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Abstract

The nanoporosity in zeolite ZSM-5 was analyzed as a function of SiO
2
/Al

2
O

3
 molar ratio 

(MR). The internal pore structure was studied by high-resolution adsorption. Surface 
areas, microporous volume, characteristic energy of sorption, and pore-size distributions 
were calculated from N

2
 sorption isotherms by the BET, Langmuir, t-method of de Boer, 

α
S
-plot of Sing, direct comparative plots of Lee, Newnham, Dubinin-Astakhov, differen-

tial adsorption curves, and nonlocal density functional theory methods. The results indi-
cated that MR dependence in these zeolites caused structural defects through micropore 
opening and widening as well as the emergence of further slit-like mesopores.

Keywords: ZSM-5 zeolite, sorption, nanopore measurements

1. Introduction

The nanoporous, ordered, and three-dimensional structure of zeolites makes them materials 

of great practical importance in the hierarchy. The broad use of microporous zeolites (pore 

diameter w < 2 nm) makes them very important in very specific areas, such as acid catalysts 
and adsorbents, as well as in refining processes and the basic petrochemical industry due to 
their unique properties both in activity and in selectivity [1]. The great majority of zeolites 

possess two types of porosity: primary and secondary. Primary porosity with a well-defined 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



size is associated with the crystalline structure of the zeolite and fundamentally depends on 

its structure type. Imperfections, including defects occurring during the growth of zeolite 

crystals, as well as defects generated by various treatments, cause secondary porosity, that 

is, the presence of mesopores (2 < w < 50 nm) and macropores (w > 50 nm) [2]. The second-

ary porosity differs from the framework porosity, since it does not directly depend on the 
crystalline structure of the zeolite. Taken together, these comprise the texture of a sorbent. 

The primary porosity is characterized by а microporous volume (W
0
) with pore size as seen 

in the zeolite structure; secondary—by the pore-size distribution (PSD) and the external sur-

face area (A
E
). These parameters are usually calculated from nitrogen sorption isotherms [3]. 

Many, but not all, catalysts are porous materials, in which most of the surface area is internal. 

Sometimes it is convenient to talk about the structure and texture of such materials. The struc-

ture is defined both by the distribution in space of atoms or ions in the material part of the 
catalyst and by the distribution on the surface. The texture is defined by the detailed geometry 
of the void space in the catalyst particles. Porosity is a concept related to texture and refers to 

the porous space in the material. However, with zeolites, most of the porosity is determined 

by the crystal structure. To accurately describe the texture of the porous catalyst, a very large 

number of parameters will be required. With respect to porous solids, the surface associated 

with the pores can be called the internal surface. Since the availability of pores can depend on 

the ratio of the dimensions of the channel and molecules, the extent of the accessible internal 

surface may depend on the size of the molecules contained in the mixture and may be differ-

ent for various components of the mixture (molecular sieve effect) [4].

ZSM-5 and, its purely siliceous analog, silicalite (both have a structural code “MFI” in accor-

dance with the IZA database) are among the most widely studied zeolites. MFI is one of 

the most versatile and commercially significant zeolites; it is widely used in the petroleum 
industry to convert methanol into complex hydrocarbons in methanol-to-gasoline processes, 

as well as in the alkylation of aromatic compounds and their subsequent separation [5]. The 

microporous network of this zeolite consists of intersecting straight and sinusoidal channels. 

The straight channels have pore openings defined by a cross-section of 10-member rings of 
0.54–0.57 nm and sinusoidal channels by elliptic pores of 0.51–0.54 nm in cross-section. The 

intersections are cavities of 0.8 nm in diameter [6] (see Figure 1).

A detailed study on the different types of adsorption sites that constitute the structural skel-
eton of this zeolite was carried out by Cho et al. [7]. They classified the sorption sites into three 
types: (1) the S

S
 sites located in straight channels; (2) the S

Z
 sites located in zigzag (sinusoidal) 

channels; and, finally, (3) the S
I
 sites located at the intersections (Figure 2). One of the most 

important catalytic properties of ZSM-5 is its shape selectivity. This is a consequence of its 

primary microporous structure and is the basis for most of its successful applications [8].

