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Abstract

The antioxidant properties of dimethylformamide (DMF) depend on its interference 
with the hydroxyl-radical-transduction pathway. Diabetes is a risk factor of cerebral 
ischaemia (CI), and both entities are associated with oxidative stress (OS). We evalu-
ated DMF’s effects on CI in non-diabetic rats (NDRs) and in diabetic rats (DRs). One 
hour after CI, the animals were divided into two treatment groups (300 μl subcutane-
ous): either DMF or isotonic saline solution. Treatment effects were analysed in NDRs or 
DRs without CI. Eight hours after CI, a neurophysiologic score (NS) was determined; CI 
and OS biomarkers were measured in the ischaemic cerebral hemisphere. Infarct/oedema 
volumes were measured on dyed brain slices. DMF reduced infarct volume in NDRs 
and DRs but only improved the NS in DRs. Basal concentrations of all the biomarkers 
were similar in the NDRs and DRs. Metalloproteinase 9 (MMP9) did not change with 
DMF. Malondialdehyde (MDA) increased with CI, and DMF only reduced it in DRs. 
RAGE, nitrite/nitrate and nitrotyrosine increased with CI only in DRs (all prevented by 
DMF). We conclude that DMF’s benefits on CI were greater in the DRs due to a higher 
susceptibility of diabetic animals to the OS produced by CI. The results open a new hori-
zon in CI treatment since DMF has not been investigated before.

Keywords: cerebral ischaemia, diabetes, oxidative stress, dimethylformamide, 
antioxidant
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1. Introduction

Stroke is one of the leading causes of death and disability worldwide [1]. To date, thrombolysis 

is the only approved therapy for acute stroke, but the window of time for treatment is short 

(3–4 h after a stroke). There is an associated risk of haemorrhagic transformation with throm-

bolysis, which increases the morbidity and mortality of ischaemic stroke [2], and the efficacy 
of this treatment is small. There is an obvious need for pursuing new treatment strategies to 

address these deficiencies. Being diabetic is an important risk of suffering a stroke [3]. Oxidative 

stress (OS) has been associated with both diabetes [4] and stroke [5, 6]. Some antioxidants have 

shown beneficial effects in animal models of diabetes [7]. However, exogenous antioxidant 

effects on humans are difficult to evaluate. Indeed, the long-term ingestion of antioxidants 
included in one’s diet seems to provide beneficial health effects [8, 9], whereas there is still some 

controversy with respect to the usefulness of long-term antioxidant supplements [10].

Most of the positive effects of antioxidants on stroke models are the result of prophylactic strate-

gies (treatment administered before stroke) [11]. The applicability of such approaches in humans 

yields dubious results because, although there are risk factors that could identify stroke-suscep-

tible patients, it is virtually impossible to predict who would actually suffer a stroke.

N-N-dimethylformamide (DMF) is an amphipathic solvent significantly miscible with water 
and most organic solvents. It has been shown that DMF significantly protected against neu-

ronal damage produced by dopamine or hydrogen peroxide. Even though the results were 
attributed to an increase in antioxidant enzymes [12], it seems that DMF interferes with the 

signal transduction pathway originated by the hydroxyl radical, which includes changes in 

permeability and ion exchange in the different compartments of mitochondria [13]. Moreover, 

DMF seems to have anti-ageing effects associated with protein homeostasis, which are inde-

pendent of its antioxidant properties [14].

Signal transduction mediated by free radicals (including the hydroxyl radical) acts as a dou-

ble-edge sword. It could be harmful (i.e. oxidative damage to biomolecules—proteins, lipids, 

RNA/DNA-) or beneficial (leading to the synthesis of antioxidant enzymes through nuclear 
factor kappa B activation) [10]. Free radicals generated during cerebral ischaemia (a first wave 
within minutes followed by a second wave shortly thereafter) participate in the cascade of 

events generating neuronal damage, which includes changes in mitochondria function [6]. 

