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Abstract

This chapter is concerned with the vibration analysis of single-walled carbon nanotubes
(SWCNTs). This analysis is based on the Donnell thin shell theory. The wave propagation
approach in standard eigenvalue form has been employed in order to derive the charac-
teristic frequency equation describing the natural frequencies of vibration in SWCNTs.
The axial modal dependence is measured by the complex exponential functions implicat-
ing the axial modal numbers. Vibration frequency spectra are gained and evaluated for
physical parameter like length-to-diameter ratios. The dimensionless frequency is also
investigated in armchair and zigzag SWCNTs with in-plane rigidity and mass density
per unit lateral area for armchair and zigzag SWCNTs. These frequencies of the SWCNTs
are computed with the aid of the computer software MATLAB. These results are com-
pared with those obtained using molecular dynamics (MD) simulation and the results are
somewhat in agreement.

Keywords: vibration analysis, wave propagation approach, Donnell thin shell theory,
single-walled carbon nanotube

1. Introduction

Iijima [1] discovered the carbon nanotubes (CNTs) in 1991 and the uses of carbon nanotubes

(CNTs) have been originate in various areas such as electronics, optical, medicine, charge detec-

tors, sensors, field emission devices, aerospace, defense, construction and even fashion. To study

their remarkable properties, a bulk of research work was performed for their high springiness

and characteristic ratio [2], a very effective Young modulus and tensile potency [3], well-bonding

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



strength and superconductivity between carbon atoms [4]. Study of free vibrations of these tube

have has been examined with regard to their properties and material behavior. For their useful

applications, it needs more explorations to examine vibration characteristics of SWCNTs.

Poncharal et al. [5] and Treacy et al. [6] conducted the experiments, the resonance frequency of

multi-walled carbon nanotubes for clamped-free excited by electrical loads or thermal were

detected in a transmission electron microscope (TEM). Thermal vibrations of SWCNTs have

been performed for natural frequencies by Molecular dynamics (MD) to predict the Young’s

modulus by Zhao et al. [7].

The behaviors and material properties of CNTs using either or continuummechanics modeling

or atomistic modeling have been conducted in Wang et al. [8]. For the analysis of CNTs, when

compared to continuum mechanics modeling, atomistic modeling is an easy approach and

relatively inexpensive. Consequently, the development of continuum mechanics model has

attracted much attention of researchers; especially after Yakobson et al. [9] showed that the

results obtained using continuum mechanics modeling and molecular dynamics (MD) simula-

tions are in good agreement.

A comprehensive molecular dynamics (MD) study for the contraction and thermal expansion

behaviors on different mode of vibration analysis carried by Cao et al. [10]. The fundamental

frequency for deformed clamped-clamped shift of SWCNTs under torsion, bending and axial

loadings investigated by them. Lordi and Yao [11] performed molecular dynamic (MD) simula-

tions to determine the Young’s modulus and thermal vibration frequencies of SWCNTs using the

universal force field with various clamped-free conditions based on the Euler beam theory.

Carbon nanotubes model of chiral SWCNTs for analyzing their resonant frequency are developed

by Hsu et al. [12] and these tubes were observed under a thermal vibration. The model used for

implicating the shear deformation and rotatory inertia was Timoshenko beam model. Chawis

et al. [13] and Bocko et al. [14] used nonlocal theory of elasticity for the vibration analysis of

SWCNTs. An analysis of vibration characteristics of SWCNTs was examined by Yang et al. [15]

and initiated this analysis is based on Timoshenko beam model for nonlocal theory. A number of

end conditions have interpreted by Azrar et al. [16–17] for the vibrations of these tubes. Recently,

vibration behaviors of SWCNTs have been investigated by some researchers [18, 19, 20].

To examine the feasibility of SWCNTs as a nano-resonator, the molecular structural mechanics

method was employed by Li and Chou [21] .The predicted fundamental frequencies were

perceptive to dimensions such as diameter, length along with boundary conditions clamped-

free or clamped SWNTs, but the frequencies are correlatively imperceptive to chirality of the

tubes. The vibration and buckling aspects of carbon nanotubes using nonlocal Donnell shell

theory was examined by Ansari et al. [22, 23].

