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Model-free Adaptive Control in Frequency 
Domain: Application to Mechanical Ventilation 

Clara Ionescu and Robin De Keyser 
Ghent University, Department of Electrical energy, Systems and Automation 

Belgium 

1. Introduction  

Looking back at the history of control engineering, one finds that technology and ideas 
combine themselves until they reach a successful result, over the timeline of several decades 
(Bernstein, 2002). It is such that before the computational advances during the so-called 
Information Age, a manifold of mathematical tools remained abstract and limited to theory. 
A recent trend has been observed in combining feedback control theory and applications 
with well-known, but scarcely used in practice, mathematical tools. The reason for the 
failure of these mathematical tools in practice was solely due to the high computational cost. 
Nowadays, this problem is obsolete and researchers have grasped the opportunity to exploit 
new horizons. 
During the development of modern control theory, it became clear that a fixed controller 
cannot provide acceptable closed-loop performance in all situations. Especially if the plant 
to be controlled has unknown or varying dynamics, the design of a fixed controller that 
always satisfies the desired specifications is not straightforward. In the late 1950s, this 
observation led to the development of the gain-scheduling technique, which can be applied 
if the process depends in a known or measurable way on some external, measurable 
condition (Ilchmann & Ryan, 2003). The drawback of this simple solution is that only static 
(steady state) variations can be tackled, so the need for dynamic methods of controller 
(re)tuning was justified.  
One can speak of three distinct features of the standard PID controller tuning: auto-tuning, 
gain scheduling and adaptation. Although they use the same basic ingredients, controller 
auto-tuning and gain scheduling should not be confused with adaptive control, which 
continuously adjusts controller parameters to accommodate unpredicted changes in process 
dynamics. There are a manifold of auto-tuning methods available in the literature, based on 
input-output observations of the system to be controlled (Bueno et al., 1991; Åström & 
Hagglund, 1995; Gorez, 1997).  
The tuning methods can be classified twofold: 
• direct methods, which do not use an explicit model of the process to be controlled; these 

can then be either based on tuning rules (Åström & Hagglund, 1995), either on iterative 
search methods (Åström & Wittemark, 1995; Gorez, 1997).  

• indirect methods, which compute the controller parameters from a model of the process 
to be controlled, requiring the knowledge of the process model; these can be based on 
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either models: transient-response models (step response model), frequency response 
models, or transfer function models. 

Although many adaptive control methods are available in the literature, their 
implementation in practice is challenging and prone to failures (Anderson, 2005). If the 
process parameters are not known and not necessary, direct adaptive methods can be 
derived based on specifications of the closed loop performance, using explicit reference 
models. A relatively large gap exists between theoretical and practical model-reference 
adaptive control, initiated from the unknown process (Butler, 1990). Nevertheless, direct 
adaptive control with model reference has proved successful for a variety of applications, 
some of which will be presented in this contribution.  
This chapter will present a simple and straightforward adaptive controller strategy from the 
class of direct methods, based on reference models. The algorithm will offer an alternative 
solution to the burden of process identification, and will present possibilities to tune both 
integer- and fractional- order controllers. Three examples will illustrate the simplicity of the 
approach and its results. A discussion section will provide advantages and dis-advantages 
of the proposed algorithm and some implementation issues. A conclusion section will 
summarize the outcome of this investigation.  

2. Methods 

2.1 The DIRAC principle 

The DIRAC (DIrect Adaptive Controller) algorithm belongs to the class of model-free tuning 
methods, since it does not require the knowledge of the process, nor it needs to identify it 
during the tuning procedure (De Keyser, 1989; De Keyser, 2000). The most important feature 
in this model reference adaptive control strategy is the design of the adaptive laws, which 
take place directly, without an explicit process identification procedure. The aim of making 
the closed loop response approximately equal to a specified response is the key ingredient of 
DIRAC, and the design of this reference model plays a decisive role. The perfect model 
matching condition places some requirements on the reference model, which results in the 
following rule-of-thumb: the relative degree (pole excess) must be equal to the relative 
degree of the process; however, as shown here, this condition can be avoided.  In addition to 
the stability and minimum-phase demands on the reference model, these are just theoretical 
aspects. It should be noted that in practice, where some theoretical requirements may not be 
satisfied, the reference model should be chosen reasonably, in the sense that the process 
output can actually follow the reference model output. For example, if the reference model 
is chosen too fast (compared to the process dynamics), the control signal needs to be 
extremely high, causing input saturation effects or nonlinear dynamics which may disturb 
the overall closed loop behaviour.  
Because the actual process capabilities may be unknown or varying, the choice of the 
reference model is not always obvious. Choosing a conservative performance may be more 
robust, but it may also lead to slower closed loop behaviour than necessary.  
In the standard control loop, where C(s) denotes the controller, P(s) denotes the (unknown) 
process, w(t) is the reference signal y(t) is the output, e(t)=y(t)-w(t) is the error, the closed 
loop transfer function is given by: 