We postulate that signal transduction mediated by the hydroxyl radical (one of those free 

radicals liberated during cerebral ischaemia) is one of the harmful events in cerebral isch-

aemia, and DMF would reduce such ischaemic damage. Therefore, the goal of this study was 

to precisely investigate the effects of a single dose of DMF, administered 1 h after induced 
cerebral ischaemia in rats.

2. Material and methods

The Institutional Ethical Committee approved the present work.
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2.1. Diabetes model

Type 1 diabetes mellitus was induced in 4-week old male Wistar rats (79.7 ± 1.8 g), through the 
intraperitoneal (ip) administration of streptozotocin (STZ, 75 mg/kg, Sigma St. Louis, USA). 

Diabetes was confirmed 3 days later by the onset of hyperglycaemia (>200 mg/dL). A control 
group (same characteristics, non-diabetic) was also maintained during the experiment. All the 

animals were fed Purina chow and water ad libitum and kept in light-darkness cycles of 12×12 

h. The evolution of diabetes was evaluated by: (1) weighing the rats weekly and comparing 

the weights of the diabetic and the control animals and (2) measuring glycaemia and glucosyl-

ated haemoglobin at the end of the experiment.

2.2. Cerebral ischaemia model

Six weeks after diabetes induction, cerebral ischaemia was produced in diabetic as well as the 

control animals by slightly modifying the model reported by De Cristóbal et al. [15]. In short, 

the animals were anaesthetised through intramuscular administration of an anaesthesia cock-

tail containing acepromazine (5 mg/kg), ketamine (5 mg/kg) and butorphanol (13 mg/kg). The 

right carotid and the middle cerebral arteries were permanently ligated. One hour later the 

animals were randomly divided into two treatment groups (eight control and eight diabetic 

animals per group).

2.3. Experimental groups

1. Isotonic saline solution (ISS, 300 μl) administered subcutaneously (sc)

2. DMF (300 μl, equivalent to 0.9 g/kg, Sigma, St. Louis, USA) also administered sc

2.4. Neurophysiological test

Eight hours after cerebral ischaemia was induced, the neurological signs were scored as 
follows (sum of all): consciousness (0–3, where 3 was the response only after stimulation), 

decreased grip of the left forelimb when the tail was pulled (0–3, 3 was complete gripping), 

failure to grab a bar with the left forelimb (0–3, 0 was strongly grabbing with both forelimbs, 3  

was no grabbing at all with the left forelimb), and walking in a circle to the left side (0–3, 3  

was walking spontaneously in circles). If the animal did not respond to any stimulus, the 

score was 12 points.

2.5. Infarct and oedema evaluation

The animals were anaesthetised (pentobarbital, 75 mg/kg, ip). A blood sample (at least 5 ml) was 

taken from the heart and anticoagulated with ethylenediaminetetraacetic acid (EDTA, Sigma, 

St. Louis, USA). The blood glucose and glucosylated haemoglobin were measured. The animals 

were decapitated after taking the blood samples, and each brain was immediately extracted and 

sliced (2 mm slices). The slices were incubated in a 1% triphenyltetrazolium chloride (Sigma, St. 

Louis, USA)/ISS solution, at 37°C for 5 min). Both sides of each slice were photographed against 
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a millimetre paper background and measured using the ImageJ software (National Institutes 
of Health, USA). Areas were integrated as volume in mm3 and infarct volume quantified as a 
percentage of the right hemisphere volume. Oedema was calculated (in percentage of the left 

brain hemisphere) by subtracting the left from the right hemisphere volumes.

2.6. Stroke and oxidative stress biomarkers’ evaluation

Two groups of animals (diabetic or non-diabetic, n = 12 per group) submitted to cerebral isch-

aemia (treatments—6 per group—and sacrifice as mentioned earlier) were used to measure 
biomarkers. Three hundred milligrams of the right hemispheres were homogenised in 1.5 ml 

of phosphate saline buffer (Sigma, St. Louis, USA; 0.1 M, pH 7.4). The homogenised tissue 
was centrifuged (13,000 ×g, 4°C, 10 min). The supernatant was isolated and kept at −80°C until 
measurement of the biomarkers was taken (within a month of taking the samples). Ten mil-

ligrams of the right hemisphere was homogenised in 0.5 ml of malondialdehyde (MDA) lysis 

buffer (Abcam, MA, USA) for the measurement of MDA.

