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Abstract

Epithelial ovarian cancer (EOC) is a disease that causes 140,000 deaths every year. Nerve 
growth factor (NGF) and its high affinity receptor TRKA play important roles in fol-
licular maturation, follicle-stimulating hormone (FSH) receptor acquisition and ovu-
lation in normal ovary. Also, NGF has many roles in EOC cells: increasing survival, 
proliferation, cyclooxigenase-2 (COX-2), vascular endothelial growth factor (VEGF) and 
metalloproteinase ADAM17 expression. Besides, NGF inhibits calreticulin transloca-
tion from the endoplasmic reticulum to cell surface, possibly diminishing the efficacy 
of immunogenic therapies in EOC. Additionally, NGF acts as an angiogenic factor by 
a direct stimulation of migration, differentiation and proliferation of endothelial cells. 
Among the numerous factors actually described to be important in many types of can-
cer, including EOC, are the microRNAs (miRs). Indeed, it has been found that miR-143 
is downregulate in EOC, which correlates with an increase of COX-2; concomitantly, 
NGF increases COX-2 as mentioned. Furthermore, NGF increases miR-222 and its target 
is the metalloproteinase inhibitor TIMP3, increasing the ADAM17 function. Also, NGF 
increases cMYC transcription factor in EOC, which decreases miR-23 levels regulating 
proteins involved in cell cycle and tumor growth. Therefore, NGF/TRKA signaling path-
ways alter the expression of many proteins and deregulate miRs in EOC, leading to the 
progression of this cancer.
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1. Introduction

Ovarian cancer is a deadly disease that causes around 225,000 new cases and 140,000 deaths 

every year, remaining a major health problem worldwide [1]. Moreover, epithelial ovarian 
cancer (EOC) is more common in elderly women who are no longer experiencing reproduc-

tive cycles [1]. This cancer is characterized by the non-specificity of its symptoms and the lack 
of efficacy for therapies at advanced stages. Therefore, EOC is diagnosed at late stages and has 
a low overall 5-year survival below 45% [2].

A key process for EOC growth and metastasis is angiogenesis, the formation of new blood 
vessels from pre-existing vasculature. It is a complex process regulated by the balance 
between pro- and anti-angiogenic factors [3]. In the normal reproductive ovary, angiogenesis 
is a physiological process that occurs during every cycle in a controlled manner [4]. In can-

cer, pro-angiogenic factors are overexpressed and angiogenic regulation is lost. Among these 
factors, neurotrophins have an important role in controlling angiogenesis in the normal and 
neoplastic ovary, being also implicated in the regulation of other physiological and pathologi-
cal processes [5]. The roles of neurotrophins in the normal ovary and in EOC are discussed in 
the next sections.

2. Roles of nerve growth factor in the normal ovary and in epithelial 

ovarian cancer

Neurotrophins are small polypeptides that were first discovered as a growth factor on the 
nervous system, subsequently named nerve growth factor (NGF) [6]. Besides NGF, there are 
four other neurotrophins: brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), 
neurotrophin 4/5 (NT-4/5) and neurotrophin 6 (NT-6). Besides the nervous system, most of 
these peptides are also found in several other systems and organs, including the ovary [7].

To induce a biological effect, neurotrophins need to interact with cell-surface receptors. All 
neurotrophins interact with two different types of receptors: the p75 neurotrophin recep-

tor (p75NTR) and a member of the tyrosine receptor kinase (TRK) family. All neurotrophins 
can bind to p75NTR with low affinity, but every different TRK receptor can bind to a specific 
neurotrophin with high affinity [8]. The TRK family is constituted by three members: TRKA, 
TRKB and TRKC. NGF binds to TRKA; BDNF and NT4/5 bind to TRKB; and NT-3 binds to 
TRKC. Moreover, alternative splicing can generate different TRK isoforms and some of them 
can initiate signal transduction pathways [9]. On the other hand, p75NTR and also TRK receptors 
can dimerize, forming either homodimers or interacting with each other (heterodimers) [10].

