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1. Introduction    

Dead zone characteristics exist in many physical components of control systems. They are 
nonlinear features particularly in direct current (DC) motor position tracking control systems, 
mainly caused by the uncertain time-varying nonlinear friction. They can severely limit the 
control performance owing to their non-smooth nonlinearities. However, dead zone 
characteristics usually are not easy to be known exactly and may vary with time in practical. In 
addition to the uncertainties in the linear part of the plant, controllers are often required to 
accommodate time-varying dead zone uncertainties. In general, there are two usual methods 
treating the systems with uncertain time-varying dead zone characteristics caused by 
uncertain nonlinear frictions in DC motor position control systems. The first one is to separate 
the unknown dead zone from the original DC motor systems and construct an adaptive dead 
zone inverse, and then compensate the effects of unknown dead zone characteristics (Gang & 
Kokotovic, 1994; Cho & Bai, 1998; Wang et al., 2004; Zhou et al., 2006). The second method is to 
deal with both the unknown dead zone characteristics and all the other uncertainties as one 
uniform uncertainty, thereupon design proper compensator (Wang et al., 2004) or adaptive 
controller which can counteract the effects of uncertainty(Selmic & Lewis, 2000; Tian-Ping et 
al., 2005). Furthermore, dead zone uncertainties' bounds remain unknown in many practical 
DC motor control systems. This problem can't be coped with conventional sliding mode 
controller (Young et al., 1999; Hung et al., 1993) and general adaptive controller (Gang & 
Kokotovic, 1994; Cho & Bai, 1998; Wang et al., 2004; Zhou et al., 2006; Wang et al., 2004; Selmic 
& Lewis, 2000; Tian Ping et al., 2005; Young et al., 1999; Hung et al., 1993). In order to deal with 
nonlinear systems with unknown bound time-varying uncertainties, adaptive control schemes 
combined with sliding mode technique have been developed (Chyau-An & Yeu-Shun, 2001; 
Chyau-An & Yuan-Chih, 2004; Huang & Chen, 2004; Chen & Huang, 2004). These control 
schemes can transform the unknown bound time-varying uncertainties into finite 
combinations of Fourier series as long as the uncertainties satisfy Dirichlet condition, so that 
they can be estimated by updating the Fourier coefficients. Since the coefficients are time-
invariant, update laws are easily obtained from the Lyapunov design to guarantee output 
error convergence. 
This chapter is devided into two parts. In the first part, for the position tracking in DC motor 
with unknown bound time-varying dead zone uncertainties, we’ll propose a Function 
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Approximation-based Sliding Mode Adaptive Controller (short for FASMAC). Firstly, we 
obtain a control law consisting of an unknown bound time-varying uncertain term same as 
An-Chyau (2001) and another compensative term through sliding mode technique and, 
afterwards, transform the uncertain term into a combination of a set of orthonormal basis 
functions with the approach of function approximation technique, where Laguerre function 
series are employed for their widely application in system model approximation (Wahlberg, 
1991; Oliver et al., 1994; Campello et al., 2004) and adaptive controller design(Zervos & 
Dumont, 1988; Wang, 2004). Then concrete expressions of uncertain term and compensative 
term can thus be derived based on the Lyapunov design to guarantee output error 
convergence. This control scheme can not only approximate the unknown bound time-
varying uncertainties online but also compensate the error of approximation synchronously. 
Actual experiments on DC motor position tracking demonstrate the performance of the 
control scheme. In the second part, we’ll extend the sliding mode adaptive controller for 
SISO system in the first part of the chapter to an adaptive controller for SIMO system with 
unknown bound time-varying uncertainty. The control strategy only requires that the 
uncertainty is the piecewise continuous or square integrable in finite time interval, and 
doesn’t demand for the information of the uncertainty’s bound and some conditions of the 
uncertainty, thus it is more suitable for actual SIMO uncertain nonlinear systems. The 
SIMOAC strategy gives a sliding function according to the sliding mode control basic 
principle firstly, and then transforms the time-varying uncertainty into the multiplying of a 
known time-varying basis function vector and an unknown time-invariant coefficient 
vector, and further obtains the updating law of coefficient vector and an adaptive on-line 
compensation of approximation error, then adaptive control law are obtained at last. 