Vibration analysis of SWCNTs is examined by using the present approach with clamped-

clamped and clamped-free vibration. Single-walled carbon nanotubes (SWCNTs) have three

distinctive structures as: (i). armchair (ii). zigzag (iii) chiral. These structures have different

properties but their vibrational behavior is less clear according to the regarding situation.

Vibration analysis of armchair and zigzag type of carbon nanotubes is executed for following

boundary conditions: clamped-clamped (C-C), and clamped-free (C-F). Variations of dimen-

sionless frequencies are attained for length-to-diameter ratio.
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Here an analytical investigation of single-walled carbon nanotubes is conducted for

extracting their vibration characteristics. The study of free vibration of SWCNTs is done

based on cylindrical shell model. This analysis based on the Donnell thin shell theory. These

shell dynamics equations are solved by wave propagation approach. The Donnell shell

theory based on WPA is, therefore, another choice of powerful research technique of CNTs

whose results are applicable in the limit of acceptable statistical errors than the earlier used

BM and other approaches [3–6, 22, 23]. The shell frequency equation is formulated in the

eigenvalue form. To provide the complete characteristic of vibrational behavior of SWCNTs

by using wave propagation approach is studied in the present chapter. Results are obtained

for various material parameters. The dimensionless frequency is also investigated in arm-

chair and zigzag SWCNTs with in-plane rigidity. Now the gape is that there is no research to

find directly the dimensionless frequencies of SWCNTs based on cylindrical shell model by

using wave propagation approach. However, to the best of authors’ knowledge, to find the

frequency of SWCNTs, there is no research works on the vibration analyses of zigzag,

armchair SWCNTs based on cylindrical shell using wave propagation approach. These

frequencies of the SWCNTs are computed with the aid of the computer software MATLAB

and these results are compared against MD simulation results in order to assess the accu-

racy and validity of the cylindrical shell model for predicting the vibration frequencies of

SWCNTs.

2. Theoretical formation

2.1. Cylindrical shell model for the vibration of SWCNT

Carbon nanotubes have two kinds, which are single-walled carbon nanotubes and multi-

walled carbon nanotubes. Actually multi-walled carbon nanotubes are singled walled carbon

nanotubes that are coaxially interposed with different radii. When a graphene sheet rolled up

into one time, then it becomes a SWCNTs to produce a hollow cylinder but with end caps. A

schema of graphene sheet and single-walled carbon nanotube are shown in Figure 1.

Armchair and zigzag nanotubes are made when chiral angle is equal to 0 and 30 respectively and

both are the limiting cases with (m, m) and (m, 0). The structure of single-walled carbon

nanotubes is similar to the circular cylinders with regard to geometrical shapes as shown in

Figure 2. So, the motion equations for cylindrical shells are utilized for studying the free vibra-

tions of SWCNTs. According to the Donnell thin shell theory (He et al. [24]), the governing

equation of motion for free vibration of a CNTs is used. Where v1, v2, and v3 are the longitudinal,

circumferential, and radial displacements of the shell, R is the radius of the shell, Eh is the in-

plane rigidity, ρh is the mass density per unit lateral area, t is the time and ν is the Poisson ratio.

It is assumed that for the representation of the modal deformation displacement functions

in the axial, circumferential and radial directions are v1 x;θ; tð Þ, v2 x;θ; tð Þ and v3 x;θ; tð Þ

correspondingly. The three unknown displacement functions for SWCNTs executing vibra-

tion, a system of PDE is given as:

Vibrational Behavior of Single-Walled Carbon Nanotubes Based on Donnell Shell Theory Using Wave Propagation…
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where D ¼ Eh
3

12 1�v2ð Þ denotes the effective bending stiffness.

Figure 1. Hexagonal lattice (a) graphene sheet (b) single-walled carbon nanotube.