Biomarkers evaluated were:

1. Metalloproteinase 9 (MMP 9): It was evaluated through ELISA using a commercial kit 
(R&D Systems, MN, USA). The concentrations were expressed in ng/ml per mg of protein 
(proteins were measured using a commercial kit from Cayman Chemical Co, MI, USA).

2. Advanced glycation end-product receptor (RAGE) was measured through ELISA using a 
commercial kit (Abcam MA, USA). The concentrations were expressed in ng/ml per mg of 

protein.

3. Nitrite/nitrate (NO
2
/NO

3
 ratios, an indirect measurement of nitric oxide) were measured 

by the modified Griess method, using a commercial kit (Cayman Chemical Co, MI, USA). 
Results were expressed as μM per mg of protein.

4. Nitrotyrosine (NT) was measured through ELISA using a commercial kit (Abcam MA, 
USA). The concentrations were expressed in ng/ml per mg of protein.

5. MDA was measured using a commercial kit (Abcam MA, USA). The results were expressed 

in nmol per mg of protein.

To establish reference values, and evaluate the effects of DMF, the biomarkers were measured 
in the brains of four non-diabetic and four diabetic rats that were not submitted to cerebral 
ischaemia.

2.7. Statistical analysis

The Kolmogorov-Smirnov test was used to analyse the normality of distribution. The unpaired 

“t” test was used to compare glycaemia and glucosylated haemoglobin between the non-

diabetic and diabetic animals. The two-way ANOVA test (Bonferroni post-hoc) was used to 
analyse the time-course of weights (6 weeks, diabetic and non-diabetic animals). The one-way 
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ANOVA test (Tukey post-hoc) was used to compare biomarkers (diabetic, non-diabetic, with 
or without ischaemia). The neurophysiological score was analysed using the Kruskal-Wallis 

test (Dunn’s multiple comparison post-hoc). Data are shown as the mean ± standard error of 
the mean (SEM). The p < 0.05 was considered significant.

3. Results

3.1. Metabolic evolution

Non-diabetic and diabetic animals had the same weights at the beginning of the experiment 
(81.6 ± 0.8 g vs. 78.8 ± 2.7 g, respectively, p > 0.05). The time-course of their weights is shown 
in Figure 1. There was a significant difference beginning the third week after diabetes induc-

tion. Glycaemia at the beginning of the experiment (after diabetes induction) was higher in 
the diabetic animals compared with the non-diabetic animals (456.1 ± 2.3 mg/dL vs. 91.1 ± 
2.3 mg/dL respectively, p < 0.0001). At the end of the experiment both glycaemia and glucosyl-
ated haemoglobin were also different: glycaemia 88.7 ± 3.0 mg/dL versus 467.5 ± 12.6 mg/dL 
(non-diabetic vs. diabetic, p < 0.0001); glucosylated haemoglobin 4.3 ± 0.1% versus 9.3 ± 0.1% 
(non-diabetic vs. diabetic, p < 0.0001).

3.2. Cerebral ischaemia evaluation

3.2.1. Neurophysiological score

The neurophysiological score is shown in Figure 2. DMF significantly (p < 0.05) improves the 
neurophysiological scores only in diabetic rats.

Figure 1. Time-course of the weight. The time-course of the weight was significantly different. Control (non-diabetic 
rats) gained more weight than diabetic animals during the experiment. The media + SEM are shown. Zero was at the 
beginning of the experiment, when the rats were 4 weeks old.
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3.2.2. Infarct and oedema volume

DMF significantly decreased the infarct volume in both non-diabetic (p = 0.02, Figure 3) and 

diabetic (p = 0.007) rats. However, oedema was the same in non-diabetic rats compared to 

diabetic rats and was not changed by DMF (not shown). Figure 4 shows an example of the 

slices, dyed with triphenyltetrazolium.