2. Function Approximation-based Sliding Mode Adaptive Control for SISO 
system  

2.1 Problem statement  

The system to be controlled is a DC motor position control system. The simplified plant 
model is shown in Fig.1, where Uf stands for the equivalent voltage caused by unknown 
time-varying nonlinear friction, x1 and x2 represent the system position state and velocity 
state, respectively, and Tm is the time constant value of DC motor, Ke is the ratio of speed 
feedback. 
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Figure 1. Simplified open-loop model of DC motor position control system 

Let U be the known static friction moment of Uf in Fig.1, we obtain system state space 
equation as 
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For the purpose of convenience of controller design procedure，let X(t)=[x1(t) x2(t)]T. Then  
(1) can be rewritten as 

 )()()()( tDUtuBtXAtX +++=&   (2) 

where A , B  and U  are known constant vectors, while D(t) is unknown time-varying 

uncertainty, and 
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Eq. (2) is a perturbation model of DC motor position system, where D(t) denotes the 
unknown bound time-varying dead zone uncertainty which mainly origins from uncertain 
time-varying nonlinear friction. Since conventional control strategy based on precise 
mathematic model usually can't reach performance requirement, thus, new control scheme 
needs be developed to improve system performance. 

Assumption 1.  
21

21 ] [  ×ℜ∈=∃ ccC , c1 and c2 are both positive or negative, for 

perturbation model of DC motor position system (2), guarantees that 0≠BC  and time-

varying uncertain function )(tCD is square integral for any finite time T, ℜ∈T , that is 

][)( 2 +∈ RLtCD . 

Under the Assumption 1, the unknown bound time-varying uncertainty )(tCD  can be 

transformed into a finite combination of Laguerre functions, and then coefficients of 
Laguerre functions are obtained using Lyapunov direct method. 

2.2 Function approximation-based sliding mode adaptive controller design  

In this section, we give the details of the FASMAC design. Firstly, a standard linear switch 
function s(t) is chosen; then, the unknown bound time-varying uncertainty is transformed 
into a combination of series of orthonormal basis function employing Laguerre functions; 
thirdly, a control law including the approximation of uncertainty and it's approximation 
error compensation is proposed; finally, the concrete expression of the control law is 
obtained through Lyapunov direct method. 
Given referenced position as xd1(t), assume that it's not special limit for the velocity of DC 
motor. Let 

 )()( 12 txtx dd &= ， [ ]Tddd txtxtX )()()( 21=  (4) 

Define error function as 
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where e1(t) denotes position error，and e2(t) denotes velocity error. 
We choose a switch function s(t) as  

 ( ) )()()()( tECtXtXCts d ⋅=−=  (6) 
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where C=[c1 c2] is the constant vector in the Assumption 1. 
According to (5) and (6), we have 
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where 01 ≠c . If )(tE  lies on the surface 0)( =ts , it's easy to guarantee position error e1(t) 

asymptotically stable by holding c1 and c2 both positive or negative, or alternatively, switch 
function (6) is a sliding surface(Young et al., 1999; Hung et al., 1993). In the following we 
will employ the FAT and Lyapunov direct method to derivate a sliding mode adaptive 
control law that guarantees the stability of sliding surface s(t). 

Let )()( tCDtum = , )(ˆ tum  is the on-line approximation of )(tum . Under the Assumption 1, 

there exists a sufficient large N, )(tum  can be transformed into a combination of a set of 

Laguerre function series as 

 )()()( ttZWtu T
m ε+=   (8) 

Using the same Laguerre function series, the on-line approximation of )(tum  can be 

expressed as 

 )(ˆ)(ˆ tZWtu T
m =    (9) 

where )(tε  is the approximation error of Laguerre function series, Ŵ  is the approximation 

of W, and  

 [ ] [ ]TNN
T

NN wwwwwWwwwwwW ˆˆ...ˆˆˆˆ,... 13211321 −− ==  (10) 

 [ ]TN tttZ )()()( 1 φφ L=   (11) 

An excellent property of (8) is its linear parameterization of the time-varying uncertainty 
into a time-varying basis function Z(t) and a time invariant coefficient vector W, where Z(t) 
is known while W is an unknown time invariant constant vector. With this transformation, 
the unknown bound time-varying uncertainty is replaced by a set of unknown constants. 

Therefore, the approximation of )(tum  turns to find the update law for Ŵ  in (9) by 

selecting proper Lyapunov function.  
Define 

 WWW ˆ~
−=  (12) 

Generally, the bound of )(tε  can be made small enough by choosing a sufficient large N, 

and there always exists an error between W and Ŵ when the control system is running, that 

is to say, W
~

only converges at a bound, but not asymptotically. Therefore, the main 

approximation error is )(
~

tZW T  which is the error between )(tZW T  and )(ˆ tZW T  in many 
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practical applications. So, it is necessary to compensate this approximation error online 

when Ŵ is updated. 

