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1. Introduction 

We consider a class of discrete-time Markov control processes evolving according to the 
equation 

  (1) 

where xt, at and  are the state, action and random disturbance at time t respectively, taking 
values on Borel spaces. F is a known continuous function. Moreover,  is an observable 
sequence of independent and identically distributed (i.i.d.) random vectors with distribution 

. This class of control systems has been widely studied assuming that all the components 
of the corresponding control model are known by the controller. In this context, the 
evolution of the system is as follows. At each stage t, on the knowledge of the state xt = x as 
well as the history of the system, the controller has to select a control or action at = a. Then a 
cost c, depending on x and a, is incurred, and the system moves to a new state xt+1 = x’ 
according to the transition probability determined by the equation (1). Once the transition to 
state x’ occurs, the process is repeated. Moreover, the costs are accumulated throughout the 
evolution of the system in an infinite horizon using a discounted criterion. The actions 
applied at any given time are selected according to rules known as control policies, and 
therefore the standard optimal control problem is to determine a control policy that 
minimizes a discounted cost criterion. 
However, assuming the knowledge of all components of the control model might be non 
realistic from the point of view of the applications. In this sense we consider control models 
that may depend on an unknown component. 
Two cases are discussed in the present chapter. In the first one we assume that the 
disturbance distribution  is unknown, whereas in the second one we consider a cost 
function depending on an exogenous random variable  at time t, whose distribution  is 
unknown. First situation is well documented in the literature and will be briefly described, 
while the second is less known (even if it is of great interest for application problems) and 
will be largely developed. 
Thus, in contrast with the evolution of a standard system as described above, in both cases, 
before choosing the control at, the controller has to implement a statistical estimation 
procedure of  (or ) to get an estimate  (or ), and combines this with the history of 
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the system to select a control  (or ). The resulting policy in this estimation and 
control process is called adaptive. Therefore, the optimal control problem we are dealing with 
in this chapter is to construct adaptive policies that minimize a discounted cost criterion. 
Furthermore, we study the optimality of such policies in an asymptotic sense. 
The chapter is organized as follows. The models and definitions are introduced in the 
Section 2, as well as an overview of adaptive Markov control processes under discounted 
criteria. In particular, the required sets of assumptions are introduced and commented. The 
Section 3 is dedicated to the adaptive control of stochastic systems in the case where the cost 
function depends on an exogenous random variable with unknown distribution. Here we 
present two approaches to construct optimal adaptive policies. Finally we conclude in 
Section 4 with some remarks. 
Remark 1.1 Given a Borel space X (that is, a Borel subset of a complete and separable metric space) 
its Borel sigma-algebra is denoted by , and "measurable", for either sets or functions, means 
"Borel measurable". The space of probability measures on X is denoted by . Let X and  be 
Borel spaces. Then a stochastic kernel  on X given  is a function such that  is a 

probability measure on X for each fixed , and  is a measurable function on  for each 
fixed . 

2. Adaptive stochastic optimal control problems 

2.1  Markov control models 

We consider a class of discrete-time Markov control models 

  (2) 

satisfying the following conditions. The state space X and action space A are Borel spaces 
endowed with their Borel -algebras (See Remark 1.1). For each state  is a 
nonempty Borel subset of A denoting the set of admissible controls when the system is in 
state x. The set 

 

of admissible state-action pairs is assumed to be a Borel subset of the Cartesian product of X 
and A. In addition, the cost-per-stage c(x, a) is a nonnegative measurable real-valued 
function, possibly unbounded, and depends on the pair . Finally, the transition law 
of the system  is a stochastic kernel on X given . That is, for all   and 

, 

  (3) 

We will consider independently the two following cases: 

• 1st case: the stochastic kernel Q is unknown, as depending on the system disturbance 
distribution , which is unknown. We have, for all (x, a)  and , 
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where S is the Borel space of the disturbance  in (1). The Markov control model under 
consideration can also be noted . 

• 2nd case: the cost function c is poorly known, as depending on the unknown 
distribution , of a stochastic variable  through the relation: 

  (4) 

where  is an exogenous variable belonging to a Borel space S and  denotes the 

expectation operator with respect to the probability distribution . Thus 

  (5) 

The function  is in fact the true cost function, whose mean c is unknown, which yields 
the following Markov control model  . 