3.2.3. Cerebral ischaemia and stroke biomarkers

Results are shown in Figures 5–9. The results in non-diabetic (Control, C) rats are shown in 

the left panels whereas results in the diabetic (D) animals are in the right panels. The figures 

Figure 3. Infarct volume: this figure shows the infarct volume (expressed as percentage of the right hemisphere) in non-
diabetic (C, panel A) and diabetic (D, panel B) animals. Dimethylformamide (DMF) significantly reduced infarct volume 
in non-diabetic as well as in diabetic rats.

Figure 2. Neurophysiological scores: the neurophysiological score was similar in the control (non-diabetic) rats without 
(C) or with dimethylformamide treatment (C + DMF), as well as in the diabetic animals without DMF treatment (D). 

DMF significantly decreased the score in diabetic rats treated with DMF (D + DMF). The media + SEM are shown.
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show the basal data (without ischaemia) of animals without (C, D) or with treatment (C + DMF, 

D + DMF). Animals with ischaemia and without treatment are represented as C + I or 

D + I. The animals with ischaemia and treatment are shown as C + I + DMF or D + I + DM.

Figure 4. Both sides of the slices of a representative animal per group are shown: C (non-diabetic without treatment), 
C + DMF (non-diabetic treated with DMF), D (diabetic without treatment), D + DMF (diabetic treated with DMF). The 

infarct shows no colour (in white), whereas the tissue that is not affected has a red colour. It is noticeable that animals 
treated with DMF (control and diabetic) have a smaller infarct.

Figure 5. Concentration of metalloproteinase 9 (MMP9) in the brain: The concentration of MMP9 showed significant 
incremental increases in the brains of diabetic (D, panel B) animals with ischaemia with or without DMF treatment (D + I 

and D + I + DMF, respectively). DMF did not change MMP9 either in non-diabetic (C + DMF, panel A) or in diabetic 
(D + DMF, panel B) rats. Non-diabetic (C, panel A) animals with ischaemia and treated with DMF (C + I + DMF) had 
significantly higher concentrations of MMP9 than non-diabetic animals treated with DMF (C + DMF).
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3.2.3.1. MMP9

Figure 5 shows that MMP9 increased significantly (p < 0.05) in the right hemisphere of 
diabetic rats, and DMF did not prevent such increase. There was a slight (non-significant) 
increase in the right hemisphere of the non-diabetic rats with ischaemia. Likewise, DMF 

did not reduce MMP9 in non-diabetic animals with ischaemia. Interestingly, DMF slightly 
reduced MMP9 in non-diabetic animals without ischaemia; because of that change, non-
diabetic animals treated with DMF had different concentrations (significantly higher with 
than without ischaemia).

Figure 6. Concentration of the receptor for advanced glycation end products (RAGE) in the brain: RAGE did not change in 
the brains of non-diabetic (control, C) animals with or without ischaemia (I), either with or without dimethylformamide 

(C + DMF) treatment (panel A), whereas this biomarker significantly increased in the brains of diabetic animals submitted 
to ischaemia (D + I, panel B). DMF prevented the effect of ischaemia in diabetic animals (D + I + DMF). The mean + SEM 
are shown.

Figure 7. Nitrite and nitrate (NO
2
/NO

3
) in the brain: NO

2
/NO

3
 did not change in the brains of non-diabetic (control, C) 

animals with or without ischaemia (I), neither with nor without dimethylformamide (DMF) treatment (panel A) whereas 

this biomarker increased significantly in the brains of diabetic (D) rats submitted to ischaemia (panel B). DMF completely 
prevented the effect of ischaemia in diabetic animals. The mean + SEM are shown.
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3.2.3.2. RAGE

Figure 6 shows that RAGE did not change in non-diabetic rats, with or without treatment or 
ischaemia, whereas it significantly increased in diabetic rats with ischaemia (p < 0.05), and the 
effect was prevented by DMF.