 =
+

( ) ( )
( ) ( )

1 ( ) ( )
C s P s

y t w t
C s P s

 (1) 
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The desired closed loop performance will be then specified by a reference model R(s), a-
priori user-defined, which can be used to specify the desired characteristics of the loop, for 
instance, the speed (bandwidth). It follows that the tuning task can be summarized as 
follows: find the corresponding controller’s parameters (PID or any other transfer function) 
such that the closed-loop transfer function is more or less equal to the reference model: 

 ≅
+

( ) ( )
( )

1 ( ) ( )
C s P s

R s
C s P s

 (2) 

The trivial solution arising from solving (2) for the unknown controller will lead to un-
desired results, such as: i) identification of the unknown process (which is not aimed), and 
ii) the result will lead to a transfer function for C(s) and not to a 2nd order polynomial, which 
is required for obtaining a PID controller in the form: 

 ( )= + +
1442443

*

0 1 2

( )

1
( ) ²

C s

C s c c s c s
s

 (3) 

explicitly containing an integrator to ensure zero steady state error. In order to avoid this 
dead-end solution, one can extract the controller from (2) taking into account the measurable 
signals u(t) and y(t) and the relation ⋅ =( ) ( )P u t y t : 

 ε⋅ + =* ( ) ( ) ( )f fC y t t u t  (4) 

with ( )fu t  and ( )fy t  obtained as in schematically depicted in figure 1.  

+

-

Process

R R

Estimate C

1-q
-1

u y

uf yf

s +

-

Process

R R

Estimate C

1-q
-1

u y

uf yf

s

 
Figure 1. Block-scheme of the DIRAC strategy 

Relation (4) becomes then a standard identification problem which can be solved either 
offline (tuning), either online (adaptation) using any parameter estimation method (Ljung, 
1987). It should be noted that the least squares gives unbiased estimates even in the case of 
coloured noise, since (4) does not contain recursion of ( )fu t .  Some guidelines to define the 

reference model for various classes of processes are given in (De Keyser, 2000), discussing 
the implementation aspects in discrete time, along with some typical examples.  

2.2 Controller’s structure 

From the previous section we have concluded that the controller has to satisfy the equality: 
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 ≅ ≅
+ +

*

*

( ) ( ) ( ) ( )
( )

1 ( ) ( ) ( ) ( )
C s P s C s P s

R s
C s P s s C s P s

 (5) 

from which the utopic controller can be extracted as: 

 
[ ]

≅
−

* ( )
( )

1 ( ) ( )
sR s

C s
R s P s

 (6) 

Obviously, the standard ‘textbook’ PID transfer function 
⎛ ⎞

+ +⎜ ⎟
⎝ ⎠

1
1p d

i

K T s
T s

 consisting of the 

proportional, integral and derivative terms is the most used in practice, yielding satisfactory 
results. If the PID controller is written in the form required by (6), it results in estimating a 
2nd order polynomial: 

 ≅ + +* 2
0 1 2( )C s c s c c s  (7) 

with =0 pc K , =1 /p ic K T  and =2 p dc K T  the three unknown parameters to be identified.  

Yet, the end of the 20th century has brought numerous advances in technology, with visible 
improvements in the computational aspects and pushing onward the limits of numerical 
complexity. As a result, mathematical tools which were abstract and numerically too 
complex for practical usefulness, were enabled as powerful tools for identification and 
control. As a result, the control engineering research community has oriented its attention to 
the possibility of using non-integer order controllers, namely λ µPI D  (Monje et al., 2008). 