Taking the time derivative of Eq. (6) along system trajectory, we have 

 ( ) )()()()()()()( tXCtDUtuBtXACtXCtXCts dd
&&&& −+++=−=  (13) 

On the basis of Eq. (6) and (13), An-Chyau (2001) developed a control law including a time-
varying uncertain term and a signum function of sliding surface, where the uncertain term 
is represented by a set of Fourier series, and then the concrete expression of the control law 
is obtained with direct Lyapunov method. However, the proposed control scheme can't 
compensate the on-line approximation error. Adopting the same approach, we propose a 
control law consisting of an unknown bound time-varying uncertain term same as An-
Chyau (2001) and add another compensative term for compensating the on-line 

approximation error between )(tZW T  and )(ˆ tZW T , and then employ the function 

approximation technique to transform the uncertain term into a combination of a set of 
Laguerre series. According to above idea, the form of the proposed control law can be 
expressed as 
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in which, the first term ( ) ( ))()(
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−
 on the right side is the control term 

based on nominal system model; the second term ( ) )(ˆ
1

tuBC m
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−  is from the approximation 

of unknown bound time-varying uncertainty; the last term ( ) )(
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−

 is a compensative 

control term and )(tur  is the compensation of on-line approximation error between 

)(tZW T  and )(ˆ tZW T ; while ( ) ( ))(sgn
1

tskBC
−

−  which is used to compensate )(tε  is a 

control term including the sign function of sliding surface s(t), and k is a positive constant. 
Substituting (14) into (13), yields 
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From (8)-(12), and (15), we have 

 ( ) )()(sgn)()(
~

)( tutskttZWts r
T +−+= ε&   (16) 

In the following, the on-line update law Ŵ  and expression of ur(t) can be obtained from a 

Lyapunov function about W
~

 and s(t) properly selected, and then concrete expression of 

)(ˆ tum  also can be obtained through (9). Firstly, we propose the FASMAC using the 

following theorem, and prove the asymptotic stability of the system under control law (14).  
Theorem 1.  For DC motor position tracking control system with unknown bound time-
varying uncertainty described as (2), select (6) as the sliding surface s(t). There exists real 
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positive constant 321   ,  , ηηη  and k , when the update law of Ŵ  and compensative term 

( )tur  satisfy Eq. (17), under the control of control law (14), the sliding surface s(t) converges 

to zero and, thus, the position tracking error e1(t) of uncertain system (2) is asymptotically 
stable. The update law can be expressed as  
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−==

&
  (17) 

Proof.  Let 321 ,,, ηηηk  be the positive constants. We choose the Lyapunov function as  
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Take time derivative of Eq. (18), yields 
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Substituting (17) into (19), we obtain 
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If the variation bound of )(tε  can be estimated, that is, there exists a positive constant 

0>δ  such that δε ≤)(t , with the selection of a sufficient large positive constant k, such 

that δ≥k . Then ( ))(
~

),( tWtsV&  can be derived to be 

 ( ) ( ) ( ) 0)()(
~

),( 1
2

13 ≤−−−≤ tsktsWtsV ηδηη&    (21) 

Therefore, it can be easily shown by the Barbalat's lemma (Slotine and Li, 1991) that the 

sliding surface )(ts  converges to zero, and the velocity of convergence can be adjusted by 

choosing the different values of 321 ,,, ηηηk . Moreover, position error )(1 te  of the 

uncertain system (2) is asymptotically stable. 

Remark 1.  Since the approximation error ∑∞

+=
=

1
)()(

Ni ii tzwtε , if a sufficient number of 

basis functions are used, then 0)( ≈tε  in many practical occasions. Because )(
~
tW  is only 
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bounded, the main approximation error using FAT is the error between )(tZW T  and 

)()(ˆ tZtW T . The function of )(tur  in control law (14) is used to compensate for this 

approximation error online, and it is seen in (21) that the additional term ( )2
13 )(tsηη−  is 

from )(tur . 

2.3 Actual experiments and results analysis  

From the procedure of FASMAC design in Section 2.2, the nominal model of the DC motor 
position system should be identified before doing actual experiments. The DC motor 
position model can be seen as a combination of a speed model and an integral. The speed 
model is identified firstly, and then the whole position model can be easily obtained 
through the integral. The positive and negative speed model should be identified separately 
owing to their different parameters in actual DC motor system in the paper. 
The nominal form of DC motor speed model can be obtained from Section 2.1 as 
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There are three parameters needed to identify in (22), Tm，K，U , where K=1/Ke. By testing 

and measuring step response of the DC motor speed system，we obtain the input and 
output data and further identify the three unknown parameters employing curve fitting and 
optimizing techniques with MATLAB. Finally, nominal model of DC motor position system 
with positive and negative speed are obtained, respectively, as 
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Based on (9), (14) and (17), the on-line control law of FASMAC are  

( ) ( ) ( ) ( ) ( ) ( ) )()(sgn)(ˆ)()()(
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With the discussion above, the proposed on-line control strategy can be realized as  

1) Choose proper series number N of Laguerre function. 
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2) Choose proper such parameters of controller as C , 1η , 2η , 3η , k. 

3) Initialize coefficients Ŵ  of Laguerre function series, here we let 

0)0(ˆ =iw ( Ni ,,2,1 L= ). 