3.2.3.3. NO
2
/NO

3
 and NT

Nitrite/nitrate ratios and nitrotyrosine results are shown in Figures 7 and 8. Results were sim-

ilar to those of RAGE (Figure 6). Neither ischaemia nor DMF changes the basal concentrations  

Figure 9. Malondialdehyde (MDA) in the brain: dimethylformamide (DMF) non-significantly reduced MDA in the brains 
of non-diabetic (control, C, panel A) rats. Ischaemia (I) did not significantly increase MDA in control animals resulting 
in a significant difference between control rats without ischaemia with DMF treatment (C + DMF) and control rats with 
ischaemia (C + I). DMF significantly reduced DMF in diabetic (D, panel B) rats without ischaemia (D + DMF). Ischaemia 
significantly increased MDA in diabetic rats and the change was prevented by DMF. The mean + SEM are shown.

Figure 8. Nitrotyrosine (NT) in the brain: NT did not change in the brains of non-diabetic rats (control, C, panel A), 
with or without ischaemia (I), neither with nor without dimethylformamide (DMF) treatment, whereas this biomarker 

increased significantly in the brains of diabetic (D, panel B) rats submitted to ischaemia. DMF prevented the effect of 
ischaemia in diabetic animals. The mean + SEM are shown.

Dimethylformamide Reduces Cerebral Ischaemia in Diabetic Rats Hours after Its Occurrence…
http://dx.doi.org/10.5772/intechopen.73700

81



of NO
2
/NO

3
 or NT in the brains of non-diabetic rats, whereas in the diabetic animals nitrates/

nitrates as well as NT significantly increased with ischaemia, and the effect was prevented by 
DMF.

3.2.3.4. MDA

Figure 9 shows the concentrations of MDA in the brains. Basal (no ischaemia, no treatment) 
concentrations were similar in diabetic and non-diabetic animals. DMF slightly (non-signif-

icantly) reduced MDA in non-diabetic rats, whereas it significantly reduced MDA in dia-

betic animals (p < 0.05). Cerebral ischaemia increased MDA in both diabetic and non-diabetic 
animals but the change was significant only in diabetic rats (p < 0.05). DMF suppressed the 
effect of ischaemia in diabetic rats (p < 0.05). Due to the non-significant changes produced by 
DMF in non-diabetic animals without ischaemia, there was a significant difference (p < 0.05) 
between this group and non-diabetic animals with ischaemia.

4. Discussion

This is the first time that DMF has been used and shown to be beneficial in treating cerebral 
ischaemia. In the present study DMF significantly reduced infarct volume in both diabetic and 
non-diabetic animals (similar reductions). It is important to note that infarct volume was evalu-

ated just 8 h after cerebral ischaemia induction; thus, it could be interesting to observe if the 
similar effect occurs after a longer time (24 or 48 h). It is also important to note that treatment 
was administered 1 h after the onset of ischaemia, which is different from the experimental 
strategies that have been used for antioxidants (they usually are administered as a pre-treat-

ment). One hour is a long period and results of the present study open a new horizon in the 

evaluation of therapeutic strategies that eventually could be used after the therapeutic window 

of thrombolysis, which is the current treatment (and not very efficient) in cerebral ischaemia.

Even though the reduction of infarct volume was similar in non-diabetic as in diabetic ani-
mals, DMF seems to have a better effect in diabetic rats because it significantly improved the 
neurophysiological score. One of the concerns of using DMF is the possibility of toxic effects. 
However, the toxic effect noted in workers in the synthetic leather industry is the result of 
chronic long-term exposure [16, 17]. Moreover, the single dose that we used in the present 

study (0.9 g/kg) is far from the reported LD
50

 (7.2 g/kg) [18]. Since no apparent toxic effect was 
noted, it seems that DMF was safe and beneficial. Moreover, the treatment was administered 
1 h after ischaemia in non-diabetic as well as diabetic animals, which places the study closer 

to clinical setting conditions where diabetes is a risk factor for stroke, and it is virtually impos-

sible to predict who would suffer cerebral ischaemia.