Another important parameter that allows to adjust the zeolite properties is their chemical 

composition, that is, their SiO
2
/Al

2
O

3
 molar ratio (MR). The amount of Al in the framework 

is proportional to the number of exchangeable cations, H+ among others, which affects both 
Lewis and Brønsted acidity. The main interactions of the sorbate molecules in the pores of 

the zeolite are realized through the oxygen atoms of the lattice and extra-framework cat-
ions. Microporosity and secondary porosity in zeolites and similar materials can be deter-

mined from the low- and medium-pressure regions of the sorption isotherm using various 

approaches [3]. The shape-selective activity of MFI can be attributed to the presence of active 
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sites in micropores. It was shown that the shape-selective properties of zeolites may be greatly 

reduced due to the presence of active sites in the secondary porosity with a wide distribution 

of the pore diameter and on the external surface of their crystallites, so zeolites with a large 

outer surface area are less selective than those with fewer imperfections.

The presence of molecules that blocks the pores of the zeolite or a partial destruction of its 

structure can drastically decrease its activity by reducing the microporous volume accessi-

ble for the reactants. The effect that the external surface area of ZSM-5 zeolite crystals used 

Figure 1. ZSM-5 zeolite structure. The dimensions of the pore channels are in nm. I, S, and Z are S
I
, S

S,
 and S

Z
 sites, 

respectively.

Figure 2. Front (A), right (B), and top (C) views of a “ball and stick” ZSM-5 (MFI) model; crosscutting of zigzag channels 
(D) of an “ionic radii” model; all from the IZA page: http://izasc.ethz.ch/fmi/xsl/IZA-SC/ftc_3d.php.
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for shape-selective reactions causes, was reported previously [9]. Some authors in reported 

works have used the α
S
-plot of Sing as alternative method to evaluate the external surface area 

and the true intra-crystalline capacity [10].

The aim of this study was to accurately describe the dependence of all the different types of 
ZSM-5 porosity on MR and to show which methods are best suited for measuring them in 

each range. This will allow us to develop an approach to the application of various existing 

methods of texture characterization for samples of zeolite with mixed porosity.

2. Methodology

A set of ZSM-5 zeolites in their sodium form (Na-ZSM-5) with a SiO
2
/Al

2
O

3
 molar ratio (MR) 

varying from 30 to 120 was synthesized using a template of tetrapropylammonium bromide 

(TPABr) following the methodology reported by Ghiaci et al. [11]. Through the text and fig-

ures, these samples are called Z, followed by the MR value (30, 70, 95, or 120), for example, 

Z30 means an Na-ZSM-5 sample with an MR equal to 30. For comparison, a set of Na-ZSM-5 

samples supplied by TOSOH Co., Japan, with MR 20, 23.3, and 30 were also studied. These 

TOSOH samples are called ZT, followed by MR value. A reference macroporous solid mate-

rial required to estimate micropore volumes was obtained from the Tehuacan area in the state 

of Puebla, Mexico. This reference substrate was identified by X-ray powder diffraction (XRD) 
as α-SiO

2
. X-ray powder diffraction of ZSM-5 samples was obtained in the 2θ ranges of 5–50 

degrees using diffractometer Bruker D8, using nickel-filtered Cu Kα (λ = 0.154 nm) radia-

tion. Scanning Electron Microscopy images were collected from a JEOL JSM-6610LV electron 

microscope with tungsten filament and an electron detector operated at 20 kV. N
2
 adsorption 

isotherms were measured at the boiling point of liquid N
2
 (76.4 K at the 2200 m altitude of 

Puebla City, México) in the interval of relative pressures, p/p0 extending from 10−6 to 1 in an 

automatic volumetric adsorption system (Quantachrome AutoSorb-1C) in order to determine 

the textural parameters of ZSM-5 samples in addition to the evaluation of microporosity, 

which was analyzed through the determination of pore-size distributions calculated by the 

differential adsorption curves (DAC), Dubinin-Astakhov equation (D-A), and nonlocal den-

sity functional theory (NLDFT) approaches.