Nerve growth factor can induce cell survival on several systems, including the nervous, car-

diovascular, immune, endocrine and reproductive systems [7]. Upon binding to TRKA, the 
receptor homodimerizes and autophosphorylates its tyrosine residues, inducing signaling 
pathways that induce trophic and anti-apoptotic effects [11]; NGF deficiency, conversely, acti-
vates apoptosis (Figure 1) [12]. The NGF/p75NTR pathway can lead to proliferation, survival or 
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cell death, depending on the cell context, availability of adaptors and expression of co-recep-

tors. While NGF can trigger apoptosis through the activation of the Jun N-terminal Kinase 
(JNK)/c-Jun death pathway, it can also activate the canonical NFκB signaling cascade, which 
promotes cell survival by increasing anti-apoptotic molecules levels [13]. The receptor p75NTR 

can also enhance TRKA phosphorylation by increasing the TRKA ability to bind to NGF [14].

Neurotrophins are involved in normal ovarian development and functioning, regulating fol-
licular assembly, folliculogenesis and ovulation. Concerning ovarian development, p75NTR is 

expressed in the stromal cells surrounding the oocytes of human fetuses previously and dur-

ing follicular assembly [15]. NGF and TRKA also seem to be necessary for follicular assembly, 
because mutations on these genes reduce the number of primordial follicles in mice [16]. 

Figure 1. Several NGF-related signaling pathways are involved in epithelial ovarian cancer. NGF, a protein whose levels 

are elevated in EOC, activates several signaling pathways leading to carcinogenesis. Upon binding to its high affinity 
receptor, TRKA, NGF activates the MAPKs and PI3K/Akt signaling pathways, inducing cell survival, proliferation, 
migration and invasion. Through TRKA activation, NGF also increases VEGF, COX-2 and PGE 2 levels, which promotes 
angiogenesis and inflammation, respectively. Besides, NGF inhibits CRT translocation from the endoplasmic reticulum 
to the cell surface, potentially inhibiting anticancer immune responses. NGF’s low affinity receptor, p75NTR, is also 

present in ovarian cancer cells. This receptor can be cleaved by ADAM17, a cell surface metalloproteinase, producing an 
intracellular domain (p75-ICD) that could be responsible for the regulation of different processes through transcription 
control. Furthermore, p75-ICD can interact with TRKA, increasing its activity. Several microRNAs (miRNAs) are 
regulated by NGF, and these miRNAs could be responsible for NGF-mediated effects.
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Besides, NGF increases follicle-stimulating hormone receptor (FSHR) protein levels and the 
ovary response to FSH, collaborating in the growth of pre-antral follicles of 2-day-old rat 
ovaries [17]. Neurotrophins also participate in folliculogenesis, since they are involved in the 

differentiation of primordial follicles into primary follicles and in the development of second-

ary follicles from primary follicles [18].

In humans, NGF is present in the oocyte and granulosa cells from follicles at primordial and 
secondary stages, suggesting that NGF is necessary for follicle maturation after the primor-

dial stage [16]. p75NTR, on the other hand, is not detected on human stromal cells after birth, 
but theca cells from growing follicles do express this protein [15]. Concerning TRKA, this 
receptor is found in granulosa cells and oocytes of neonatal mice ovaries; its expression is 
higher on primary follicles and diminishes with folliculogenesis [15].

In human antral follicles, both granulosa and theca cells express NGF and TRKA. Furthermore, 
NGF has a role in ovulation, since in human ovarian granulosa cells, NGF increases FSHR 
and estradiol secretion [19]. Nerve growth factor contributes to ovulation by decreasing 
gap junctions, stimulating the proliferation of theca cells and inducing the release of prosta-

glandin E2 (PGE2), which acts on granulosa cells and is necessary for successful ovulation 
[20, 21]. Indeed, PGE2 is a paracrine mediator of luteinizing hormone (LH), and LH induces 
an increase of intrafollicular levels of PGE2, controlling key molecular events of ovulation, 
including the facilitation of follicle rupture and the release of the oocyte [22].

Angiogenesis is a key process in the normal ovarian functioning, necessary for the growth 
of ovarian follicles and the development and maintenance of the corpus luteum [22]. The 
expression and secretion of the vascular endothelial growth factor (VEGF), an important 
proangiogenic molecule, is key for normal adult reproductive function, and its expression 
is induced by the activation of FSHR and the LH receptor (LHR) [23]. VEGF production is 

also stimulated by NGF in cultures of human granulosa cells through the MAPK and PI3K/
AKT signaling pathways [23]. Besides, NGF can directly regulate angiogenesis by acting on 
endothelial cells [24]. Thus, NGF participates in normal ovarian angiogenesis through its high 
affinity receptor TRKA.