Throughout the paper we suppose that the random variables  and  are defined on an 
underlying probability space , and a.s. means almost surely with respect to P. In 
addition, we assume the complete observability of the states x0, x1, ..., and also of the 
realizations  when their distribution is unknown. 

2.2 Set of admissible policies 

We define the spaces of admissible histories up to time t by  and 

. A generic element of  is written as 
. A control policy  is a sequence of 

measurable functions  such that . Let  be the 
set of all control policies and  the subset of stationary policies. If necessary, see for 
example (Dynkin & Yushkevich, 1979); (Hernández-Lerma & Lasserre, 1996 and 1999); 
(Hernández-Lerma, 1989) or (Gordienko & Minjárez-Sosa, 1998) for further information on 
those policies. As usual, each stationary policy  is identified with a measurable 
function  such that  for every , so that  is of the form 

. In this case we denote  by f, and we write 

 

for all . 

2.3 Discounted criterion 

Once we are given a Markov control model  and a set  of admissible policies, to 
complete the description of an optimal control problem we need to specify a performance 
index, that is, a function measuring the system's performance when a given policy  is 
used and the initial state of the system is x0 = x. This study concerns the -discounted cost, 
whose definition is as follows: 

  (6) 

where  is the so-called discount factor, and  denotes the expectation operator 
with respect to the probability measure  induced by the policy , given the initial state x0 
= x. 
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The -discounted criterion is one of the most famous long run criteria. Among the main 
motivations to study this optimality criterion are to analyze an economic or financial model 
as an optimal control problem (for instance optimal growth of capital model, see Stockey & 
Lucas (1989)), and the mathematical convenience (the discounted criterion is the best 
understood of all performance index). In fact, it is often studied before other more 
complicated criteria, like for example the expected average cost, which can be seen as the 
limit of V( , x) when  tends to 1. 
The optimal control problem is then defined as follows: determine a policy  such that: 

 

The function V* defined by 

  (7) 

is called the value (or optimal cost) function. A policy  is said to be -discount 
optimal (or simply -optimal) for the control model   if 

  (8) 

Note that, in the case of model , we are in fact interested by looking for optimal policies 

with respect to the general -discounted cost 

 

But, as c is the mean cost of function , see (4), and using properties of conditional 
expectation, we have that . So, looking for optimal policies for , is 

equivalent to looking for optimal policies for V. 
Since  and  are unknown, we combine suitable statistical estimation methods and 
control procedures in order to construct the adaptive policy. That is, we use the observed 
history of the system to estimate  or  and then adapt the decision or control to the 
available estimate. On the other hand, as the discounted cost depends heavily on the 
controls selected at the first stages (precisely when the information about the unknown 
distribution is poor or deficient), we can't ensure the existence of an -optimal adaptive 
policy (see Hernández-Lerma, 1989). Thus the -optimality of an adaptive policy will be 
understood in the following asymptotic sense: 
Definition 2.1 (Schäl, 1987). A policy  is said to be asymptotically discounted optimal for the 
control model  if 

 

where 

 

is the expected total discounted cost from stage k onward and . 
In the above definition, the model  stands either for  or for . 
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Remark 2.2 Let  be a policy such that  for each , and {(xt, at)} be a 
sequence of state-actions pairs corresponding to application of . In (Hernández-Lerma & Lasserre, 
1996), it has been proved that  is an asymptotically discounted optimal policy if, and only if, 

, as , where 

  
(9)

 

is the well-known discrepancy function, which is nonnegative from (15). 
In the remainder of the paper, we fix an arbitrary discount factor . 