Figure 2. Geometry of SWCNTs.
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2.2. Applications of the wave propagation approach

An efficient and a simple technique which corporate as wave propagation approach is

employed for the solution of CNT problem in the form of differential equation. Before this,

present method has been successively used for the study of shell vibrations [25–27]. The axial

coordinate and time variable are denoted by x, t correspondingly and the circumferential

coordinate signifies by θ. The functions v1 x;θ; tð Þ, v2 x;θ; tð Þ and v3 x;θ; tð Þ are used to designate

their respective displacement deformation function. So for modal deformation displacements

are written in the assumed expression as:

v1 x;θ; tð Þ ¼ pme
�ikmx cos nθð Þeωt (4)

v2 x;θ; tð Þ ¼ qme
�ikmx sin nθð Þeωt (5)

v3 x;θ; tð Þ ¼ rme
�ikmx cos nθð Þeωt (6)

where pm, qm and rm stand for three vibration amplitude coefficients in the axial, circumferen-

tial and radial directions. The axial half and the circumferential wave numbers are denoted by

m and n respectively and angular frequency is designated by ω. The formula for fundamental

frequency f which is written as: f ¼ ω=2π: Where km is the axial wave number related with an

end conditions. Using the expressions for v1 x;θ; tð Þ, v2 x;θ; tð Þ, v3 x;θ; tð Þ and their partial

derivatives in applying the product method by substituting the modal displacement functions

for partial differential equations, the space and time variable are split.

After putting Eqs. (4)–(6), into Eqs. (1)–(3), the above equations is transmuted in matrix repre-

sentation after the arrangement of terms, and to designate the vibration frequency equation for

SWCNTs, an eigenvalue problem is formed:
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The form of non-zero solution of pm; qm; rm
� �

yields the vibration frequency and associated

modes for SWCNTs. The expressions for the terms Lij ‘s are given in the Appendix-I. Where the

roots of the equation furnish the frequencies. The lowest root corresponds to the frequency of

vibration. It is clear that the frequency should be minimized with respect to the wave numbers

m, n in order to obtain the frequency of vibration.

3. Result and discussion

The vibration frequency spectra for SWCNTs are evaluated by Eq. (3) based on Donnell thin

cylindrical shell theory. Variations of the frequencies are obtained with regard to the material

properties and tube thickness. Keeping in view of this aspect, the natural frequencies of the
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longitudinal clamped-free vibration of SWCNTs with a length 6.92 nm are first determined

by the MD simulation. The E=ρ ratio as measured from molecular dynamic simulation is

3.6481 � 108m2=s2. By applying this ratio on the longer tube having length 14.4 nm is

simulated by MD simulation. The results were found to be same, demonstrating the uncon-

ventionality of the ratio on the length. We shall adopt the material properties and tube

thickness as suggested by Zhang et al. [18], i.e. the in-plane rigidity Eh =278.25 Gpa�nm,

E=ρ=3.6481 � 108m2=s2, Poisson’s ratio ν = 0.2. The in-plane stiffness or rigidity is computed

as Eh = 278.25 GPa.nm which is based on the E=ρ ratio, to calculate the natural and dimen-

sional frequencies of vibration using wave propagation approach, the ratio E=ρ= 3.6481 � 108

m2=s2 is used throughout this study. For example, the range of reported thickness is from

0.0612 to 0.69 nm in [9, 28–29] and v varies from 0.14 to 0.34. Considering a diameter

d = 6.86645 � 10�10 m, the vibration frequencies for Single-walled carbon nanotubes of

various length-to-diameter ratios are calculated using Eq. (3). In present model, the effects

of different length-to-diameter ratio for clamped-clamped and clamped-free boundary con-

dition have been considered and matched quantitatively with MD results as well as for the

validity and to assure the accuracy. In this study, all frequency results are presented in THz

unless otherwise stated. In present study, the frequencies of SWCNTs are obtained by using

the some parameters which are compared with MD simulation and continuum shell. How-

ever the MD results were obtained for a clamped-clamped SWCNT. Two sets of result are

compared as shown in the Tables 1 and 2.

It can be observed that the results which are obtained from present model, the values are

nearer to the molecular dynamics results when the length-to-diameter ratio is greater than

10.26. From Table 1, one can notice that the average percentage error between MD results is

approximately 3.6%. This fact shows that the results obtained by present method and earlier

MD simulation model are in good agreement.