The difference of DMF effects between groups seems to be related to special conditions of dia-

betes pathology. It is known that long-term inflammation and oxidative stress play an impor-

tant role in the cardiovascular complications of diabetes [8, 19]. Indeed, it was reported that 

cardiovascular, renal, and neurological complications become apparent at least 2 months after 

diabetes induction in the rat streptozotocin model and that those complications were attenu-
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ated by inhibitors of the renin-angiotensin system, whose effects include the reduction in 
oxidative stress and probably inflammation [20–22]. In the present study, the diabetic animals 

had low weights, hyperglycaemia, and high glucosylated haemoglobin. Cerebral ischaemia 

was produced 5 weeks after the induction of diabetes. This means that diabetic animals were 

not supposed to have apparent cardiovascular complications of diabetes, although the patho-

physiological events were certainly already triggered. Indeed, this could explain why even 

in basal conditions (brains of animals without ischaemia and without treatment) all the bio-

markers had the same concentrations, and notably cerebral ischaemia significantly increased 
all the biomarkers only in diabetic animals, whereas MDA (biomarkers or OS effects on lipids) 
was the only biomarker increased in non-diabetic rats with ischaemia.

The expression of MMP9 has been related to various steps of the pathophysiology of cerebral 
ischaemia, such as inflammation, excitotoxicity, neuronal damage, and blood brain barrier 
(BBB) disturbance [6, 23]. MMP9 increased clearly in diabetic but not in non-diabetic animals 
with ischaemia. DMF did not prevent MMP9 incremental increases. The lack of an incre-

ment in non-diabetic animals could be due to the short time that passed after ischaemia was 

induced and the sacrifice (8 h).

Nitrotyrosine (NT) is the fingerprint of peroxynitrite, a nitrogen active species produced by 
the interaction of superoxide and nitric oxide (NO) [24]. NT is a biomarker of inflammation 
and OS [24]. NT increases in the brain mitochondria of diabetic animals 21 days after STZ 
administration [25]. NT also increases in the brains 24 h after ischaemia induction [26]. In 

the present study, NT was evaluated in homogenised tissue, which could explain why the 
increment of this biomarker was not observed in the brains of diabetic animals without isch-

aemia. No increment of NT was observed in the brains of non-diabetic animals, whereas it 
significantly increased after cerebral ischaemia in diabetic animals. Nitrotyrosine changes in 
diabetic animals were completely prevented by DMF. Interestingly, nitrite/nitrate (indirect 

measurement of NO production) and RAGE (a biomarker of neuroinflammation in cerebral 
ischaemia [27]) changed similarly to NT; they increased after ischaemia only in diabetic ani-
mals and such increment was prevented by DMF.

The evaluation of cerebral ischaemia was performed early after arterial occlusion (8 h). It 

could be the reason for not observing changes in non-diabetic animals (only MDA increment). 

Diabetic animals were probably more susceptible to inflammation and OS after ischaemia due 
to the basal conditions produced by hyperglycaemia. Such basal conditions could explain 

the greater effects of DMF in diabetic animals. It is necessary to study the effects of DMF for 
longer periods after ischaemia and on other biomarkers. The results of this study open a new 

horizon in the design of therapeutic strategies for the treatment of stroke.

5. Conclusion

We conclude that DMF has beneficial effects on cerebral ischaemia produced in rats. The pro-

tective effects of DMF in diabetic rats could be the result of interference with oxidative and 
inflammation-triggered pathways, which are exacerbated by diabetes. That could explain the 
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reason for the better results in diabetic rather than in non-diabetic animals. The mechanisms 
of the protective effects in non-diabetic rats were not clear. It is necessary to explore other 
biomarkers and longer periods to elucidate those effects.

Acknowledgements

This work was supported by Consejo Nacional de Ciencia y Tecnologia, Mexico (Grant 
CONACYT202483), Instituto Politecnico Nacional (Grant SIP20162031), Secretaria de la Defensa 
Nacional, Mexico, and Kross-Link Laboratories (NY, USA).