While NGF plays a physiological role in the ovary, regulating its development and ovulation, 
it can also participate in cancer-related processes, particularly through its TRKA receptor [25], 

as seen in Figure 1. In cancer cells, these pathways are linked to proliferation, survival, migra-

tion and invasiveness. Interestingly, whilst in normal epithelial ovarian cells NGF and TRKA 
expression is only found on a small percentage of cells, both of these proteins are present in 
EOC tissues [26]. The active or phosphorylated form of TRKA is highly elevated in EOC com-

pared to normal tissues, making it a possible marker for poor prognosis [27].

The NGF/TRKA signaling pathway has also been linked to several transduction cascades that 
stimulate cancer progression, including VEGF production and secretion [26], the COX2/PGE2 
inflammatory response [28], ADAM17 activity [29] and alterations on calreticulin (CRT) sub-

cellular localization [30]. All the molecules mentioned above have a role in the development 
or progression of ovarian cancer by altering processes such as inflammation, angiogenesis, 
immune evasion, survival and metastasis.
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Angiogenesis is a vital process necessary for solid tumors to grow, develop and metasta-

size [31]. Several molecules are known to promote angiogenesis, in several cancer tissues 
including EOC; however, VEGF is considered the main angiogenic factor [32]. Its expression 
is controlled by the hypoxia-inducing factor (HIF-1α), a transcription factor that is produced 
in cells with low oxygen levels, a condition typically found on cancer cells from solid tumors 
[33]. VEGF induces angiogenesis by binding to its tyrosine kinase receptors located on the 
surface of endothelial cells, promoting their proliferation, migration and increasing their per-

meability [34]. In EOC explants, NGF induces an increase of VEGF levels through TRKA acti-
vation, increasing VEGF secretion [26]. Also, the NGF-conditioned medium secreted by EOC 
explants and by A2780 cells (an immortalized EOC cell line) induces proliferation, migration 
and differentiation of human endothelial Eahy926 cells [27]. Importantly, NGF, total TRKA 
and p-TRKA molecules are present in endothelial cells from cancer tissues. Therefore, NGF 
acts on EOC cells by inducing VEGF expression, besides its direct angiogenic effect by acting 
on the TRKA receptor found on endothelial cells [26, 35].

Moreover, given the role of NGF in the promotion of ovulation through the increase of PGE2, 
this neurotrophin has been linked to pro-inflammatory responses in the ovary. Interestingly, 
cancer has been linked to chronic inflammation, since different inflammatory pathways are 
activated in tumor tissues, including pathways involving cyclooxygenase (COX) proteins 
[36]. PGE2 is synthesized by members of the COX family: COX-1 and COX-2 [37]. COX-2 

expression is inducible by external stimuli, and several molecules found in cancer, including 
cytokines, growth factors, oncogenes and chemicals, can induce its expression [37]. As for 
PGE2, this prostaglandin induces cell growth, angiogenesis, invasiveness, inhibition of apop-

tosis and inflammation [38]. Importantly, non-steroidal anti-inflammatory drugs (NSAIDs), 
which act by selectively binding to COX-1 or COX-2 and inhibiting the arachidonic acid path-

way, have preventive and inhibitory effects on carcinogenesis, highlighting the importance 
of COX-2 in cancer [39]. Moreover, COX-2 levels have been found to be elevated in several 
types of cancer, including colon, gastric, breast, pancreatic, bladder and prostate cancer [40]. 

Therefore, COX-2 has become a focus for cancer research as a potential therapeutic target [41].

In EOC, COX-2 levels have been found to be elevated in human ovarian cancer samples 
compared to normal ovaries [28]. In theca cells from bovine ovaries, NFG increases COX-2 
and PGE2 levels [42] and on prostate cancer cell lines, PGE2 promotes VEGF secretion [43]. 

Therefore, our research group explored a possible connection between NGF, COX-2, PGE2 
and VEGF. In vitro experiments on A2780 epithelial ovarian cancer cells showed that NGF 
induces COX-2 expression and increases PGE2 levels, suggesting that NGF could stimulate 
inflammatory processes [28].

Other proteins that are involved in inflammatory responses are metalloproteinases, including 
a disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) [44]. ADAM17 
is expressed in granulosa cells, being important in ovary signaling during oocyte develop-

ment and follicular fate determination [45].