3.1. Vibration of clamped-clamped and clamped-free SWCNTs

In the application of micro-oscillators and micro or nano-strain sensors, the carbon nanotube

sensor is generally clamped with both ends [30]. The clamped-clamped and clamped-free

single-walled carbon nanotubes have been performed by atomistic simulations [20–21, 31]. In

this section, the distinctive first and third mode frequencies for the set of clamped-clamped

single-walled carbon nanotubes is given by present models for their vibration frequencies and

L/d Frequencies (THz)

Present MD Percentage error

6.67 0.67832 0.64697 4.85

8.47 0.44146 0.43335 1.87

10.26 0.30922 0.30518 1.32

13.89 0.17360 0.18311 �5.19

Table 1. Comparison of frequencies of C-C SWCNT with MD simulation for the first vibration mode.
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compared with molecular dynamic simulations and Timoshenko beammodel with thicknesses

h = 0.34 nm. The results are in good agreement with the MD and Timoshenko beam model

results showing same trend in the open literature.

The first and third mode natural frequencies accessed by present model and compared with

MD simulations are depicted graphically in Figure 3 respectively. It can be observed from

Tables 1 and 2 that the length-to-diameter ratio of the set of C-C SWCNTs is somewhat

dissimilar from that of C-F SWCNTs. For the prediction of mechanical characters [7, 19–21]

from atomistic studies and the experimental studies [5, 6, 33–38] are often used for the

clamped-free carbon nanotubes. The frequencies for the first and third modes obtained from

present model which is compared with molecular dynamic simulation and Timoshenko beam

model are shown in Figure 3. It can be readily seen that higher frequencies are produced by

higher modes and when length-to-diameter ratio rises at each mode then frequency falls down

smoothly as shown in Figure 3. The relationship between the length-to-diameter ratios and

L/d Frequencies (THz)

Present MD Percentage error

4.67 0.17074 0.23193 �26.38

6.47 0.09048 0.12872 �29.70

7.55 0.06678 0.1000 �31.61

8.28 0.05566 0.07935 �29.85

10.07 0.03777 0.05493 �31.23

Table 2. Comparison of frequencies of clamed-free SWCNT for the first vibration mode.

Figure 3. Comparison of numerically obtained results for clamped-clamped and clamped-free frequencies of SWCNTs

for first and third mode versus length-to-diameter ratio L/d with MD by Cao et al. [32] and Timoshenko beam model [18].
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natural frequencies is inversely proportional indicates that the vibrations are very sensitive

due to long tube and since the SWCNTs are of almost the same diameter. The results for

SWCNTs given by MD are little bit higher than the frequencies investigated by the present

model. In MD simulation, the frequencies of length-to-radius ratio are 8.28 is 0.0793 and at

20.89 is 0.0138. But in the present model, the frequencies at 8.28 are 0.05566 and at 20.89 is

0.00883, when compared to the MD results.

3.2. Vibration of SWCNTs with dimensionless frequency

Furthermore, the parametric study for the vibrational behavior of SWCNTs with dimension-

less is carried out and presented in Figure 4. Alibeigloo et al. [39, 40] and Soldatos et al. [41]

used the dimensionless frequency for multi-walled carbon nanotubes and for thin cylindrical

shell with respect to length-to-radius ratio respectively. This frequency is associated with

frequency Ω through the following formula: Ω ¼ ωR

ffiffiffiffiffi

ρ

E
:

q

A variation of non-dimensional

frequency versus length-to-diameter ratio is presented in Figure 4. This figure shows that,

increasing the value of length-to-diameter ratio as well as there is a decrease in dimensionless

frequency. From the physical point of view, it is noted that when the length of SWCNTs

becomes small, the effect of the atomic interactions among a reference point and all other

atoms becomes significant.

Figure 4 shows an armchair and zigzag CNT, vary the length-to-diameter ratio from 8.3 to 20.9

will change the dimensionless frequency from 0.0385 to 0.0063 THz in case of clamped-

clamped boundary condition. Likewise, in clamped-free condition it changes from 1.2827 to

0.5094 THz in armchair case. It may be seen from the above Figure 4 that the resulting value of

dimensionless frequency decreases with the increase in length-to-diameter ratio. Now in

Figure 4. Variations of dimensionless frequencies of CC and CF armchair and zigzag SWCNTs.
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zigzag CNT, changing the length-to-diameter ratio from 4.86 to 35.53, the dimensionless

frequency changes from 0.0303 to 0.0049 THz in case of clamped-clamped boundary condition.

Likewise, in clamped-free condition it varies from 1.16605 to 0.4609 THz.

3.3. Vibration of SWCNTs with in-plane rigidity

For the results generated so far, the nanotube in-plane rigidity has been taken to be Eh =278.25

Gpa�nm. However, there exist some inconsistencies concerning this quantity in the literature.