4) In every sample step k when system is running, do 

(1) Read system states X(k), calculate reference states Xd(k) and ( )kXd
& . 

(2) Calculate the value of sliding function s(t) according to (6). 

(3) Calculate )(ˆ kW according to (27). 

(4) Calculate )(ˆ kum  and )(kur  according to (26). 

(5) Calculate )(ku  according to (25). 

(6) k = k + 1. 
Return to step (1) in 4) and repeat the on-line operating.  
Fig.2 shows the actual DC motor device, and the control system consists of a pulse width 
modulation (PWM) driver, a microcomputer and a build-in card with A/D and D/A 
channel. The range of digital control signal in this experimental device is in [-2048 2048], and 
the corresponding voltage after the D/A channel ranges from –20 to 20 voltage. The digital 
value of position whose range is in [-180 180] degree can be read from the A/D channel. 
Moreover, the digital value of velocity can also be read from A/D channel directly.  

   

Figure 2.  Actual DC motor experiment device            
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Figure 3.  Reference signal 
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The proposed controller is implemented in a time-interrupt service routine at 10 ms 
sampling period under MS-DOS environment. The reference trajectory is designed to be  

 ( ) ( )tty 0667.02sin150 ×= π     (28) 

which is showed in Fig. 3. The number of terms of Laguerre function series is 8, and after 

several adjustments, the actual parameters of FASMAC are chosen as ]5.010[*10=C , 

11 =η , 12 =η , 63 =η  and 20=k . Besides, to do the comparison with the results of 

FASMAC, experiment of control strategy proposed by An-Chyau (2001) is also implemented 
on the same DC motor system.  
The results of the experiments are shown in Figs. 4-9. Fig.4 shows a comparison of the 
system output tracking errors between the proposed FASMAC and the controller of An-
Chyau. It can be seen that the tracking error under the control of FASMAC mainly lies in [-2, 
2], and only reach -7 or 7 when the direction of DC motor speed is changing, whereas, 
tracking error of An-Chyau's controller lies in [-10, 10] and arrive at peak value of -20 
sometimes. Therefore, the tracking performance of the proposed FASMAC is better than the 
An-Chyau's controller. Fig.5 displays the sliding behaviour of the sliding surface s(t) in our 
control scheme. Fig. 6, Fig.7 and Fig.8 show the total control value u(t), the uncertain control 

term ( ) )(ˆ
1

tuBC m
−

−  and compensative control term ( ) )(
1

tuBC r
−

, respectively. Fig.9 

depicts the approximation of nonlinear friction Uf(t), which can be calculated as 

( ) )(ˆ
1

tuBCU m
−

+ . Fig.7 reveals that the uncertain term undulates at –100 or 100 in all the 

control period except the time of the direction of speed is changing. The main reason is that 
the identified linear nominal model of DC motor system is proper to the actual DC motor 
when the system is running at high speed, while it's not accurate at low speed because of the 
complicated dead zone characteristics caused by uncertain time-varying nonlinear friction, 
especially when the direction of DC motor speed is changing. Therefore, the model error 
between the identified nominal model and the actual system at low speed in peak value of 

uncertain control term ( ) )(ˆ
1

tuBC m
−

−  when speed direction is changing. Since there is a 

compensative control term ( ) )(
1

tuBC r
−

 in control law u(t) in FASMAC, which can 

compensate for the on-line approximation error of nonlinear friction rapidly, the proposed 
controller can still guarantee good performance even when the DC motor is running at low 
speed or its direction is changing, thus, the tracking performance of FASMAC is much better 

than that of An-Chyau. It should be noted that the compensative term )(tur  is almost the 

same as approximation error of nonlinear friction in simulation experiments. 
From the proof of Theorem 1, we can see that the derivative of Lyapunov function (21) 

consists of ( )( )213 tsηη−  and ( )tsk 1η− , which are contributed by compensative control 

term ( ) ( )tuBC r

1−
 and constant control term ( ) ( )( )tskBC sgn

1−
− , respectively. Thus, the 

sliding surface converges rapidly mainly owing to the existent of compensative control term 
when its error is large, and when the error falls to a certain extent, the sliding surface error 
still converges to zero because of the constant control term. 
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Figure 4.  System output tracking error                 
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Figure 5. Behaviour of sliding surface s(t) 

 
 
 
 

-1000

-500

0

500

1000

0 10 20 30Time(sec)

T
o

ta
l 

c
o
n
tr

o
l 

si
g
n
a
l 

(d
ig

)

   

Figure 6. Total control law u(t)                                
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Figure 7. Uncertain term ( ) )(ˆ
1

tuBC m
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Figure 8.  Compensative term ( ) )(
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tuBC r
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Figure 9. Nonlinear friction  Uf(t) 