ADAM17 is ubiquitously expressed; it is primarily active during inflammation and in cancer 
tissues; therefore, ADAM17 has become another focus for cancer research [46]. In lung can-

cer, for instance, ADAM17 protein levels are increased, and ADAM17 inhibitors aid  cancer 
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 treatment when the tumor has developed resistance mechanisms [47]. In breast cancer, 
ADAM17 protein levels are also overexpressed, which has been linked to tumor progression 
and metastasis [48]. Additionally, ADAM17 levels and activity have also been found to be 
elevated in colorectal, pancreatic, kidney, prostate and ovarian cancer [46].

An important ADAM17 target is TRKA, where its dimerization with p75NTR favors ADAM17 
activation, which in turn induces p75NTR cleavage [49] through γ-secretase, resulting in a cyto-

plasmic fragment (p75-ICD) that can bind to the intracellular domain of TRKA, increasing 
TRKA signaling activity [50]. In human ovarian cancer samples, p75NTR levels are lower com-

pared to normal ovarian tissues. In A2780 cells, ADAM17 cleaves p75NTR, possibly decreasing 
p75 anticancer effects. The p75-ICD, on the other hand, increases TRKA activation, potentially 
inducing pro-carcinogenic processes. Besides, NGF stimulation activates TRKA, ADAM17 
and γ-secretase, reducing p75NTR levels and increasing p75-CTF and p75-ICD levels, favoring 
cell survival [29]. Also, there is evidence that suggests that p75-ICD could act as a transcrip-

tion regulator, enhancing TRKA cancer activity [51].

2.1. NGF effect on calreticulin subcellular localization: potential consequences for 
immunotherapy

Cancer cells are exposed to higher levels of endoplasmic reticulum (ER) stress, since they are 
exposed to stressful conditions such as hypoxia, nutrient deprivation and pH changes, among 
others [52]. In order to adjust to these changes, cancer cells activate the unfolded protein 
response (UPR), composed of three branches initiated by three proteins: IRE1α, PERK and 
ATF6 and sensors of ER stress [53]. In this context, calreticulin (CRT), a chaperone resident 
of the endoplasmic reticulum, plays a role in the adaptation of cancer cells to changes in the 
microenvironment [54]. CRT, a multifunctional, buffering and ubiquitous protein, is mainly 
involved in protein folding and the maintenance of calcium homeostasis; as a chaperone, CRT 
participates in protein folding quality control [54]. Under conditions of ER stress, calreticulin 
levels increase to restore the cell to homeostasis [55]. CRT protein levels are elevated in differ-

ent cancer tissues, including EOC [37, 65], and while this increase could be associated with an 
adaptation to ER stress, CRT expression has also been linked to proliferation, metastasis, inva-

sion and angiogenesis [56]. Moreover, in EOC cells, NGF induces an increase of CRT levels, 
which could be associated with the acquirement of carcinogenic properties [30, 57].

Importantly, despite the pro-carcinogenic effects of CRT, when this protein is found in the 
cell surface it can induce an anti-immune response against cancer cells [58]. In human ovar-

ian cancer cells, our research group found that mitoxantrone, a direct ER stress inducer, can 
trigger CRT translocation from the ER to the cell surface [30]. Previous studies have shown 
that ER stress is a necessary step for CRT transport to the cell surface, and concordantly, in 
EOC cells, CRT translocation was accompanied by activation of the UPR protein PERK and 
its substrate eIF2α [59].

Interestingly, several reports show that NGF can inhibit the effects of ER stress, which could 
hinder cells’ ability to translocate CRT from the ER to the cell surface [60–62]. Indeed, when 
A2780 cells were incubated with both NGF and mitoxantrone, CRT levels on the cell surface 
were diminished compared to cells stimulated with mitoxantrone alone [30]. Therefore, an 
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anticancer immune therapy based on drugs that induce CRT translocation from the ER to the 
cell surface could have limited efficiency in ovarian cancer patients, since NGF levels inhibit 
CRT translocation.

As described above in EOC, NGF is involved in many processes such as cellular survival, 
proliferation, angiogenesis and response to therapy. NGF could be regulating these processes 
through microRNA modulation; therefore, it is important to describe the role of microRNAs 
in EOC and its relation with NGF.

3. Role of microRNAs (miRs) in the progression of ovarian cancer 

and their relation with nerve growth factor

New targets of NGF and its receptor TRKA include various microRNAs (miRs). Since the 
1990s, deregulation of miRs has become important in several pathological processes, includ-

ing several types of cancer [63]. Currently, miRs could be used as new biomarkers and/or for 
therapy in various diseases [64]. Particularly in ovarian cancer some miRs are downregulated 
or upregulated [65], and NGF and its receptor TRKA could be implicated in the deregulation 
of some miRs.