Author details

Julio Amadeo Mendoza-Betancourt1, Robert David Kross2, Maria Angeles Moro3, 

Ignacio Lizasoain3, Luis Humberto Pérez-Astudillo4, Arturo Alva-Félix-Díaz5 and 

Cleva Villanueva5*

*Address all correspondence to: villanuevacleva3@gmail.com

1 Hospital Central Militar, Mexico City, Mexico

2 Kross-Link Laboratories, New York, USA

3 Universidad Complutense de Madrid, Madrid, Spain

4 Biotest SC, Hidalgo, Mexico

5 Instituto Politecnico Nacional, Escuela Superior de Medicina, Mexico City, Mexico

References

[1] Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA, 
Moran AE, Sacco RL, Anderson L, Truelsen T, O'Donnell M, Venketasubramanian N, 
Barker-Collo S, Lawes CM, Wang W, Shinohara Y, Witt E, Ezzati M, Naghavi M, Murray 
C, Global burden of diseases, injuries, and risk factors study, GBD Stroke Experts Group. 
Global and regional burden of stroke during 1990-2010: Findings from the global burden 
of disease study 2010. Lancet. 2014;383(9913):245-254

[2] Gill D, Baheerathan A, Aravind A, Veltkamp R, Kar A. Severe hemorrhagic transforma-

tion after thrombolysis for acute ischemic stroke prevents early neurological improve-

ment. Journal of Stroke and Cerebrovascular Diseases: The Official Journal of National 
Stroke Association. 2016;25(9):2232-2236

[3] Peters SA, Huxley RR, Woodward M. Diabetes as a risk factor for stroke in women com-

pared with men: A systematic review and meta-analysis of 65 cohorts, including 775 385 

individuals and 12 539 strokes. Lancet. 2014;383:1973-1980

Free Radicals, Antioxidants and Diseases84



[4] Newsholme P, Cruzat VF, Keane KN, Carlessi R, de Bittencourt PI Jr. Molecular mech-

anisms of ROS production and oxidative stress in diabetes. The Biochemical Journal. 
2016;473(24):4527-4550

[5] Manzanero S, Santro T, Arumugam TV. Neuronal oxidative stress in acute ischemic stroke: 
Sources and contribution to cell injury. Neurochemistry International. 2013;62(5):712-718

[6] Villanueva C, Kross R, Perez-Astudillo L. Free radicals and neuronal recovery from an isch-

aemic penumbra: A review. In: Free Radicals and Diseases. Croatia: In Tech; 2016. pp. 331-346

[7] Kant V, Gopal A, Pathak NN, Kumar P, Tandan SK, Kumar D. Antioxidant and anti-
inflammatory potential of curcumin accelerated the cutaneous wound healing in strep-

tozotocin-induced diabetic rats. International Immunopharmacology. 2014;20(2):322-330

[8] Ceriello A, Esposito K, La Sala L, Pujadas G, De Nigris V, Testa R, Bucciarelli L, Rondinelli 
M, Genovese S. The protective effect of the Mediterranean diet on endothelial resis-

tance to GLP-1 in type 2 diabetes: A preliminary report. Cardiovascular Diabetology. 
2014;13:140

[9] Hjartaker A, Knudsen MD, Tretli S, Weiderpass E. Consumption of berries, fruits and 
vegetables and mortality among 10,000 Norwegian men followed for four decades. 
European Journal of Nutrition. 2015;54(4):599-608

[10] Villanueva C, Kross RD. Antioxidant-induced stress. International Journal of Molecular 
Sciences. 2012;13(2):2091-2109

[11] Saleh TM, Saleh MC, Connell BJ, Song YH. A co-drug conjugate of naringenin and 
lipoic acid mediates neuroprotection in a rat model of oxidative stress. Clinical and 

Experimental Pharmacology & Physiology. 2017;44(10):1008-1016

[12] Duffy S, So A, Murphy TH. Activation of endogenous antioxidant defenses in neuronal 
cells prevents free radical-mediated damage. Journal of Neurochemistry. 1998;71(1):69-77

[13] Garlid AO, Jaburek M, Jacobs JP, Garlid KD. Mitochondrial reactive oxygen species: 
Which ROS signals cardioprotection? American Journal of Physiology. Heart and Cir-
culatory Physiology. 2013;305(7):H960-H968