3. FAT-based Adaptive Sliding Mode Control of SIMO Nonlinear System with 
Time-varying Uncertainty 

In recent years, the usual methods for uncertain systems with specific structure have used in 
adaptive controller design include robust control (Zhou & Ren, 2001; Zhou, 2004; Hu & Liu, 
2004; Wu et al., 2006), back-stepping(Do & Jiang, 2004; Manosa et al., 2005; Wu et al., 2007), 
sliding mode control (Huang & Cheng, 2004a; 2004b; Huang & Kuo, 2001; Chu & Tung, 
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2005; Fang et al., 2006; Chiang et al., 2007), neural network technique (Yang & Calise, 2007; 
Fu & Chai, 2007; Zhou et al., 2007 Tang et al., 2007) and fuzzy method (Hsu & Lin, 2005; 
Huang & Chen, 2006; Liu & Wang, 2007). For instance, combining a linear nominal 
controller with an adaptive compensator, Ruan (2007) and Hovakimyan (2006) realized the 
high performance stabilizing of inverted pendulum with un-modeling nonlinear dynamics. 
Since sliding mode control is robust to uncertainties of system structure and parameters, 
external disturbances and other unexpected factors, when the system lies on the sliding 
surface, it is obtained more and more attention in the control realm (Hung et al., 1993; 
Young et al., 1999). 
At present, many adaptive control methods for nonlinear uncertain system whose uncertainty 
satisfies some conditions (Barmish & Leitmann, 1982; Chen & Huang, 1987) or the bound of 
uncertainty satisfies strict conditions have been developed (L. G. Wu et al., 2006; Z. J. Wu et al., 
2007; Fang et al., 2006; Chiang et al., 2007). These research problems are hotspot in the control 
realm, and some results have been obtained through years of hard work of researchers (Huang 
& Chen, 2004; Chen & Huang, 2005; Huang & Liao, 2006; Liang et al., 2008). These research 
works adopt a common technique named function approximation technique (FAT) despite of 
their different design methods. Utilizing the FAT, the nonlinear time-varying uncertainty can 
be transformed into a finite combination of basis functions, and Lyapunov direct method can 
thus be used to find adaptive laws for updating time-invariant coefficients in the 
approximating series. Using Fourier series, Huang proposed an adaptive sliding control 
strategy for a class of nonlinear system with unknown bound time-varying uncertainty 
satisfying the Dirichlet condition, and further obtained the updating law of coefficients in 
Fourier series by Lyapunov direct method (Chen & Huang, 2005; Huang & Liao, 2006). The 
Section 2 proposed a FAT-based adaptive sliding mode control method. But the above 
mentioned control strategies are only suitable for single input single output (SISO) nonlinear 
systems with certain specific structure, not for SIMO uncertain system. In the second part of 
the chapter we’ll propose a FAT-based adaptive sliding mode control method for SIMO 
nonlinear contol system. 

3.1Problem statement 

Giving the following SIMO uncertain nonlinear system 

 
⎭
⎬
⎫

=
+∆+=

XY
uXBXtXAXAX )()),()((&

   (29) 

where, , ,   ( ) ,   n n nX Y R A X R ×∈ ∈ ( , ) ,  n nA X t R ×∆ ∈  ( ) ,   nB X R u R∈ ∈ , and ),( tXA∆  is 

a time-varying uncertain function matrix. Let 
nRtXDXtXA ∈=∆ ),(),( , then (29) can be 

rewritten as 

 
⎭
⎬
⎫

=
++=

XY

tXDuXBXXAX ),()()(&
  (30) 

The mathematical model of many actual SIMO electro-mechanical nonlinear systems with 

un-modeling dynamics in practical engineering can be described by (30), in which ),( tXD  

is an unmodeling time-varying dynamics. Suppose system (30) satisfies the following 
assumption. 
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Assumption 2. 
nRC ×∈∃ 1

, for nRX ∈∀ , 0)( ≠XCB  exists, and time-varying function 

)(tCD  is piecewise continuous or square integrable in finite time interval. 

Under the Assumption 2, we give a linear sliding function about system error firstly, and 
then transforms the approximation problem of unknown bound time-varying function 

),( tXCD  into the updating of constant coefficient vector by FAT, and design a control law 

)(tu  including approximation of ),( tXCD  and compensation of approximation error, and 

then obtains the concrete expression of updating law of constant coefficient vector and 
compensation of approximation error through Lyapunov direct method, and thus adaptive 

sliding control law )(tu  can be obtained finally. 

3.2 FAT-based sliding mode adaptive controller design 

This section gives the details of design procedure of SIMOAC. Firstly, a linear sliding 
function S(t) is chosen, and then the sliding mode adaptive control law guaranteeing closed-
loop system stability can be obtained through Lyapunov direct method. 