The reported CNT in-plane stiffness is largely scattered, ranging from Eh =300 Gpa�nm to Eh =

400 Gpa�nm [42]. Both set of Figure 5 is presented to investigate the influence of the in-plane

rigidity Eh variation on the dimensionless frequency of a (7, 7) armchair and (9, 0) Zigzag

SWCNT with different boundary conditions likewise as clamped-clamped and clamped-free

boundary conditions. These figures shows that for all the selected boundary conditions,

dimensionless frequency calculated via shell model are sensitive to the nanotube in-plane

rigidity Eh and also the larger the in-plane rigidity in-plane rigidity Eh, the higher the dimen-

sionless frequency. The difference is more considerable for shorter length CNTs.

Previous study reveals that the bending rigidity of SWCNTs should be considered as an

independent material parameter not linked to the representative thickness by the classic

bending rigidity formula, i.e., D ¼ Eh
3=12 1� ν

2
� �

and the actual bending rigidity of SWCNTs

is lesser than its classical counterpart [43, 44]. For shorter length-to-diameter ratio, the value of

dimensionless frequencies for clamped-clamped at Eh = 300 Gpa�nm, Eh = 400 Gpa�nm is

0.04863, 0.05788, respectively which shows that a slight increase in frequency due to increase

of in-plane rigidity Eh. Same trend is observed for dimensionless frequency. For the present

shell model with in-plane rigidity Eh, the values of the C-F single-walled carbon nanotubes

respectively, which are a little lower than those of corresponding CC SWCNTs with bending

rigidity are plotted in Figure 5.

Figure 5. Variations of dimensionless frequenciesΩ of CC and CF armchair and zigzag SWCNTs when Eh = 300 GPa.Nm

and Eh = 425Gpa.Nm.
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3.4. Vibration with mass density per unit lateral area

Figure 6 is presented to investigate the influence of the mass density per unit lateral area

variation on the dimensionless frequency of a (12, 12) armchair and (14, 0) zigzag SWCNT

with boundary conditions: clamped-clamped and clamped-free. These figures shows that for

all the selected boundary conditions, the frequency calculated via shell model are sensitive to

the nanotube mass density and also the larger the mass density per unit lateral area ρh, lower

the frequency. It is observed that applying the mass density per unit lateral area ρh to the

present shell model, yields the slight decrease of the frequency. For shorter length-to-diameter

ratio, the value of dimensionless frequencies at ρh =740.52 nm, 800.64 nm and 820.80 nm is

0.3667, 0.03342, 0.03128 respectively for clamped-clamped and 1.74285, 1.71298, 1.6001 respec-

tively for clamped-free, which shows that decreases in frequency. For the present shell model,

the values of length-to-diameter ratio for C-C SWCNTs, which are a little higher than those

corresponding C-F SWCNTs values with mass density per unit lateral area are plotted in

Figure 6.

Figure 6. Variations of dimensionless frequencies of CC and CF armchair and zigzag SWCNTs when ρh ¼ 740:52nm,

ρh ¼ 800:64nm and ρh ¼ 820:80nm.
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4. Conclusions

The vibration behavior of CF and CC SWCNTs are extensively investigated by present model

compared with MD simulation. With properly chosen parameters, the present models can

reproduce satisfactory frequencies that are in reasonable agreement with those results

obtained by MD simulations and Timoshenko beam model. The effects of the length-to-diam-

eter ratio for armchair and zigzag CNTs with in-plane rigidity, mass density per unit lateral

area on the dimensionless frequencies are also examined with present models. It is found that

the frequencies decreases smoothly when length-to-diameter ratio would increases and higher

mode of vibration occurred when the frequencies are higher. For a clamped-free SWCNT, their

exist an inverse proportionality which is observed between the resulting frequency and length-

to-diameter ratio. For clamped-clamped SWCNTs, the results took a similar trend but in this

case frequency values are much higher. The results are obtained numerically for different

boundary conditions and plotted in graphical forms. In the field of CNTs vibrations, wave

propagation approach presents a good application. A better cylindrical shell model is needed

to furnish more accurate prediction of the vibration frequencies of SWCNTs, such as the

nonlocal shell theory that incorporates the effect of small length scale effect.
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