2.4 Overview of adaptive Markov control processes with Borel state and action 
spaces, and possibly unbounded costs 

Even in the non adaptive case, handling Markov control processes with Borel state and 
action spaces, and possibly unbounded costs, requires much attention in the work space 
setting towards specific assumptions. Three types of hypotheses are usually imposed, see 
(Hernández-Lerma & Lasserre, 1999). The first one is about compactness-continuity 
conditions for Markov control models. The second one introduces a weight function W to 
impose a growth condition on the cost function, which will yield that the dynamic 
programming operator T: 

  
(10)

 

is a contraction (on some space that will be specified later, see §3.1). The third type of 
assumptions is a further continuity condition, which combined with the previous ones, will 
ensure the existence of measurable minimizers for T. We don't detail these assumptions for 
the general non adaptive case. They are extended to model  in the adaptive case as 

follows: 
Assumption 2.3 a) For each , the set A(x) is -compact. 
b) For each  the function  is l.s.c. on A(x) for all s. Moreover, there exists a 
measurable function  such that  for all . 

(Recall that  is assumed to be nonnegative.) 
c)There exist three constants  such that for all , , 

  
(11)

 

d) The function  is continuous and bounded on  for every bounded 

and continuous function v on X. 
e) For each , the function  is continuous on A(x). 

Remark 2.4 Note that from Jensen's inequality, (11) implies 

  
(12)

 

where . Moreover, a consequence for both inequalities (11) and (12), is (see 
(Gordienko & Minjdrez-Sosa, 1998) or (Hernández-Lerma & Lasserre, 1999)) 
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(13)

 

for each  and . 
We denote by  the normed linear space of all measurable functions  with a 
finite norm defined as 

  
(14)

 

A first consequence of Assumption 2.3 is the following proposition, which states the 
existence of a stationary -discount optimal policy in the general case: 
Proposition 2.5 (Hernández-Lerma & Lasserre, 1999) Suppose that Assumption 2.3 holds. Then: a) 
The function V* belongs to  and satisfies the -discounted optimality equation 

  
(15)

 

Moreover, we have . 
b) There exists  such that  attains the minimum in (15), i.e. 

  
(16)

 

and the stationary policy f is optimal. 
As we already mentioned, our main concern is in the two cases of adaptive control we 
introduced in §2.1 where the distribution  or  is unknown. Thus, the solution given in 
the Proposition 2.5 is not accessible to the controller. In fact, an estimation process has to be 
chosen, which depends on the knowledge we have of this distribution, for example: 
absolutely continuous with respect to the Lebesgue measure (and so with an unknown 
density). With the estimator on hand we can apply the "principle of estimation and control" 
proposed by Kurano (1972) and Mandl (1974). That is, we obtain an estimated optimality 
equation with which we can construct the adaptive policies. 
The case of the model , and assuming that  has a density, is described in (Gordienko & 
Minjárez-Sosa, 1998), and also in (Minjárez-Sosa, 1999) for the expected average cost. The 
estimation of  is obtained by means of an estimator of its density function. However the 
unboundedness assumption on the cost c makes difficult the implementation of the density 
estimation process. The estimator is defined by the projection (of an auxiliary estimator) on 
some special set of density functions to ensure good properties of the estimated model. 
Beyond the complexity of the estimation procedure, the assumption of absolutely continuity 
excludes the case of discrete distributions, which appears in some inventory-production and 
queuing systems. On the other hand, the case of an arbitrary distribution  (without a 
priori assumption) has been treated in (Hilgert & Minjárez-Sosa, 2006) and relies on the 
empirical distribution. It may seem an obvious choice, but this was a great improvement on 
what was done previously. The assumptions used are even weaker than in the non adaptive 
case and wouldn't be sufficient to prove the existence of a stationary optimal policy with a 
known distribution . The extension to the expected average cost is the subject of 
(Minjárez-Sosa, 2008). 
The case of model , is less known in the literature and is treated in detail in the following 
section. 
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3. Adaptive control of stochastic systems with poorly-known cost function 

The construction of the adaptive policies is based mainly on the cost estimation process 
which, in turns, is obtained by implementing suitable estimation methods of the probability 
distribution . In general our approach consists in getting an estimator cn of the cost such 
that 

• it converges to c (in a sense that will be given later); 

• it leads up to the convergence of the following sequence: , 

  
(17)

 

to the unknown value function V* given in (7). 
In particular, we take 

  
(18)

 

where  is a sequence of "consistent" estimators of . 
Now, applying standard arguments on the existence of minimizers, under Assumption 2.3, 

we have that for each  there exists  such that, 

  
(19)