Let the expected state of system (30) is )(tX d , and defining system state error as 

 )()()( tXtXtE d−=   (31) 

Choosing standard sliding function )(tS  as 

 )()( tCEtS =   (32) 

where, 
nRC ×∈ 1

 is constant row vector. 

Let ),()(
1

tXCDtum = . According to the Assumption 2 and FAT, time-varying scalar 

function  )(
1
tum  can be expressed as 

 111 )()(
1

ε+= tZWtu
T

m   (33) 

In (33), 1W  is an unknown n-dimension constant column vector, )(1 tZ  is a known n-

dimension time-varying basis function column vector, 1ε  is a approximation error. The 

essential of FAT is that )(
1
tum  is approximated by means of the approximation of 

coefficient column vector 1W . Let the approximation of )(
1
tum  is denoted by )(ˆ

1
tum , then 

utilizing the same basis function vector, yields 

 )()()(ˆ)(ˆ 111
tutZtWtu c

T
m +=   (34) 

where, )(tuc is the adaptive compensation of approximation error.  

Taking time derivative along system trajectory, and according to (33), yields 

( ) )(),()()()()()( tXCtXDtuXBtXXACtS d
&& −++=  

www.intechopen.com



Frontiers in Adaptive Control 

 

134 

( ) )()(),()()()( tuXCBtXCDtXtXXAC d ++−= &  

 ( ) 111 )()()()()()( ε+++−= tZWtuXCBtXtXXAC T
d
&  (35) 

According to (Liang et al., 2008), the form of the proposed control law can be chosen as 

 ( ) ( )[ ]))(ˆ)()()()()(
1

1
tutXtXXACXCBtu md +−−= − &    (36) 

in which the first term ( ) ( ))()()()(
1

tXtXXACXCB d
&−− −

 of right side of Eq. (36) is the 

control term based on nominal system model, the second one ( ) )(ˆ)(
1

1
tuXCB m

−−  is  the 

approximation of unknown bound time-varying uncertain term )()( tCDtum = . 

Afterwards, a proper Lyapunov function about sliding function )(tS , the error square sum 

performance function and the error of coefficient vector can be constructed, and thus the 

updating law of coefficient vector )(ˆ
1 tW  in uncertainty approximation )(ˆ

1
tum  and concrete 

expression of adaptive compensation )(tuc  for approximation error can be obtained by 

Lyapunov direct method. 

Let )(ˆ)()(
~

111 tWtWtW −= , substituting Eq. (36) into Eq. (35), yields 

 
111 )()()(

~
       

)()(ˆ)()(
11

ε+−=

+−=

tutZtW

tutututS

c

cmm
&

  (37) 

Defining system error square sum performance function )(tf  as 

 )()()( tQEtEtf T=   (38) 

in which, nnRQ ×∈  is a semi-positive definite diagonal constant matrix. 

Taking the time derivative of )(tf  along system trajectory, yields 

 ( ))()()()(2)( tXtXXAQtEtf d
T && −= ( ) )()(2)()()(2 tQDtEtuXQBtE TT ++   (39) 

Let )()()(
2

tQDtEtu T
m = , according to the Assumption 2 and FAT, )(

2
tum  can also be 

expressed as 

 222 )()(
2

ε+= tZWtu
T

m   (40) 

where, 2W  is an unknown n-dimension constant column vector, )(2 tZ  is a known n-

dimension time-varying basis function column vector, 2ε  is the approximation error. 

Utilizing the same basis function, the approximation of )(
2
tum  can also be expressed as 

 )()(ˆ)(ˆ 222
tZtWtu T

m =   (41) 
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Let )(ˆ)()(
~

222 tWtWtW −= . According to (36) and (40), (39) can be rewritten as 

( )( )( ){ )()()()()()(2)(
1

tXtXXACXBXCBIQtEtf d
T && −−=

−
 

 ( ) })()(ˆ)()()( 
21

1
tutuXQBtEXCB mm

T +− −
  (42) 

Let 

 ( )( )( ))()()()()()()(
1

tXtXXACXBXCBIQtEth d
T &−−= −  (43) 

 ( ) )()()()()()(
1

21 XQBtEXCBtftStg T−+= ηη    (44) 

 ( )( ))(ˆ)()(ˆ)()()()()()(
211

1
2 tutZtWXQBtEXCBthtftp m

TT +−= −η 2211 )()( δηδη tftS ++   (45) 

Theorem 2. For the SIMO nonlinear system (30) with unknown bound time-varying 

uncertainty, choosing sliding function ( )S t  defined as (32) and performance function )(tf  

defined as (38), then there exist constant scalar value )7,,1(,0 L=≥ iiη , 01 ≥δ  and 02 ≥δ ， 

when )(ˆ
1 tW
&

， )(ˆ
2 tW
&

 and )(tuc  satisfy (46) and (47), sliding surface 0)( =tS  and the error 

square sum performance function )(tf  of system (2) are stable under the control of (36). 