3. Results and discussion

3.1. X-ray analysis

The XRD patterns of all samples (Figure 3) are typical of ZSM-5 zeolites [12]. In general, all the 

samples showed reasonably sharp diffraction patterns, indicating good crystallinity. Please 
note that commercial TOSOH samples and those prepared in the laboratory are nearly identi-

cal. The main peaks appear at the following 2θ angles: 8.0°, 8.9°, 9.8°, 14.0°, 14.8°, 20.9°, 23.2°, 
23.9°, 24.5°, 29.4°, and 30.0° (Figure 3). Most of these peaks are not resolved; usually, one peak 

is a superposition of several closely located reflections. For example, the [−101], [011], and 
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[101] reflections positioned at 2θ = 7.92°, 7.93°, and 8.01°, respectively, gave rise to a total peak 
at ~8.0. The most important difference between the standard XRD pattern and the observed 
for both sets of samples is the relative intensity of the various peaks, but a detailed discus-

sion of the changes in the structure of ZSM-5 due to MR variations and synthesis conditions 

is beyond the scope of the present work and will be discussed elsewhere. Three peaks that 

appear at 2θ = 16.0°, 26.4°, and 30.9° in the ZT23.3 sample (marked with asterisks) are most 
probably associated with an unidentified impurity.

3.2. Scanning electronic microscopy

In Figure 4, it can be seen that the effect of the templates used during the synthesis process affects 
the morphology of the zeolite crystals obtained. Thus, for example, in Figure 4(a) and (b) cor-

responding to zeolites ZT-20 and ZT-23.3, it can be seen that the crystals obtained have lath-like 

shapes. In the case of the ZT-30 and ZT-23.3 zeolites, clusters of spheroidal crystals are observed 

where the crystals of the zeolites coexist, as seen in Figure 4(c) and (d). Finally, the SEM images 

of the zeolites ZT-30 and ZT-23.3 do not exhibit a predominant or defined geometry, as seen in 
Figure 4(e) and (f) [13].

3.3. High-resolution adsorption

N
2
 sorption isotherms at 77 K for both sets of samples are shown in Figure 5 as sorbed volume 

at standard temperature and pressure (STP) in cm3 per gram of zeolite versus p/p0. Figure 5 

shows the sorption isotherms using a logarithmic p/p0 scale in the range of 105 ≤ p/p0 ≤ 1. The 
hysteresis loops shown by ZSM-5 zeolites are of the Type H3 or H4, characteristic of capillary 

condensation in the slit-like pores attributed to intercrystallite adsorption within aggregates. 
Table 1 gives the values of some important parameters obtained from the analysis of isotherms. 

Figure 3. X-ray diffraction patterns.

Estimation of Nanoporosity of ZSM-5 Zeolites as Hierarchical Materials
http://dx.doi.org/10.5772/intechopen.73624

77



All the N
2
 isotherms are of Type I according to the IUPAC classification [14]. They indicate: (1) 

a high sorption at a very low relative pressure caused by the enhanced sorption potential of the 

ZSM-5 channel system and (2) formation of a monolayer at 0.1 ≤ p/p0 ≤ 0.8.

3.3.1. External surface area

To calculate the volume of the micropores from the sorption data, De Boer t-plots (thickness 

plots) and Harkins-Jura estimates are given in Table 2. An accurate estimate of these values 

can be influenced by the choice of the standard isotherm of a nonporous material selected to 
estimate the statistical thickness of the adsorbed layer (t) and the range of t values considered 

for the linear fitting [15] (Figure 6).

3.3.2. Microporosity

The total micropore volumes in cm3 g−1 for all the samples are given in Table 2. These values 

were calculated from: (1) α
S
-plots, (2) t-plots, and (3) the D-A equation (in this case, optimiz-

ing the values of the parameters n and E
0
). The ratio of the micropore-filling capacity to the 

total sorption uptake, W
0
/VΣ, a parameter that somehow indicates the degree of crystallinity of 

the zeolite being analyzed, is also included in Table 2 [16]. For the construction of the α
S
 and 

direct comparison plots, the adsorption volumes of the α-quartz without thermal processing 

Figure 4. SEM images of ZSM-5 zeolite samples with different forms and crystal sizes: (a) ZT-20, (b) ZT-23.3, (c) ZT-30, 
(d) ZT23.3, (e) Z-30, and (f) Z-120.

Zeolites and Their Applications78



were used as reference values; α-quartz was chosen as a reference material, since adsorption 
on these substrata occurs similarly as on a flat surface; access to the underlying micropo-

rous structure is impeded by water molecules in the pore openings. The standard nitrogen 

Figure 5. N
2
 sorption isotherms at 77 K. For this figure and throughout, all samples supplied by TOSOH (ZT series) are 

designated by filled symbols, while samples synthesized for the present work (Z series) are designated by open symbols. 
The selection of symbols (circles, squares, etc.) is constant for all figures. Note that the ordinate scales are not always 
the same.