 

where the minimization is done for every . Moreover, by a result of (Schäl, 1975), 

there is a stationary policy  such that for each  is an accumulation 

point of . 
We state our main result as follows: 

Theorem 3.1 a) Let  be the policy defined by  
and  any fixed action. 
Then, under Assumption 2.3 and if  is an appropriate sequence of "consistent" estimators of 

,  is asymptotically discount optimal. 

b) In addition, the stationary policy  is optimal for the control model . 
The remainder of this section is devoted to the proof of Theorem 3.1 for two estimators of 
the cost function that correspond to two different assumptions on the unknown distribution 

. In the first one, Subsection 3.2, we suppose that  is absolutely continuous with respect 
to the Lebesgue measure and has an unknown density function . The estimator cn of the 
cost function is then based on a nonparametric estimator of . Next, in Subsection 3.4, we 
don't make any a priori assumption on . The estimator cn is based on the empirical 
distribution of . We first give some preliminary definitions and developments that are 
useful for both situations. 

3.1  Preliminaries 

We present some preliminary facts that will be useful in the proof of our main result. 
Let us define the operator Tn in the same way as T in (10): 

  
(20)

 

for all  and . Observe that from (15) and (17) 
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  (21) 

In addition, from Assumption 2.3(a), , and applying the inequality 
(12), a straightforward calculation shows that, for some constant C, 

  (22) 

Thus, from Assumption 2.3, T and Tn maps  into itself. 
We fix an arbitrary number  and define the function  for , 

where . Let  be the space of measurable functions  with 
norm 

 

Observe that the norms  and  are equivalent because 

  
(23) 

A consequence of Lemma 2 in (Van Nunen & Wessels, 1978) is that the inequality (12) 
implies respectively that the operators Tn and T, , are contractions with modulus , 

with respect to the norm , i.e. for all : 

  (24) 

  (25) 

Hence, from (21), for each , we have 

  
(26)

 

Now, let  and  be arbitrary, and define 

 

and 

 

Observe that  l  and l’  (see Proposition 2.5, (22) and (23)). Then from (26) 

  
(27)

 

and 

  
(28)

 

3.2  Cost estimation when  has a density 

In this part, we suppose the existence of a density of  as stated below.  We will then start 
step by step the proof of Theorem 3.1. 
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Assumption 3.2 a) . 
b) The distribution   is absolutely continuous with respect to the Lebesgue measure on  and has a 
density function . That is, 

  

(29)

 

Under this context, from (4) we have 

  

(30)

 

Let  be independent realizations (observed up to time t), of r.v.'s with the unknown 
density , and , be an arbitrary estimator of  such that 

  

(31)

 

Defining, for each , 

  

(32)

 

the relation (18) becomes 

  

(33)

 

Now, let us define the approximate discrepancy function , for each  as (see (9)) 

  

(34)

 

for all , where  is the sequence defined in (17) corresponding to the cost (33), 
and denote 

  

(35)

 

The following Lemma will be useful to prove Theorem 3.1. 
Lemma 3.3 Assumptions 2.3, 3.2 and (31) imply that: 
 a) For each  and , 

  (36) 

b)For each  and , 

  (37) 

c)For each  and , 
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(38)

 

d) For each , 

  
(39)

 

Proof: 

a) From (23) and (27), to prove the part a), it is sufficient to show that 

  (40) 

To this end, from (10), (20), (30), and (33), and Assumption 2.3(a), for each  and 
, 

 

Hence, as , 

  

(41)

 

Taking expectation  on both sides of (41) and observing that (since  does not depend on 
 and ) 

 
relation (40) follows thanks to (31). 

b) From definitions of the function  and , the norm  in (14), and (12), for each 
 and , 

  (42) 

Thus, (31) and Lemma 3.3a yield (37). In addition, there exists a finite constant M such that 
, which, combined with (37), yields the convergence in probability 

 

c) But, from (13) we have that 
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We then deduce that  is -uniformly integrable. Moreover, using Chebychev's 
inequality, 

  (43) 

  

(44)

 

Hence, 

 

and as it is -uniformly integrable, we get (38). 
d) This result is a consequence of Lemma 3.3a and the following inequalities 

 

3.3 Proof of Theorem 3.1 

We prove Theorem 3.1 in the specific case of , absolutely continuous with respect to the 
Lebesgue measure, that is, with  and cn given by (29), (30), (32), and (33), 
respectively. We will show in the Subsection 3.4 that it still holds with an arbitrary 
distribution ,. 
Proof of part a) Observe that by definition of the control policy  (see (19) and Theorem 3.1) 
and (34), we have  0 for all n. Hence, 

 

which, combined with (38), proves the asymptotic discounted optimality of . 