 )()(/)(ˆ
1311 tZtStW ηη=

&
, )()(/)(ˆ

2422 tZtftW ηη=
&

  (46) 

 ( ))()()()()(/1)( 7
2

65 tStStftptgtuc ηηη +++=   (47) 

Proof: Choosing the Lyapunov function as 

( ) 22
121 )(

4

1
)(

2

1
)(

~
),(

~
),(),( tftStWtWtftSV += η 0)(

~
)(

~

2

1
)(

~
)(

~

2

1
224113 ≥++ tWtWtWtW

TT ηη  (48) 

Taking the time derivative of (48), one yields 

( ))(
~

),(
~

),(),()( 21 tWtWtftSVtV && =  

( )1111 )()()(
~

)( εη +−= tutZtWtS c
T

 

( )( )( ){ )()()()()()()( 
1

2 tXtXXACXBXCBIQtEtf d
T &−−+

−η   

( ) ( ) } )()()()(ˆ)()()(
211

1
tututZtWXQBtEXCB mc

TT +−− −  

   )(ˆ)(
~

)(ˆ)(
~

224113 tWtWtWtW
TT &&

ηη −−−    (49) 

In time-varying scalar function )(tu
im

(i =1，2) defined in (33) and (40), the approximation 

error iε  satisfies 0≥≤ ii δε  only if a sufficient large dimension N is chosen. According to 

(43), (44) and (45), (49) can be rewritten as 

)()()()(ˆ)()()(
~

)(ˆ)()()(
~

)( 242221311 1
tptutgtWtZtftWtWtZtStWtV c

TT +−⎟
⎠
⎞⎜

⎝
⎛ −+⎟

⎠
⎞⎜

⎝
⎛ −≤

&&& ηηηη   (50) 
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Substituting (46) and (47) into (50), one yields 

 0)()()()( 7
2

65 ≤−−−≤ tStStftV ηηη&   (51) 

According to Lyapunov stability theorem, sliding surface 0)( =tS  and the error square sum 

performance function )(tf  of system (30) are stable.□ 

With the discussion above, the proposed on-line control strategy can be realized as 
1. According to the characteristic of actual control plant, choosing proper basis function 

series and the series number N, such as Fourier series and Laguerre series, and then 

initializing the coefficient vector ],,,[ 21 ni wwwW L= ( 2,1=i ).  

2. Choosing proper weight vector 
nRC ×∈ 1

, matrix nn
nn RqqqdiagQ ×∈= ),,,( 2211 L  

and learning rate 0>jη ，( 7,,1L=j ), where 0>iiq ，( ni ,,1L= ). 

3. In every sample step k when the system is running, do 

4. Reading system current states )(kX , and obtaining error )()()( kXkXkE d−= , and 

then calculating )(kS  and )(kf  according to (32) and (38). 

5. Calculating coefficient increment )(ˆ kWi∆ 㧔 2,1=i 㧕according to (36), that is 

sTkZkSkW )()(/)(ˆ
1311 ηη=∆ , sTkZkfkW )()(/)(ˆ

2422 ηη=∆ , sT  is sample 

period. 

6. Calculating )(ˆ
2
kum  according to (41), that is ( ) )()(ˆ)1(ˆ)(ˆ 2222

kZkWkWku
T

m ∆+−=  

7. Calculating )(),(),( kpkgkh  according to (43), (44) and (45). 

8. Calculating )(kuc  according to (47). 

9. Calculating time-varying uncertainty term )(ˆ
1
kum  according to (34), that is 

( ) )()()(ˆ)1(ˆ)(ˆ 111
kukZkWkWku ci

T

m +∆+−= . 

10. Calculating sliding mode adaptive control law )(ku  according to (36). 

11. 1+= kk . 

Return to step 4 and repeat the on-line operating. 

3.3 Simulation experiment and result analysis on a double inverted pendulum 

This section applies the adaptive controller proposed to the stabilizing control of a double 
inverted pendulum simulating system, and analyzes the simulation result through the 
comparison with the result of the linear quadratic regulator (LQR). 
Fig. 10 depicts the system diagram of the double inverted pendulum. The system is mainly 
composed of a car, two rods linked each other, optical-electrical encoder coders measuring 
displacement information, an alternating current electric motor driving the car which is 
linked with a belt. In actual system operatinon the real-time number control signal can be 
obtained according to current states of the double inverted pendulum, and then this signal 
can be used to drive the motor to control, and finally the car traverses along the rail. 

www.intechopen.com



Function Approximation-based Sliding Mode Adaptive Control  
for Time-varying Uncertain Nonlinear Systems 

 

137 
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Figure 10. System diagram of double inverted pendulum 

According to Fig.10, the mathematical model of the double inverted pendulum can be 

established by adopting Lagrange method. Choosing system states as xx =1 ， 12 θ=x ， 