Such a controller is in fact a generalization of the standard PID, µ

λ

⎛ ⎞
+ +⎜ ⎟

⎝ ⎠

1
1p d

i

K T s
T s

, and (7) 

can be re-written as: 

 λ µ− +≅ + +* 1 1
0 1 2( )C s c s c s c s  (8) 

with λ µ0 1 2, , , ,c c c  five unknown parameters to be identified. To estimate the parameters in 
(7), a linear identification algorithm suffices to obtain good results, such as the linear least 
squares method (Ljung, 1987). For (8), however, we are dealing with a polynomial which is 
nonlinear in the parameters and it is necessary to use nonlinear identification methods, such 
as nonlinear least squares (Ljung, 1987).  
Simulation in time domain for fractional order controllers (FOC) such as the one described 
by (3) with the controller structure from (8), may be challenging. There are several 
definitions of the differ-integral in time domain, of which two commonly used are the 
Grünwald-Letnikov and Rieman-Liouville definitions (Podlubny, 1999): 

 ( )
( )

α α
α−⎡ ⎤⎣ ⎦

−

→
=

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∑

/

a 0
0

( ) lim 1 ( )
t a h

j

t
h

j

D f t h f t jh
j

GL :  (9) 

where [ ] denotes the integer part, respectively: 

 
( )

α

α

τ
τ

α τ − +
=

Γ − −∫a 1

( )1
 ( )

(1 )

tn

t n n

a

fd
D f t d

n dt
RL :  (10) 
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for α− < <1n n  and Γ  is the Euler’s Gamma function; a denotes the initial conditions, t is 
the differ-integration time, α is the fractional order. The Laplace transform of the Rieman-
Liouville fractional derivative/integral (10) under zero initial conditions can be written as: 

 { }α α± ±=£ ( ) ( )tD f t s F s  (11) 

With (11) at hand, the interpretation of fractional order derivative/integral can be simplified 
using the complex plane representation and Bode characteristics, the latter defined by its 

magnitude and phase. In this line-of-thought, α±s  becomes ( )
α

ω
±

j in frequency domain, 

with = −1j  and ω (rad/s) the angular frequency. The Bode plot can be then defined as: 

 

α

α

α

π
α

±

±

= ± ⋅

∠ = ± ⋅

20 /

( )
2

s dB dec

s rad
 (12) 

It is now easy to understand why FOC is so interesting from identification/control 
standpoint: its intrinsic capability to capture variations in frequency domain which are not 
limited to integer-multiples of 20dB/dec, or π/2, respectively (such as for integer order 
systems). 
If the controller is in the form of (7), it results directly in the transfer function of the PID with 
the integrator added explicitly to the 2nd order polynomial from (7). If the controller is in the 
form of (8), namely fractional order controller FOC, then an extra step is necessary to be 
implemented before being able to simulate the closed-loop behavior. The reason is that 
fractional order controllers cannot be yet implemented in practice since there are no direct 
analogue components available. However, it is possible to obtain the equivalent frequency 
response of a fractional order transfer function using high order integer-order 
approximations. Various methods for integer-order approximations of FOC have been 
proposed and successfully implemented in practice (Oustaloup et al., 2000; Melchior et al., 
2002; Monje et al., 2008). Nevertheless, the burden of this extra step remains necessary in the 
case of FOC, in which the proper implementation is not trivial.  

2.3 Frequency domain approach 

For simplicity in formulation of the FOC, the frequency domain will be used to illustrate the 
determination of the utopic controller frequency response ω*( )C j . Recalling (6), the 
equivalent frequency domain formulation can be written as: 

 
[ ]

ω ω
ω

ω ω

⋅
=

−
* ( ) ( )
( )

1 ( ) ( )
j R j

C j
R j P j

 (13) 

Since we do not want to identify the process transfer function ω( )P j , we introduce the 
signals  ( )fu t  and ( )fy t . Supposing the input signal ( )u t  is a sine-sweep with n samples, in 

the form: 

 ( )−⎡ ⎤= −⎣ ⎦
/( ) sin 1sn Lfu n K e  (14) 
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which is in fact a sinusoid whose frequency is exponentially increased from the lower bound 
to the higher bound of frequency range ( )ω ω1 2,  over T seconds, with fs the sampling 

frequency, 
ω

ω

ω

= 1

2

1

ln

T
K  and 

ω

ω

=
2

1

ln

T
L . This formulation of the excitation signals allows us 

excite one frequency at a time, in a single trial and re-formulate (13) in function of the input-
output signals: 