ZSM-5 zeolite Si Al Na O Si/Al

Na-20 45.72 4.5 2.65 47.315 10.16

Na-23.3 47.313 3.61 2.58 46.496 13.10

Na-30 48.893 2.866 1.326 46.906 17.06

30 46.483 4.156 2.383 46.976 11.18

70 48.82 0.826 0.823 49.560 56.68

95 52.986 1.45 0.91 44.656 36.54

120 50.766 0.96 0.66 47.61 52.88

Table 1. ZSM-5 zeolite chemical composition (mass %, EDS).
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Figure 6. High-resolution N
2
 sorption isotherms using a logarithmic p/p0 scale. The graphs are divided in (a) and (b) 

parts with different scales due to the presence of higher values for most of the measured parameters for ZT30 and Z120 
for this and the following figures.

isotherms [17] are very similar to the adsorption isotherms of α-quartz along the adsorption 
branch up to a relative pressure of about 0.8. Since the same material was used as a reference 

for the α
S
 direct comparison plots, similar microporous volumes were obtained from all of 

these methods. However, t-plots give slightly different results because the reference isotherm 
corresponds to de Boer equation.

Sample A
SL

 (m2 g−1) A
SB

 (m2 g−1) A
E
 (m2 g−1) VΣ (cm3 g−1) BET p/p0 

range

C
B

dp (nm) W
0
/VΣ

ZT20 287.6 224.5 13.39 0.217 0.09–0.27 −56 3.866 33.179

ZT23.3 459.5 375.4 33.32 0.390 0.05–0.17 −244 4.155 26.153

ZT30 399.4 313.9 91.27 0.812 0.05–0.19 −202 1.034 25.738

Z30 533.6 409.0 19.72 0.129 0.05–0.19 −343 1.261 68.992

Z70 491.2 349.2 47.12 0.162 0.05–0.24 −110 1.855 63.580

Z95 562.3 397.0 83.41 0.207 0.05–0.27 −107 2.085 54.106

Z120 1784 1314 279.30 0.812 0.05–0.21 −276 2.471 54.451

Table 2. Adsorption structural parameters of ZSM-5 zeolites.
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A
SL

 is the Langmuir-specific surface area; A
SB

 is the BET-specific surface area; A
E
 is the external 

surface area; VΣ is the volume sorbed at p/p0 = 0.95; p/p0 is the range used for the BET plot; C
B
 

is the BET constant; dp is average particle diameter; and W
0
/VΣ is the degree of crystallinity.

3.3.2.1. High-resolution α
S
-plots

The filling of macro, meso, and micropores can be proved by analyzing high-resolution α
S
-

plots starting at low relative pressures, that is, 10−5; see Figure 7. There are some significant 
differences in the form of α

S
-plots as a function of MR, mainly for Z120. A pronounced dis-

tortion of the isotherm shape is observed at a very low p/p0, which can be explained by the 

enhancement of the sorbent-sorbate interaction in the pores of molecular dimensions, that 

is, the process of micropore filling [18]. This type of α
S
-plot is characteristic of microporous 

adsorbents having a wide range of pore sizes and results in two or more separate stages of 

micropore filling. Figure 7 shows three linear ranges. Region III, with α
S
 > 1.6, corresponds to 

sorption in the mesopores and adsorption on the external surface of the zeolite. Extrapolation 

of the line to the ordinate at p/p0 = 0 allows to estimate the total microporous volume W
0
. 

Region II with α
S
 = 0.6–1.6 can be a sorption in the porosity created by partial removal of the 

constituents of the zeolite matrix with the formation of structural defects. This type of poros-

ity is typically developed by acid leaching. Region I, with α
S
 < 0.25, is due to the stages of final 

filling of the volume of ultramicroporous elliptical sinusoidal channels (0.55 × 0.51 nm) and 
nearly circular straight channels (0.54 × 0.56 nm). This behavior is mainly due to the combined 

Figure 7. t-plots for the N
2
 sorption isotherms.
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filling of channels. However, this region is related to the filling of the ultramicropores corre-

sponding to the narrowing and to the initial stages of channel filling. Zones of this α
S
-plot for 

Z120 appear because the substratum has mesopores, supermicropores, and uniform micro-

pores with elliptical and nearly circular free openings. The diameter of these channels corre-

sponds to approximately 1–3 diameters of molecules. The micropore filling regions obtained 
through high-resolution plots for all samples are presented in Table 2 (Figures 8 and 9).

