurons into the portal capillary system. In the anterior pituitary of both males 

and females, GnRH binds to its receptor in gonadotrophs, promoting the production and 
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release of the gonadotrophin-luteinizing hormone (LH) and follicle-stimulating hormone 

(FSH). The systemically secreted gonadotrophins, in turn, act on ovaries and testis to stimu-

late hormone production and gametogenesis.

In males, the HPG axis is always under a negative feedback loop control. In females with 

spontaneous ovulation (such as rodents and women), however, the regulation of reproduc-

tion involves more complex mechanisms, including a cyclic and pulsatile GnRH secretion and 

the occurrence of preovulatory surges of gonadotrophins, which trigger ovulation.

During most of the cycle’s duration, the female HPG axis is under the influence of the nega-

tive feedback mechanism exerted by low and moderate concentrations of estradiol, which 

inhibit the synthesis and release of GnRH and gonadotrophins. Just prior to ovulation, when 

a more acute estradiol peak takes place, together with a gradual increase in progesterone, 

the feedback loop changes from negative to positive, resulting in increased GnRH/LH syn-

thesis and release.

The activity of GnRH neurons as well as of other HPG axis components is regulated by sev-

eral factors, including the two newly discovered neuropeptides: kisspeptin and RF (Arg-Phe) 

amide-related peptide (RFRP). In rodents, kisspeptin neurons comprise two main hypotha-

lamic populations: one located in the anteroventral periventricular (AVPV) nucleus of preop-

tic area (POA), whose function seems to be crucial for GnRH surge generation [69–71], and a 

second population localized in the ARC [69, 70].

Kisspeptin and RFRP exert opposing effects on GnRH secretion: the former stimulates GnRH 
release [69, 72], whereas RFRP inhibits it [73]. Kisspeptin binds to its cognate receptor KISS-1R, 

which is expressed, in a gender-independent manner [74, 75], in approximately 70% of GnRH 

neurons [74]. RFRP effects on GnRH secretion, in turn, seem to be mediated by a G protein-
coupled receptor 147 (GPR147) (also known as NPFF1R). Studies have demonstrated that 

GPR147 is expressed in 15–33% of mice GnRH neurons, and also in kisspeptidergic neurons of 

the AVPV (5–16%) and ARC (25%) [76–78]. Furthermore, kisspeptin and RFRP neurons seem 

to mediate the ER-α-induced effects of estradiol on GnRH release [77, 79, 80]. Taken together, 

these data support the hypothesis that both kisspeptin and RFRP actively participate as neu-

roendocrine regulators of reproduction.

As discussed previously in this chapter, the master biological clock in mammals is located in 

the SCN and regulates the circadian rhythm of most biological functions. Evidence indicates 

that the SCN also integrates and synchronizes all the neuroendocrine events necessary for 

the activation of GnRH neurons, thereby controlling the onset of GnRH/LH preovulatory 

surge [81, 82]. The SCN neural outputs to GnRH neurons would involve two neuropeptides: 

AVP and vasoactive intestinal peptide (VIP). It has been reported that the VIPergic pathway 

directly modulates GnRH neurons [81, 83], whereas the circadian signaling of AVP to GnRH 

neurons would be indirectly mediated by AVPV kisspeptidergic neurons [84, 85]. Moreover, 

it has been recently suggested that the SCN, through VIPergic signaling, may suppress RFRP 

activity in the dorsomedial hypothalamus (DMH), allowing a full activation of the LH surge 

[86]. Therefore, the generation of GnRH/LH surges involves many neuroendocrine events 

that are dependent upon the positive feedback effects of estradiol (in females) and a circadian 
neural signal indirectly provided by the SCN [87].
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Glucocorticoids are also among the central mechanisms controlling HPG axis function. It is 

quite clear that exposure to increased glucocorticoid levels, either induced by stress condition 

or by exogenous administration, may significantly interfere with reproductive function, with 
massive impacts on fertility [88–90].

In this regard, it has been demonstrated that glucocorticoids inhibit GnRH secretion [91]. In 

GT1 cells, which synthesize GnRH, glucocorticoids repress GnRH gene expression and hor-

mone release [92]. Glucocorticoids also induce a decrease in gonadotropin synthesis and secre-

tion; however, this effect may be at least partially mediated by the inhibition of GnRH neurons 
and their neural inputs to gonadotrophs, since GR expression in the anterior pituitary is still 

controversial [93-95]. Glucocorticoids also decrease GnRH responsiveness in gonadotrophs, a 

mechanism that apparently underlies glucocorticoid-mediated inhibition of LH secretion [96].

Recently, evidence has been provided on the role of kisspeptin and RFRP also in the media-

tion of glucocorticoids’ actions on the HPG axis. Both kisspeptidergic [97] and RFRP neurons 

[98] express GR, suggesting that these neuronal populations are responsive to glucocorti-

coids. Accordingly, corticosterone decreases hypothalamic kisspeptin gene expression and 

neuronal activity during the estradiol-induced LH surge [99].

The RFRP system has also been implicated in glucocorticoid-mediated effects [98, 100, 101]. 