 
ϕ ϕ

ϕ ϕ

ϕ ϕ
=

−

*
*

1

y
R

C

u R

j j
j yj R

j jC
u R

A e A e
A e e

A e A e
 (15) 

where ϕuj
uA e  and ϕyj

yA e  are available through measurements and ϕRj
RA e  through 

calculations at each excited frequency (14) of the desired ω( )R j . Finally, we obtain the 

frequency response of the utopic controller ω*( )C j  in its Bode characteristic representation, 
namely magnitude and phase, at the desired frequency points of interest. The frequency 
range in which the controller is evaluated with (15) and then identified in the form given by 
(7) or (8), depends on the characteristics of the process to be controlled P and the desired 
closed-loop performance defined by R. Once (15) is available, a linear or nonlinear 
optimization problem must be solved, identifying the unknown parameters of the 
controller.  
Global optimization is the task of finding the absolutely best set of admissible conditions to 
achieve an objective under given constraints, assuming that both are formulated in 
mathematical terms. Some large-scale global optimization problems have been solved by 
current methods, and a number of software packages are available that reliably solve most 
global optimization problems in small (and sometimes larger) dimensions. However, 
finding the global minimum, if one exists, can be a difficult problem (very dependant on the 
initial conditions). Superficially, global optimization is a stronger version of local 
optimization, whose great usefulness in practice is undisputed. Instead of searching for a 
locally feasible point one wants the globally best point in the feasible region. However, in 
many practical applications finding the globally best point, though desirable, is not 
essential, since any sufficiently good feasible point is useful and usually an improvement 
over what is available without optimization (this particular case). Besides, sometimes, 
depending on the optimization problem, there is no guarantee that the optimization 
functions will return a global minimum, unless the global minimum is the only minimum 
and the function to minimize is continuous (Pintér, 1996). Taking all these into account, and 
considering that the set of functions to minimize in this case is continuous and can only 
present one minimum in the feasible region, any of the optimization methods available 
could be effective, a priori. For this reason, and taking into account that Matlab is a very 
appropriate tool for the analysis and design of control systems, the optimization toolbox of 
Matlab has been used to reach out the best solution with the minimum error. The lsqnonlin 
nonlinear least-squares function has been used which returns the set of parameters from 
either (7), either (8), depending on the desired structure of the controller (Mathworks, 
2000a).  

www.intechopen.com



Model-free Adaptive Control in Frequency Domain: Application to Mechanical Ventilation 

 

259 

An elegant solution to avoid this extra step is to fit directly the frequency response of the 
controller ω*( )C j  with a properly chosen order transfer function. The fact that ω*( )C j  is a 
polynomial, instead of a transfer function, does not present any particular difficulty. One 
may choose to use the Matlab function fitfrd which delivers a state space representation of a 
fitted transfer function to the given frequency response of the controller (Mathworks, 
2000b). For example, in the case of the standard PID form (7), it is necessary to set the 
specifications to a 2nd order transfer function, with a relative degree equal to 2 (excess poles). 

This will result in a transfer function of the form =
+ + 2

0 1 2

( )fit

k
C s

c s c c s
, from which the 

controller transfer function becomes: 

 = ⋅
1 1

( )
( )fit

C s
s C s

 (16) 

2.4 Adaptation procedure 

Once the controller’s parameters have been found, these parameters can be adapted if the 
changes in the process require another tuning values for fulfilling the specified closed loop 
performance.   
The adaptation procedure can be summarized in few steps as following: 
• perform an input-output test measurement in the practical frequency range of interest; 
• calculate the magnitude-phase frequency response using frequency domain analysis 

techniques;  
• calculate the frequency response of the utopic controller with (13)-(15);  
• fit the controller structure from (7) with linear least squares or (8) with nonlinear least 

squares identification procedure; 
• apply the controller using (16). 

3. Illustrative examples 

In this section, two typical examples which are considered of academic interest, will be 
presented. Both integer and fractional order controllers will be developed based on closed 
loop specifications given by the reference model.   