3.3.3. Pore-size distributions calculated by the DAC, D-A, and NLDFT approaches

3.3.3.1. DAC method

Calculation of pore-size distributions from desorption branches of N
2
 isotherms using the dif-

ferential adsorption curves (DAC) [19] method yields bimodal distributions (Figure 10), with 

the thickness of the pore size of ca. 0.36 and 0.55 nm for all samples. The plots are unimodal 

with the pore ca. 0.36–0.40 nm. This approach correctly describes the essential qualitative 

features of N
2
 sorption in the microporous zeolites, such as ZSM-5, that is, pores in the range 

of 0.3–0.6 nm. The results of these estimates are shown in Table 3.

3.3.3.2. D-A method

The pore-size distributions obtained by the D-A method [20] are shown in Figure 11. The 

average pore diameter, seen as a maxima on the curves by this method, varies according to 

Figure 8. High resolution α
S
-plot for N

2
 sorption on ZT30 and Z120, showing (a) the ultramicropore and supermicropore 

volume regions and (b) the supermicropore linear region.
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Figure 9. Comparative plots of the N
2
 sorption isotherms versus adsorption using an α-SiO

2
 reference.

Figure 10. Micropore size distribution calculated from N
2
 sorption isotherms using the DAC approach.
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Sample α
S

DAC t D-A V
meso

E
0
 (kJ mol−1) n

ZT20 0.072 0.108 0.106 0.110 0.145 26.50 1

ZT23.3 0.102 0.131 0.147 0.165 0.288 20.50 1.3

ZT30 0.209 0.313 0.294 0.335 0.603 15.50 1.1

Z30 0.089 0.106 0.129 0.141 0.040 20.50 1.1

Z70 0.103 0.120 0.144 0.141 0.059 18.50 1

Z95 0.112 0.129 0.149 0.186 0.095 16 1

Z120 0.354 0.529 0.466 0.582 0.458 15.50 1

Table 3. Total micropore and mesopore volumes (W
0
, V

meso
, cm3 g−1) by various methods of analysis.

MR. Table 3 lists the optimized W
0
, n, and E

0
 values using the D-A equation. The filling of 

elliptical channels of ZSM-5 with a length of 1.98 nm (width 0.51 × 0.57 nm) and connected 
through a zigzag path with a length of 0.665 nm (width 0.54) is the main contribution to 

the volume adsorbed. Figure 11 shows ZSM-5 pore-size distributions obtained by the D-A 

method, assuming a cylindrical microporous channel; these plots provide average diameters 

very similar to the width of the porous cavities of the zeolites ZSM-5 (5th column of Table 3). 

The D-A results shown in Table 2 suggest that MR in ZSM-5 zeolites promotes the opening 

and widening of their micropores. Nevertheless, the microporous volumes calculated from 

Figure 11. Micropore size distribution calculated from N
2
 adsorption on the ZSM-5 zeolites through D-A approach.
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the D-A equation are somewhat different from the microporous volumes calculated by the 
α

S
 and t methods. The fact that these D-A microporous volumes are always larger than the 

volumes calculated by the other methods suggests that the uptake at low relative pressures 

should be corrected for mesopore adsorption. This correction will result in a lower extrapo-

lated value of the micropore volume from the D-A equation, and better agreement with other 
(α

S
 and t) methods will be reached. It can be seen there that the D-A treatment, while overesti-

mating somehow the pore sizes, still provides an approximate estimate of the micropore vol-

umes and their corresponding pore sizes. The E
0
 values obtained by the D-A method decrease 

as MR increases: ZT20 > ZT23.3 > ZT30; Z30 > Z70 > Z95 > Z120 (Table 2). These values reflect 

Figure 12. (a and b) NLDFT pore-size distribution showing the supermicropore region; (a′ and b′) close-up of the NLDFT 
pore-size distribution showing the supermicropore region on ZSM-5 zeolites.
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the dependence of this parameter on the SiO
2
/Al

2
O

3
 ratio. Due to the crystalline nature of the 

zeolites, the force field created by the oxygen atoms in their structure must have symmetrical 
properties. Therefore, the E

0
 values are affected by the aluminum content, which has changed 

some atoms of the zeolite framework in the channels to be displaced, as well as changing 

the sorption potential. From the comparison of the E
0
 values obtained for these zeolites, this 

parameter is influenced not only by the pore sizes. Consequently, the Al content and the 
geometry of the pores have modified the electric field within the pores of the zeolites and thus 
have influenced the characteristic sorption energy.