[14] Frankowski H, Alavez S, Spilman P, Mark KA, Nelson JD, Mollahan P, Rao RV, Chen SF, 
Lithgow GJ, Ellerby HM. Dimethyl sulfoxide and dimethyl formamide increase lifespan 
of C. elegans in liquid. Mechanisms of Ageing and Development. 2013;134(3-4):69-78

[15] De Cristóbal J, Moro MA, Davalos A, Castillo J, Leza JC, Camarero J, Colado MI, Lorenzo 

P, Lizasoain I. Neuroprotective effect of aspirin by inhibition of glutamate release after 
permanent focal cerebral ischaemia in rats. Journal of Neurochemistry. 2001;79(2):456-459

[16] Chang HY, Shih TS, Guo YL, Tsai CY, Hsu PC. Sperm function in workers exposed to N,N-
dimethylformamide in the synthetic leather industry. Fertility and Sterility. 2004;81(6): 

1589-1594

[17] He J, Wang P, Zhu JQ, Wu G, Ji JM, Xue Y. Role of urinary biomarkers of N,N-
dimethylformamide in the early detection of hepatic injury among occupational exposed 

workers. International Archives of Occupational and Environmental Health. 2010;83(4): 

399-406

Dimethylformamide Reduces Cerebral Ischaemia in Diabetic Rats Hours after Its Occurrence…
http://dx.doi.org/10.5772/intechopen.73700

85



[18] Massmann W. Toxicological investigations on dimethylformamide. British Journal of 
Industrial Medicine. 1956;13(1):51-54

[19] Ceriello A, Testa R, Genovese S. Clinical implications of oxidative stress and potential 
role of natural antioxidants in diabetic vascular complications. Nutrition, Metabolism, 
and Cardiovascular Diseases. 2016;26(4):285-292

[20] Fukami K, Yamagishi S, Coughlan MT, Harcourt BE, Kantharidis P, Thallas-Bonke V, 
Okuda S, Cooper ME, Forbes JM. Ramipril inhibits AGE-RAGE-induced matrix metallo-

proteinase-2 activation in experimental diabetic nephropathy. Diabetology & Metabolic 
Syndrome. 2014;6(1):86

[21] Salum E, Butlin M, Kals J, Zilmer M, Eha J, Avolio AP, Arend A, Aunapuu M, Kampus 
P. Angiotensin II receptor blocker telmisartan attenuates aortic stiffening and remodel-
ling in STZ-diabetic rats. Diabetology & Metabolic Syndrome. 2014;6:57

[22] Sleem M, Taye A, El-Moselhy MA, Mangoura SA. Combination therapy with losartan 
and L-carnitine protects against endothelial dysfunction of streptozotocin-induced dia-

betic rats. European Journal of Pharmacology. 2014;744:10-17

[23] Chaturvedi M, Kaczmarek L. Mmp-9 inhibition: A therapeutic strategy in ischemic 
stroke. Molecular Neurobiology. 2014;49(1):563-573

[24] Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: The good, the 
bad, and ugly. The American Journal of Physiology. 1996;271(5 Pt 1):C1424-C1437

[25] Mastrocola R, Restivo F, Vercellinatto I, Danni O, Brignardello E, Aragno M, Boccuzzi 
G. Oxidative and nitrosative stress in brain mitochondria of diabetic rats. The Journal of 
Endocrinology. 2005;187(1):37-44

[26] Chao XD, Ma YH, Luo P, Cao L, Lau WB, Zhao BC, Han F, Liu W, Ning WD, Su N, 
Zhang L, Zhu J, Fei Z, Qu Y. Up-regulation of heme oxygenase-1 attenuates brain dam-

age after cerebral ischemia via simultaneous inhibition of superoxide production and 

preservation of NO bioavailability. Experimental Neurology. 2013;239:163-169

[27] Greco R, Demartini C, Zanaboni AM, Blandini F, Amantea D, Tassorelli C. Modulation 
of cerebral RAGE expression following nitric oxide synthase inhibition in rats subjected 
to focal cerebral ischemia. European Journal of Pharmacology. 2017;800:16-22

Free Radicals, Antioxidants and Diseases86