3.1 A typical position servo system 

A typical position servo system contains a first order plant with an integrator, for example: 

 
( )

=
+

0.25
( )

1
P s

s s
 (17) 

The difficulty in this case arises from the presence of a double integrator in the closed loop, 
namely the one from the plant and the one from the controller. The unit impulse response of 
the system from (17) and the corresponding frequency response is given in figure 2, along 
with the frequency responses of the two reference models, namely: 

 
( )

τ

τ

+
=

+
4

1 4
( )

1
s

R s
s

 (18) 
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with τ=0.05 and 0.01, respectively. The frequency band of interest for tuning the utopic 

controller is ( )ω −∈ 1 110 ,10 . Figures 3-4 present the optimisation result in fitting the controller 

frequency response, and the closed loop unit step response in the two design cases.   
 

0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25
Impulse Response

Time (sec)

A
m

p
lit

u
d
e

 

-100

-50

0

50

M
a
g
n
itu

d
e
 (

d
B

)

10
-2

10
-1

10
0

10
1

10
2

-225

-180

-135

-90

-45

0

P
h
a
s
e
 (

d
e
g
)

Bode Diagram

Frequency  (rad/sec)  
Figure 2. Left: open loop unit impulse response of the process; Right: Bode characteristics of 
the process (blue) and the reference models for τ=0.05 (green) and for τ=0.01 (red) 

The corresponding controller parameters are given in Table 1.  

 τ  0c  1c  2c  λ  µ  

IO_PID 0.05 266.635 313.144 42.608 1 1 
FO_PID 0.05 273.332 298.938 73.356 0.969 0.759 

       
IO_PID 0.01 6666.7 6891.6 220.5 1 1 
FO_PID 0.01 6743.9 6678.7 267.2 1 0.9 

Table 1. Controller parameters for the position servo system  
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Figure 3. Left: frequency domain approximation and Right: unit step responses for τ=0.05; 
reference (blue), IO_PID (green) and FO_PID (red). Circles denote settling times 

www.intechopen.com



Model-free Adaptive Control in Frequency Domain: Application to Mechanical Ventilation 

 

261 

70

80

90

100

110

120

130

M
a
g
n
itu

d
e
 (

d
B

)

10
-2

10
-1

10
0

10
1

10
2

0

45

90

135

180

P
h
a
s
e
 (

d
e
g
)

Bode Diagram

Frequency  (rad/sec)

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Step Response

Time (sec)

A
m

p
lit

u
d
e

 
Figure 4. Left: frequency domain approximation and Right: unit step responses for τ=0.01; 
reference (blue), IO_PID (green) and FO_PID (red). Circles denote settling times 

3.2 Highly oscillatory system 

The process in this example is highly oscillatory due to the low damping factor ξ : 

 
( )

ω

ξω ω
=

+ + +

2

22 2

1
( )

2 1
n

n n

P s K
s s as

 (19) 

with K=0.3, ω π= 0.04n , ξ = 0.1  and a=5. The reference model has been chosen as in: 

 
( )τ

=
+

4

1
( )

1
R s

s
 (20) 

with τ=15 and τ=10. The open loop unit step response is depicted in figure 5, clearly 
showing the oscillatory behaviour of the system, making it difficult to control. The 
frequency characteristics of the process and the two reference models are given in figure 5, 
right. From these, the useful frequency range of the controller is taken as ( )ω − −∈ 2.8 0.810 ,10 . 

Figures 6-7 present the optimisation result in fitting the controller frequency response, and 
the closed loop unit step response in the two design cases, while Table 2 summarizes the 
corresponding controller parameters. 

 τ  0c  1c  2c  λ  µ  

IO_PID 15 0.056 0.011 2.809 1 1 

FO_PID 15 0 0.051 2.891 1 1 

       

IO_PID 10 0.083 0.071 4.426 1 1 

FO_PID 10 0 0.082 3.623 1 0.921 

Table 2. Controller parameters for the highly oscillatory system  
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Figure 6. Left: frequency domain approximation and Right: unit step responses for τ=15; 
reference (blue), IO_PID (green) and FO_PID (red). Circles denote settling times 
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Figure 7. Left: frequency domain approximation and Right: unit step responses for τ=10; 
reference (blue), IO_PID (green) and FO_PID (red). Circles denote settling times 
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4. Practical Application: Mechanical Ventilation 