23 θ=x  ， xx &=4 ， 15 θ&=x ， 26 θ&=x , and let [ ]TxxxxxxX 654321= , 

then the linear state equation of the double inverted pendulum nearby equilibrium 

[ ]TX 0000000 =  is  

 
CXY

BuAXX

=

+=&
   (52) 
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Applying physical parameters in Table 1, the nominal model of the pendulum for 
simulation can be obtained as 
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&     (53) 

According to (53), using the LQR algorithm named lqr.m in MATLAB and choosing 

0.1=r , ( )906.32.79036180diagQ = , the feedback control matrix K can be 

obtained as ]21.8457-   2.8233    13.8673   241.7258-  183.9220  13.4164[=K . 

Symbol Description Parameter Symbol Description Parameter 

m1 
Quality of lower 

rod 
0.1033kg l1 

Length of lower 
rod 

0.06m 

m2 
Quality of upper 

rod 
0.2066kg l2 

Length of upper 
rod 

0.12m 

M Quality of car 0.5kg g 
Acceleration of 

gravity 
9.8000 
N/m2 

Table 1. Physical parameters of double inverted pendulum 

Furthermore, the nonlinear virtual prototype of the double inverted pendulum can be 
established utilizing the SimMechanics toolbox in MATLAB, which depicted in Fig. 11. 
According to the nominal mathematical model of double inverted pendulum expressed as 
(53), firstly, choosing Laguerre series as basis functions with series number N=8, and 
controller parameters as ]21.8457-   2.8233    13.8673   241.7258-  183.9220  13.4164[=C , 

])1.01.01.0221([diagQ = , 5.01 =η , 5.02 =η , 13 =η , 14 =η , 1.05 =η ,  

56 =η , 17 =η , then the proposed SIMOAC can be realized in S-function form in 

MATLAB. Finally, nonlinear stabilizing control simulating system of the double inverted 
pendulum depicted in Fig. 12 can be established through the series connection of virtual 
prototype and S-function controller in simulink environment of MATLAB.  
Afterwards, the stabilizing control simulation experiments on double inverted pendulum 
can be conduced applying LQR algorithm and the proposed SIMOAC strategy in the 
simulating system in Fig.12, respectively. 

The simulation results under the same initial condition [ ]TX 0000873.00873.000 −−=  

are depicted in Fig. 13-18, in which Fig. 13 depicts the car displacement the error of the 
double inverted pendulum system under the control of SIMOAC and LQR. It can be seen 
clearly that the steady state displacement error is about -0.0250 meter under the control of 
SIMOAC, while it’s about -0.1115 meter under the control of LQR. This shows the 
predominant performance of the proposed SIMOAC. Besides, Fig. 14 and Fig. 15 depict the 
angular displacement error of two pendulum rods, respectively, Fig. 16 depicts the adaptive 
control signal, Fig. 17 depicts on-line approximation of un-modeling nonlinear dynamics of 
the double inverted pendulum, Fig. 18 depicts the behavior of sliding function s(t). 
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Figure 11. Virtual prototype of double inverted pendulum 
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Figure12. Nonlinear stabilizing control simulating system of double inverted pendulum 
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Figure 13. Displacement error of car               
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Figure 14. Angular displacement error of the lower rod 
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Figure 15. Angular displacement error of the upper rod        
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Figure 16. Adaptive control signal 
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Figure 18. Behavior of sliding function s(t) 

4. Conclusions 

In this chapter, two sliding mode adaptive control strategies have been proposed for SISO and 
SIMO systems with unknown bound time-varying uncertainty respectively. Firstly, for a 
typical SISO system of position tracking in DC motor with unknown bound time-varying dead 
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zone uncertainty, a novel sliding mode adaptive controller is proposed with the techniques of 
sliding mode and function approximation using Laguerre function series. Actual experiments 
of the proposed controller are implemented on the DC motor experimental device, and the 
experiment results demonstrate that the proposed controller can compensate the error of 
nonlinear friction rapidly. Then, we further proposed a new sliding model adaptive control 
strategy for the SIMO systems. Only if the uncertainty satisfies piecewise continuous condition 
or is square integrable in finite time interval, then it can be transformed into a finite 
combination of orthonormal basis functions. The basis function series can be chosen as Fourier 
series, Laguerre series or even neural networks. The on-line updating law of coefficient vector 
in basis functions series and the concrete expression of approximation error compensation are 
obtained using the basic principle of sliding mode control and the Lyapunov direct method. 
Finally, the proposed control strategy is applied to the stabilizing control simulating 
experiment on a double inverted pendulum in simulink environment in MALTAB. The 
comparison of simulation experimental results of SIMOAC with LQR shows the predominant 
control performance of the proposed SIMOAC for nonlinear SIMO system with unknown 
bound time-varying uncertainty. 
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