MicroRNAs are the biggest family of non-coding RNAs; they are ~22-nucleotides (nts) long 
and regulate mRNAs post-transcriptionally [66]. The first step on miR biogenesis is the syn-

thesis of a long primary miR (pri-miR) by an RNA polymerase II. Then, the pri-miR is cleaved, 
producing a pre-miR [67] that is transported to the cytoplasm to be enzymatically cleaved 
in its loop structure, releasing a double-strand miR called duplex [68]. This duplex has two 
strands, one called “mature” or “guide” miR and the other named “passenger”, which is 
released and degraded [69]. Mature miR has ~22 nts and binds to the three-prime untrans-

lated region (3′-UTR) of a target mRNA in order to regulate protein expression. This regula-

tion depends on miR-mRNA complementary: total complementarity of miR with its mRNA 
target is a signal to cleave or degrade the mRNA. On the other hand, partial complementarily 
induces deadenylation of the mRNA target (facilitating its degradation) or inhibition of its 
translation [70]. In normal cells, microRNAs have an important role maintaining their nor-

mal functioning; however, a deregulation in their expression can lead to cellular alterations. 
Most studies concerning miR roles in pathologies evaluate whether there are changes on miR 
expression; therefore, miR targets are still being described. Regarding these targets, one miR 
has several targets, meaning that one miR can be involved in the development of different 
pathologies.

Cancer development involves miR deregulation. Cancer-related miRs are divided in two 
groups: oncogenic (oncomiR) and tumor suppressor (oncosuppressor) miRs; oncomirs reg-

ulate the mRNA of tumor suppressor genes, while oncosuppressors control the mRNA of 
oncogenes. Both of these types of miRs are normally in equilibrium; however, during car-

cinogenesis, they exhibit a deregulation on their expression [71]. One miR can regulate the 
same mRNA targets in different types of cancer, which makes them an attractive target for the 
development of new therapies.
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Besides their potential as therapeutic targets, currently, miRs’ profiles are being described in 
order to obtain more accurate and reliable biomarkers for cancer development and/or pro-

gression [64]; in EOC, several miRs have been found to be upregulated [72].

Interestingly, it has been found that eight miRs could be regulating 89% of the miR-associated 
genes [73]. Thus, to produce a more accurate clinical diagnosis, it would be beneficial to have 
miR profiles as biological markers.

EOC development and progression is regulated by several miRs. OncomiRs and tumor sup-

pressor miRs modulate different processes of the hallmarks of cancer, such as proliferation, 
angiogenesis, migration, invasion, survival and apoptosis, among others (Table 1 summa-

rizes the most important miRs involved in different cancers, including EOC).

As discussed above, NGF is overexpressed in EOC and it has a significant role in the progres-

sion of this disease [35]. Interestingly, studies show that NGF could regulate the expression of 
some miRs. Most of these studies have been done in PC12 cells: in these cells, NGF stimula-

tion increases the expression of several miRs [74].

Importantly, in EOC, miR-143 is downregulated [75], which is correlated with an increase of 

COX-2 levels [76]. As stated in the previous section, NGF increases COX-2 levels [28]. It also 
decreases the expression of miR-143 in PC12 cells [74]. Therefore, in EOC, the NGF-mediated 
COX-2 increase could be regulated through miR-143. Another miR regulated by NGF is miR-
222 [77], which targets a metalloproteinase inhibitor (TIMP3) [78]. TIMP3 inhibits ADAM17 
function [79]; then, NGF could increase miR-222 in order to decrease TIMP3 levels, allow-

ing the ADAM17 activity. Consequently, NGF regulation of miR-143 and miR-222 could be 
important for EOC development, through the regulation of COX-2 levels and ADAM17 activ-

ity, respectively (summarized in Table 2).

miR Regulation Cancer Targets References

Let-7 family ↓ Lung, hepatocellular, breast and 
ovarian

RAS, HMGA2, cyclin D2, 
c-myc

[83–86]

miR-17-92 ↑ Myeloma, breast, gastric and colon 
cancer

BIM, E2F1 PTEN [85, 87–89]

miR-21 ↑ Oral, colon, breast, glioma, ovarian and 
cervical cancer

PTEN, DKK2, PDCD4, 
TGFbR2

[85, 90–93]

miR-23a/b ↓ Colon, pancreatic and ovarian cancer MAP3K1, Cyclin G1, 
RRAS2, TGFβR2