One of the novel concepts in control engineering is that of fractals, self-similarity in 
geometrical structures (Weibel, 2005). Although originally applied in mathematics and 
chemistry, the signal processing community introduced the concept of fractional order 
modelling in technical and non-technical areas. A perfect example of fractal structure is that 
of the lungs. Observations support the claim that dependence exists between the 
viscoelasitcity and the air-flow properties in the presence of airway mucus with disease and 
that fractional orders appear intrinsically in viscoelastic materials (i.e. soft lung tissue) (Suki 
et al., 1994). These mechanical properties are captured in the input impedance, which gives 
insight upon airway and tissue resistance and compliance.  
The respiratory input impedance can be measured non-invasively at the mouth during quiet 
breathing of the patient, without requiring any special manoeuvres. In this lung function 
test, forced oscillations are superimposed on the breathing pattern of the patient, in the form 
of a multisine signal, exciting frequencies in the 4-48Hz range. An I2M (Input Impedance 
Measurement) device produced by Chess Medical Technologies, The Netherlands (2000) has 
been used for pulmonary testing. The specifications of the device are those of commercially 
available i2m devices: 11kg, 50x50x60 cm, 8 sec measurement time, European Directive 
93/42 on Medical devices and safety standards EN60601-1. The subject is connected to the 
typical setup from figure 8 via a mouthpiece, suitably designed to avoid flow leakage at the 
mouth and dental resistance artifact. The oscillation pressure is generated by a loudspeaker 
(LS) connected to a chamber (Oostveen et al., 2003). The LS is driven by a power amplifier 
fed with the oscillating signal generated by a computer (U). The movement of the LS cone 
generates a pressure oscillation inside the chamber, which is applied to the patient's 
respiratory system by means of a tube connecting the LS chamber and the bacterial filter 
(bf). A side opening of the main tubing (BT) allows the patient to have fresh air circulation. 
Ideally, this pipeline will have high impedance at the excitation frequencies to avoid the loss 
of power from the LS pressure chamber. It is advisory that during the measurements, the 
patient wears a nose clip and keeps the cheeks firmly supported. Before starting the 
measurements, the frequency response of the transducers (PT) and of the 
pneumotachograph (PN) are calibrated. The measurements of air-pressure P and air-flow 

= & ( ,  with  - air volume)Q V V  during the forced oscillations lung function test is done at the 
mouth of the patient. Using electrical analogy, whereas the P corresponds to voltage and Q 
corresponds to current, the respiratory impedance Zr can be defined as their spectral 
(frequency domain) ratio relationship: 

 
ω

ω
ω

=
( )

( )
( )

PU
r

QU

S j
Z j

S j
 (21) 

where ω( )ijS j  denotes the cross-correlation spectra between the various input-output 

signals, ω is the angular frequency and = − 1/2( 1)j , resulting a complex variable. This non-
parametric representation can be further identified with parametric models, quantifying 
some of the mechanical properties of the lung tissue, such as: resistance, compliance and 
inertance. Depending on the values of these parameters, clinicians can distinguish between 
healthy and pathologic cases, as well as between various types of lung disease.  
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Recently, it has been shown that fractional order model characterizing impedance provide 
better identification results due to their intrinsic nature of capturing variations in frequency 
domain which are not dependent on the integer multiples of 20dB/dec and π/2 for 
magnitude and phase, respectively (Ionescu & De Keyser, 2008a). Such a fractional order 
impedance model can be represented in the form: 

 α

β
= +

1
( )Z s Ls

Cs
 (22) 

with Z the impedance, L the inductance and C the compliance of the total respiratory system 
and ǂ,ǃ fractional. In this example, the impedance of a patient diagnosed with chronic 
obstructive pulmonary disease has been used, where L=0.00166 kPa s²/l, C=2.045 l/kPa, 
ǂ=0.5524 and ǃ=0.5395 (Ionescu et al., 2008b; Ionescu and De Keyser, 2008c). The parameters 
of the mechanical properties of the lung tissue in these patients can vary during several 
stages of the treatment applied by clinicians, including medication and ventilatory support. 
These patients are under mechanical ventilation, to ensure optimal conditions for gas 
exchange in the body (Behbehani, 2006). The efficiency of the ventilator depends on the 
optimal matching of the ventilator settings to the mechanical properties of the respiratory 
system, which may vary significantly in time. The ventilator can be approximated by a 3rd 
order transfer function of the form: 

 
( )

=
+

3

1
( )