Both acute and chronic stress stimulate the RFRP system activation, evidenced by an increase 

in RFRP mRNA expression [98, 102], which, in turn, suppresses GnRH mRNA levels [102] and 

LH secretion [98]. Conversely, RFRP expression induced by both acute and chronic immobi-

lization stress is abolished by ADX [98].

In the testis, GR is expressed in both Leydig and Sertoli cells [103, 104], reinforcing the modula-

tion of steroidogenesis, testosterone release, and spermatogenesis by glucocorticoids. Indeed, 

at physiological levels, glucocorticoids are required for testis development in the postnatal 

period [105], for the onset and maintenance of spermatogenesis [104, 105], as well as for 

sperm maturation [104] and erectile function [106]. High circulating levels of glucocorticoids, 

however, have been associated with disruption of male fertility, with inhibition of testoster-

one secretion, spermatogenesis, and libido [107, 108]. Indeed, chronic stress was also shown 

to induce an important reduction in spermatid number in male rats [109]. The induction of 

Leydig cell and germ cell apoptosis has also been reported in response to high glucocorticoid 

circulating levels [110]. Another hypothesis is that the LH receptor may be downregulated 

in Leydig cells in response to stress, thus suppressing testicular response to gonadotropins 

[111]. There is also evidence showing that glucocorticoids may induce the inhibition of enzy-

matic machinery required for testosterone biosynthesis [112–114].

In the ovaries, glucocorticoids can modulate the functions of granulosa, cumulus, and luteal 

cells [99], reducing ovarian response to gonadotropins through the inhibition of LH-induced 

steroidogenesis [115]. Similar results were obtained in response to dexamethasone in cultured 

rat preovulatory follicles [116]. Although glucocorticoids seem to impair oocyte development 

in vitro by increasing apoptosis [117], no alterations in oocyte maturation have been reported 

in response to high circulating levels of glucocorticoids in vivo [118]. However, the same study 

highlighted a decreased blastocyst formation, suggesting that glucocorticoids may alter the 

oocyte potential for fertilization rather than oocyte maturation.
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5. Concluding remarks

Glucocorticoids exert diverse actions throughout the body and remarkably participate in the 

maintenance of homeostasis. Their importance for energy homeostasis may be illustrated by 

the fact that obese animals exhibit increased glucocorticoid levels and are more susceptible to 

glucocorticoid-induced anabolic effects, such as the increase in visceral fat depots. Increased 
glucocorticoid levels also directly impact food intake, which is consistent with the experi-

mental evidence that the bilateral removal of adrenal glands (ADX) produces hypophagia 

and also improves other metabolic parameters in obesity models. At physiological levels, 

glucocorticoids also seem to be crucial for reproductive function, controlling the timing of 

puberty onset and gonadal steroidogenesis, as well modulating the immune system, which 

determines conception and pregnancy progression. This broad range of actions is coordinated 

by the circadian variation of glucocorticoid secretion and is accomplished by both neural 

interconnections at SCN level and also by the peripheral clocks, which adapt the central oscil-

lator timing to individual organ requirements. This is particularly important for the essential 

hormone variation in female reproductive cycle. In the case of energy homeostasis, this circa-

dian variation also receives important feed forward information from food intake, one of the 

most potent synchronizers of the HPA axis activity. Under a broader point of view, the actions 

mediated by glucocorticoids may permit environmental clues, such as food availability, or 

stressors, to match internal metabolic priorities, which determine not only individual but also 

the species survival.
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Abbreviations

ACC acetyl-CoA carboxylase

ACTH adrenocorticotropic hormone

ADX adrenalectomized

AgRP agouti-related protein

AMPK adenosine monophosphate-activated protein kinase

ARC arcuate nucleus of the hypothalamus

ATGL adipose triglyceride lipase

AVP arginine vasopressin

AVPV anteroventral periventricular nucleus
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CART cocaine and amphetamine-regulated transcript

CCK  cholecystokinin

CRH corticotrophin-releasing hormone

CRHr2 type 2 corticotrophin releasing hormone receptor

DMH dorsomedial hypothalamus

FAS fatty acid synthase

FFA free fatty acids

FSH follicle-stimulating hormone

GABA gamma-aminobutyric acid

GLUT4 type 4 glucose transporter

GnRH gonadotrophin-releasing hormone

GR glucocorticoid receptor

GRE glucocorticoid-responsive element

GRα α-subunit of the glucocorticoid receptor

HPA hypothalamus-pituitary-adrenal

HPG hypothalamic-pituitary-gonadal

HSL hormone-sensitive lipase

IRS1 insulin receptor substrate 1

KISS-1R type 1 kisspeptin receptor

LH luteinizing hormone

LPL lipoprotein lipase

MR mineralocorticoid receptor

NADPH nicotinamide adenine dinucleotide phosphate

NO nitric oxide

NPY neuropeptide Y

NTS  nucleus of the solitary tract

OT  oxytocin

OTr oxytocin receptor
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POA preoptic area

POMC proopiomelanocortin

PVN paraventricular nucleus of hypothalamus

RFRP RF (Arg-Phe) amide-related peptide

SCN suprachiasmatic nucleus of the hypothalamus

SIRT1 sirtuin-1

TAG triacylglycerol

TG triglyceride

VIP vasoactive intestinal peptide

VLDL very low-density lipoproteins
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