[72, 82, 94, 95]

miR-122 ↓ Hepatocellular cancer Wnt1, TCF4, Cyclin G1, 
B-catenin

[84, 96]

miR-143 ↓ Gastric cancer COX2 [97]

miR-125 
family

↑ Renal cell carcinoma, endometrial and 
breast cancer

ERBB2, P53INP1, HDAC5 [85, 98–100]

↓ Ovarian cancer SET [101]

One miR can be deregulated in different types of cancer; simultaneously, several miRs can be deregulated in one type 
of cancer. Some examples are described in the table, including oncomiRs and tumor suppressor miRs. miRs can have a 
dual role. A few of their mRNA targets are also depicted.

Table 1. List of miRs and some of their targets de-regulated in cancer.
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Besides, in EOC, an increase of NGF levels induces the expression of c-MYC transcription fac-

tor [80], and c-MYC downregulates the miR-23b expression [81]. This miR levels decrease in 
EOC, and we described that after NGF stimulation, EOC cells diminish miR-23b levels [80]. 

Therefore, in this cancer, NGF could reduce miR-23b levels through c-Myc. miR-23b targets 
cell cycle and tumor growth proteins, regulating cyclin-G1 [82] and SP-1 transcription factor 
[81], respectively.

4. Conclusion

Solid scientific evidences indicate that NGF has important roles in the progression of EOC 
by promoting the expression or activation of several proteins involved in the different car-

cinogenic processes, including cell proliferation, angiogenesis and in therapy resistance. For 

instance, NGF interaction with its TRKA receptor can activate AKT and ERK signaling, pro-

moting cell proliferation and survival. TRKA activation by NGF also increases COX-2 and 
PGE2 levels, contributing to inflammatory processes, which are important to cancer progres-

sion. Besides, NGF can act on the ADAM17 metalloproteinase, which cuts the p75NTR receptor 

in EOC cells, leaving an intracellular fragment that can activate transcription and that can 
interact with TRKA, increasing its carcinogenic effects. Furthermore, NGF could modulate 
the immune response, since it can reduce CRT translocation from the endoplasmic reticulum 
to the cell membrane, reducing cancer cells’ recognition by immune cells.

Additionally, it is relevant to point out that recent reports describe how NGF regulates the 
expression of different miRs, which in turn could affect the translation of protein participants 
of the abovementioned processes. Some examples include miR-143, whose levels are down-

regulated EOC and correlate with an increase of COX-2 levels. Another miR regulated by 
NGF is miR-222, which targets the metalloproteinase inhibitor TIMP3, an ADAM17 inhibi-
tor. Furthermore, NGF stimulation reduces miR-23b levels through c-Myc, targeting the cell 
cycle and tumor growth proteins. Therefore, there is evidence to suggest that NGF-dependent 
miR regulation could lead to tumor development. Nevertheless, further studies are needed to 
confirm NGF’s role in EOC; therefore, it is important to evaluate new miRs associated with 
EOC. These findings could result in new biomarkers used for diagnosis or target molecules 
that could allow the development of new therapies.

NGF-related miR Regulation Cancer References

miR-92a ↑ Neuroblastoma [102]

miR-21 ↑ Pheocromocitoma [103]

miR-221/222 ↑ Pheocromocitoma [77]

miR-23b ↓ Ovarian cancer [80]

miR-143 ↓ Pheocromocitoma [75, 76]

NGF stimulation regulates miRs in these cancers through the upregulation of several miRs, including miR-92a, miR-21 
and miR-221/222, while it downregulates other miRs, such as miR-23b and miR-143.

Table 2. List of miRs regulated by NGF.
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Abbreviations

ADAM17 a disintegrin and metalloproteinase domain-containing protein 17

COX cyclooxygenase

CRT calreticulin

EOC epithelial ovarian cancer

ER endoplasmic reticulum

FSH follicle-stimulating hormone

FSHR follicle-stimulating hormone receptor

LH luteinizing hormone

LHR luteinizing hormone receptor

miR micro-RNA

NGF nerve growth factor

Nts nucleotides

p75NTR p75 neurotrophin receptor

PGE2 prostaglandin E2

TRK tyrosine receptor kinase

VEGF vascular endothelial growth factor
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