10 1
V s

s
 (23) 

and the total process to be controlled is given by = ⋅( ) ( ) ( )P s Z s V s .  
Due to the fact that (22) is a fractional order model, we evaluate the frequency domain of the 
process in order to decide upon the frequency band of the controller. Since the reference 
model can be used to specify the speed of the closed loop, one needs to attain insight on the 
speed of the process in open loop. For this, integer order approximation is performed using 
the method described in (Oustaloup et al., 2000) and the step response of the total process 
P(s) is given in figure 9, left. Based on this information, the reference model has been chosen 
in the form: 

 
( )τ

=
+

4

1
( )

1
R s

s
 (24) 

with τ=10 and 5, respectively. The Bode characteristics of the process and the reference 
models are given in figure 9, right. Using (13), the controller transfer function is obtained 
and the problem of nonlinear optimization is solved using lsqnonlin for the unknown 
parameters in (8), in the frequency range ( )ω − −∈ 3 110 ,10 . Notice that in practice the process 

is unknown, so based on the known input and output signals, one may find the frequency 
response of the controller using (15). After fitting the frequency response with minimum 
errors (see figures 10-11 left), the resulted set of parameters for the integer-order controller 
IO_PID from (7) and for the fractional-order controller FO_PID from (8) are those given in 
Table 3. The corresponding closed loop responses with the respective controllers 
implemented in the form given by (16) are depicted in figures 10-11, right.  
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Figure 8. Schematic representation for the forced oscillation lung function testing device; see 
text for symbol explanation 
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Figure 9. Left: open loop unit step response of the process; Right: Bode characteristics of the 
process (blue) and the reference models for τ=10 (green) and for τ=5 (red) 
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Figure 10. Left: frequency domain approximation and Right: unit step responses for τ=10; 
reference (blue), IO_PID (green) and FO_PID (red). Circles denote settling times 
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 τ  0c  1c  2c  λ  µ  

IO_PID 10 0.003 0.267 0.971 1 1 
FO_PID 10 0.048 0.004 0.386 0.956 0.089 

       
IO_PID 5 0.006 0.576 6.381 1 1 
FO_PID 5 0.229 0.021 3.615 0.797 0.623 

Table 3. Controller parameters for the mechanically ventilated respiratory system  
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Figure 11. Left: frequency domain approximation and Right: unit step responses for τ=5; 
reference (blue), IO_PID (green) and FO_PID (red). Circles denote settling times 

4. Discussion 

4.1 Tuning aspects 

Obviously, the first and crucial step in DIRAC is the choice of the reference model R(s). 
This can be done if some knowledge on the process is available. Some of the rule-of-
thumb guidelines can be summarized in the following list: 
• if the controller contains integral action, it ensures zero steady state error, which must 

be reflected in the closed loop gain; the latter should be 1, i.e. R(1)=1; 
• if both process and controller contain an integrator, it is the case of type 2 control 

loop (double integrator); this means that the closed loop can track a ramp-setpoint 
without error and this should be reflected by the choice of the reference model (see, 
for example, (18)); 

• if the process contains a dead-time, the closed loop will also be affected by it, 
therefore in the reference model the presence of the dead-time is necessary and an 
approximate value suffices to obtain good results; 

• if the process is non-minimum phase, the closed loop will also have this property; 
therefore the reference model should also be non-minimum phase.  