3.3.3.3. Nonlocal density functional theory method

Nonlocal density functional theory (NLDFT) was developed to take into account pore sizes in 

voids of well-defined geometry [21]. With this approach, the molecules adsorbed in the pores 

tend to be packaged in accordance with the adhesion forces established with the substrate 

(i.e. attractive forces between adsorptive and adsorbent molecules) and interactions with the 
remaining fluid molecules. The molar density of the adsorbed phase varies as a function of 
pore size. The adsorption isotherm is calculated from a given pore shape (spherical, cylindri-

cal, slit-like, etc.), and the experimental isotherm is given as the sum of a series of individual 

single-pore isotherms multiplied by their relative abundance over a range of pore sizes. In the 

present case, the microporous structure of ZSM-5 zeolite can be approximated as a bundle of 

parallel cylindrical pores and the nature of the adsorbent can be assumed as that of the silica. In 

this way, the distribution of supermicroporous zeolitic adsorbents can be calculated from high-

resolution adsorption isotherms. The results of the analysis of the size of the supermicropores 

using the NLDFT method are shown in Figure 12 and are listed in Table 4. The pore-size distri-

butions obtained from the N
2
 isotherms using the NLDFT cylindrical pore model yield bimodal 

distributions with pore size characteristics of 1.8 and 5.0 nm. It is observed from this figure 

Sample DAC D-A NLDFT

ZT20 0.568 0.55 1.8/5.0

ZT23.3 — 0.57 1.8/5.0

ZT30 0.564 0.64 1.8

Z30 0.561 0.59 1.8/4.9

Z70 0.379/0.56 0.62 1.8/5.0

Z95 0.379/0.560 0.65 1.8/4.8

Z120 0.364/0.560/0.590 0.66 1.8/4.9

DAC is the differential curves of comparison plots method, D-A represents the Dubinin-Astakhov equation, and NLDFT 
is the nonlocal density functional approach.

Table 4. Pore diameter (nm) by different methods of analysis.
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that the intensity of the distribution at 5.0 nm is poorly developed; however, it is represented 

in all distributions. A possible explanation is that the structures are not homogeneous and that 

it contains a significant amount of slit-like pores and pores of other irregular shapes. Based on 
the NLDFT method, one can get an idea about the actual widths and pore sizes of the supermi-

cropore voids existing in ZSM-5 zeolites for which high-resolution N
2
 isotherms are available.

α
S
 is Sing’s α

S
 method, DAC is direct comparison plots, t is the t-plot employing the de Boer 

adsorption equation, D-A represents the Dubinin-Astakhov equation, V
meso

 is calculated by 

subtracting W0αS from VΣ (Table 2), E
0
 is the characteristic energy of sorption, and n is the 

order of the sorption energy distribution from the Dubinin-Astakhov equation.

4. Conclusions

The obtained samples exhibit reasonable diffraction patterns, indicative of good crystallin-

ity. The most important difference between the standard XRD pattern and those observed 
for both sets of samples is the relative intensity of the various peaks. The ZSM-5 samples 

synthesized are composed of crystals with different geometry in a range of sizes 5–10 μm. N
2
 

isotherms have been measured, starting at a relative pressure of 10−5 and up to 1. To evalu-

ate the texture properties of ZSM-5 zeolites, BET, Langmuir, Ast, surface areas, and external 

surface area were used. A significant amount of micropores was found in all ZSM-5 zeolites. 
Such methods as α

S
, t, and comparative plots (DAC) were used to estimate micropores in 

all zeolites. Nanopore size distributions (NSD) obtained from the N
2
 adsorption at 77 K are 

in perfect agreement with the type of present pores for all the samples, that is, micropores, 

mesopores, and macropores. Thus, adsorption is probably the most sensitive tool for evaluat-

ing quality and structural properties of the microporous materials such as ZSM-5 zeolites. To 

characterize these nanomaterials, a combination of comparative methods based on reference 

isotherms on well-characterized ZSM-5 zeolites is recommended, as well as the results of 

DAC, D-A, and the NLDFT.
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