Proof of part b) We fix an arbitrary . Since  is an accumulation point of , 

there exists a subsequence {ni (x)} of {n} such that  as . In addition, 

  
(45)

 

Moreover, from (39), we deduce that 
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Then, taking the limit infimum in (45) yields 

 

As x was arbitrary, the equality holds for every  and so  is optimal for the control 

model .  

3.4 Cost estimation with the empirical distribution of  

In this part, we suppose the disturbance space S and the distribution  arbitrary. To 
estimate  we use the empirical distribution  of the disturbance process 

, defined as follows. Let  be a given arbitrary probability measure. Then 

  
(46)

 

Under this context, we have (see (4) and (18)) 

  

(47)

 

and 

  

(48)

 

Clearly, from the law of large numbers, for each ,  a.s., as 
. However, to our objectives, we need uniform convergence on (x, a) of the costs, for 

which we impose the following conditions. 
Assumption 3.4 a) The family of functions 

 

is equicontinuous on S.  
b) The function 

 

is continuous on S. 
Remark 3.5 a) Observe that from Assumption 2.3(b), . Hence , 
for all r > 0. Then, from Assumption 3.4 and applying Theorem 6.4 in (Ranga Rao, 1962), we get, as 

, 

  

(49)
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b) The function  in Assumption 3.4 might be non continuous. In such case we replace Assumption 
3.4(b) by supposing the existence of a continuous majorant  of  such that  <  for 
some  r > 1. 

Let  be the sequences of functions defined in (17), (34), and (35), 
respectively, corresponding to the cost functions (47) and (48). According to Subsection 3.3 
and the proof of Lemma 3.3, to prove the Theorem 3.1 under the empirical estimator, it is 
sufficient to state the following results. 
Lemma 3.6 Under Assumptions 2.3 and 3.4, 
a)  

b)  

c) for each  and ,  

d)  

Proof. The part a) is a consequence of the following inequality. From (10), (20), (47), (48), and 
(49), for each , 

 

Thus, (28) and (23) yield the part a). 
On the other hand, observe that (see (42)) 

 

Therefore, the part b) follows from (49) and the part a). 
Finally, the parts c) and d) are obtained by applying similar arguments as for proving (38) 
and (39).   

4. Concluding remarks 

A general scheme to construct adaptive policies in control models as (2) is to combine 
statistical estimation methods of the unknown distribution with control procedures. Such 
policies have optimality properties provided that the estimators are consistent in an 
appropriate sense. In this paper we studied two cases of adaptive control models, model 

 who has an unknown system disturbance distribution, and model  where the cost 
function depends on an exogenous variable of unknown distribution. We stated two ways 
of estimating  or  which yielded two different asymptotically discounted optimal 
adaptive policies. In the first one, it is assumed that the distribution possesses a density 
function  on . The estimation process in this case is based on the estimation of , which 
can be done in a number of nice ways (see, e.g., Devroye (1987), Devroye & Lugosi (2001)), 
but has the disadvantage of excluding the case when the distribution is discrete. 
The construction of adaptive policies using the empirical distribution as estimator is very 
general in the sense that the disturbance space S as well as the distribution  or  can be 
arbitrary. This approach has the disadvantage that it requires restrictive equicontinuity 
conditions (see Assumption 3.4) which is the price we have to pay for nothing assuming on 
the unknown distribution. However, this assumption is satisfied in important cases. For 
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instance, an obvious sufficient condition for Assumption 3.4(a) is that S is countable. Also, 
this assumption holds in the case of additive-noise cost function of the form 

, where G is a continuous function. 
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