In the previous sections it has been stated that the choice of the time constant in the 
reference model affects the speed of the closed loop. When defining the time constant of 
the reference model, the actual time constant of the process has to be taken into account. 
In other words, the desired closed loop speed should be in the same order of magnitude 
as the open loop settling time of the process. If this condition is not fulfilled, the reference 
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model will ask the closed-loop to behave in an un-realistic way and the process will not be 
able to follow the actions of the controller, perhaps leading to poor robustness and even 
instability. Apart from this, the control effort required to fulfil the specifications imposed 
by the reference model should also be within realistic limits.  
As a general observation, the choice of the reference model is not in all situations a ‘best’ 
choice. Especially in direct adaptive methods, in which the knowledge of the process is 
not required, there are uncertainties on the system behaviour. In order to overcome this 
problem, it is possible to adjust both the reference model as well as the controller 
parameters. This adaptation must be based on some capability sensing parameters from 
the process, which would then re-define the reference model to adapt controller 
parameters to the new achievable specifications. However, the baseline observation is that 
the reference model is specified such that its output yields a desired, as well as an 
achievable response. 
The second step in the DIRAC algorithm presented here is related to the fact that the 
reasoning is transposed from time domain (or discrete time domain) to frequency domain. 
It is clear that a frequency band of interest must be defined, in order to fit the controller’s 
parameters. By definition, it is not possible with a single, linear and simple model to 
capture the entire frequency response of the desired controller. It is important to choose 
meaningfully the frequency interval over which the fitting will be done. In this case, one 
can obtain the actual frequency response of the plant, from the input-output 
measurements, as from (14)-(15). In this case, the choice of the excitation signal and its 
frequencies is significant. By looking at the cross-over frequency of the plant and the 
desired frequency bandwidth of the reference model, one can reason upon the effective 
frequency interval. Notice that the low frequencies are not important to be perfectly 
modelled, because the presence of the integrator in the controller ensures steady state 
error zero (16).  
Finally, whether the controller structure is the standard integer order PID from (7) or the 
more ‘flexible’ fractional order PID from (8) is a choice of the user. From the presented 
examples, it appears that there is no guarantee that a fractional-order PID outperforms an 
integer order PID. Further research will be necessary before a classification can be made 
upon processes in which FOC is better suitable than standard integer order control.  

4.2 Implementation aspects 

It is necessary to include here some of the important settings dealing with the 
implementation of the DIRAC scheme. The fact that in this paper we chose to work in 
frequency domain is solely due to the fractional order derivatives/integrals which are 
present. Of course, from a practical standpoint, a discrete time controller is necessary and 
the discrete-time DIRAC algorithm has been presented in (De Keyser, 1989; De Keyser, 
2000).  
Firstly, since the representation is in frequency domain, all the necessary transfer 
functions to calculate the utopic controller from (13) have to be dealt with in function of the 
chosen frequency interval of interest, from which (15) is calculated. Secondly, if the choice 
of the controller structure is that of an integer order PID, then the Matlab function fitfrd 
can be applied directly to obtain a 2nd order transfer function with relative degree 2 
(number of excess poles) and the final controller results as in (16) (MathWorks, 2000b).  If 
the choice of the controller structure is that of a fractional order PID, the nonlinear least 
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squares function lsqnonlin is employed, since the function to be minimized (8) is 
nonlinear in the parameters. Since the choice of the initial values is a critical step in 
nonlinear optimization, these have been set to the parameters resulted from the integer 
order PID. This choice is regarded as the best guess upon the final (optimal) values of the 
parameters to be estimated by the nonlinear estimator. After providing the fitting in the 
frequency domain with (8), the next step is to convert this polynomial to a stable, integer 
order transfer function. Again, the use of Matlab functions is not an obvious solution, and 
care must be taken when choosing the function parameters. To achieve acceptable results, 
the function invfreqs has been employed, delivering the transfer function fitted to the 
given frequency response (MathWorks, 2000c). The advantage over the fitfrd function 
consists in options parameters, which may be chosen such that the algorithm guarantees 
stability of the resulting linear system and searches for the best fit using a numerical, 
iterative scheme. The superior ("output-error") algorithm uses the damped Gauss-Newton 
method for iterative search (MathWorks, 2000b). 

5. Conclusions 

A simple and straightforward to understand direct adaptive control algorithm (DIRAC) 
has been presented in this chapter, from a frequency domain perspective, based on 
previous work derived for discrete-time DIRAC. Both integer order and fractional order 
PID controllers have been presented and discussed. Three typical examples have been 
simulated: i) a fractional order process; ii) a double integrator in the closed loop; and iii) a 
highly oscillatory process with low damping factor. Although the fractional order 
controller did not prove to outperform the standard PID controller in the presented 
examples, the DIRAC method remains available to the control engineering community for 
further research. It should be noted that the controller structure is not limited to PID; in 
fact, any transfer function can be fitted to the desired frequency response of the controller, 
as calculated based on the reference model of the closed loop performance. 
Further research may be focused towards the following aspects: i) the relationship 
between DIRAC and other auto-tuning/adaptive methods; ii) stability and convergence 
analysis; iii) guidelines on the choice of the reference model; iv) the effect of noise and 
disturbance on the controller’s parameter estimation.  
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