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1. Introduction      

The main part of this chapter deals with introducing how to obtain models linear in 
parameters for real systems and then using observations from the system to estimate the 
parameters or to fit the models to the systems with a practical view.  
Karl Friedrich Gauss formulated the principle of least squares at the end of the eighteenth 
century and used it to determine the orbits of planets and asteroids (Astrom & Wittenmark, 
1995). 
One of the main applications of on-line parameters estimation is self-tuning regulator in 
adaptive control; nevertheless other applications such as load monitoring or failure 
detection, estimation of some states to omit corresponding sensors and etc. also have great 
importance.   

2. Models linear in parameters 

A system is a collection of objects whose properties we want to study and a model of a 
system is a tool we use to answer questions about a system without having to do an 
experiment (Ljung & Glad, 1994). The models we work in this chapter are mathematical 
models, relationships between quantities.  
There are different mathematical models categories such as (Ljung & Glad, 1994) 
Deterministic-Stochastic 
Stochastic models despite deterministic models contain stochastic variables or processes. 
Deterministic models are exact relationships between variables without uncertainty. 
Dynamic-Static 
The variables of a system usually change with time. If there is a direct, instantaneous 
relationship between these variables, the system or model is called static; otherwise the 
system is called dynamic. For example a resistor is a static system, but a series connection of 
a resistor and a capacitor is a dynamic system. In this chapter we interest dynamic systems 
which are described by differential or difference equations. 
Continuous Time- Discrete Time 
If the signals used in a model are continuous signals, the model is a continuous time model; 
which is described by differential equations. If the signals used in a model are sampled 
signals, the model is a discrete time model; which is described by difference equations.    
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Lumped-Distributed 
Many physical systems are described by partial differential equations; the events in such 
systems are dispersed over the space variables. These systems are called distributed 
parameters systems. If a system is described by ordinary differential equations or a finite 
number of changing variables, it is a lumped system or model. 
Change Oriented-Discrete Event Driven 
The physical world and the laws of nature are usually described in continuous signals and 
variables, even discrete time systems obey the same basics. These systems are known as 
change oriented systems. For systems constructed by human, the changes take place in 
terms of discrete event, examples of such systems are queuing system and production 
system, which are called discrete event driven systems. 
Models linear in parameters or linear regressions are among the most common models in 
statistics. The statistical theory of regression is concerned with the prediction of a variable 

y , on the basis of information provided by other measured variables ϕ1 , …, ϕn  called the 

regression variables or regressors. The regressors can be functions of other measured 
variables. A model linear in parameters can be represented in the following form 

 ϕ ϕ ϕθ θ θ= + + =( ) ( ) ... ( ) ( )11
Ty t t t tnn  (1) 

where  

ϕ ϕ ϕ=( ) [ ( ) ... ( )]1
T t t tn ,  θ θθ = [ ... ]1

T
n  is the vector of parameters to be determined. 

There are many systems whose models can be transformed to (1); including finite-impulse 
response (FIR) models, transfer function models, some nonlinear models and etc.  
In some cases to attain (1), the time derivatives of some variables are needed. To avoid the 
noises in measurement data and to avoid the direct differentiation wich amplifies these 
noises, some filters may be applied on system dynamics. 
Example: The d and q axis equivalent circuits of a rotor surface permanent magnet 
synchronous motor (SPMSM) drive are shown in Fig. 1. In these circuits the iron loss 
resistance is taken into account. From Fig. 1, the SPMSM mathematical model is obtained as 
(Abjadi et al., 2005) 

 
ω

φ
ω ω

= − + +

= − − − +

1

1

d Ridm Pi i vdm qm r d
dt K K

d Pi Kqm R
Pi i vqm dm r r q

dt K K K

 (2) 

where R , B , J , P  and TL  are stator resistance, friction coefficient, momentum of inertia, 

number of pole pairs and load torque, also K  and Kφ  are defined by 

= +(1 )
R

K L
Ri

    ,      φφ = +(1 )
R

K
Ri

                     

here Ri , φ  and L  are respectively the motor iron loss resistance, rotor permanent magnet 

flux and stator inductance. 
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Figure 1. The d and q axis equivalent circuits of a SPMSM 

From Fig. 1-b, the q axis voltage equation of SPMSM can be obtained as 

 φω ω ω= − − − + + +
L L

Kp R KP P p Pi i i v v vq q r d r q q r d
R Ri i

 (3) 

where =
d

p
dt

 

Multiplying both sides of (3) by 
+

1

p a
, (3) becomes 

 

φω ω

ω

= − − − +
+ + + + +

+ +
+ +

1 1 1 1
( )

1
( )

p
K R K Pi i P i vq q r d r q

p a p a p a p a p a

pL L
Pv vq r d

p a p aR Ri i

 (4) 

Assume 

 

ω ω

ω ω ω ω

= = =
+ + +

= =
+ +

1 1 1
, ,

1 1
,

i i v vqf q df d rf r
p a p a p a

i i v vdf r d df r d
p a p a

 (5) 

then 

 = − = −
+ +

,
p p

a ai i i v v vq q qf q q qf
p a p a

 (6) 
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Linking (4), (5) and (6), yields 

 φω ω ω= − + + + − − +( ) ( )
L

K a P R P a Pv i i i i v v vqf q qf df qf rf q qf df
Ri

 (7) 

Comparing (7) by (1), =y vqf , φθ = [ ]
TL

K R
Ri

, 

ϕ ω ω ω= − + − − +[ ( )]T a P P a Pi i i i v v vq qf df qf rf q qf df . 

3. Prediction Error Algorithms 

In some parameters estimation algorithms, parameters are estimated such that the error 
between the observed data and the model output is minimized; these algorithms called 
prediction error algorithms. One of the prediction error algorithms is least squares 
estimation; which is an off-line algorithm. Changing this estimation algorithm to a recursive 
form, it can be used for on-line parameters estimation. 

3.1 Least-Squares Estimation 

In least square estimation, the unknown parameters are chosen in such a way that the sum 
of the squares of the differences between the actually observed and the computed 
(predicted) values, multiplied by some numbers, is a minimum (Astrom & Wittenmark, 
1995). 
Consider the models linear in parameters or linear regressions in (1), base on the least 

squares estimation the parameter θ  are chosen to minimize the following loss function 

 θϕ= ∑ −
=

1 2ˆ( )[ ( ) ( ) ]
2 1

N
TJ w t y t t

t
 (8) 

where θ̂  is the estimation of θ  and ( )w t  are positive weights. 

There are several methods in literatures to obtain θ  such that (8) becomes minimized, the 

first one is to expand (8), then separate it in two terms, one including θ  (it can be shown 

this term is positive or equal to zero) the other independent of θ ; by equating the first term 

to zero, (8) is minimized. In other approach the least squares problem is interpreted as a 
geometric problem. The observations vector is projected in the vector space spanned by 
regression vectors and then the parameters are obtained such that this projected vector is 
produced by a linear combination of regressors (Astrom & Wittenmark, 1995). The last 
approach which is used here to obtain estimated parameters is to determine the gradient of 
(8), since (8) is in a quadratic form by equating the gradient to zero, one can obtain an 
analytic solution as follow. 
To simplify the solution assume 

 = [ (1) (2) ... ( )]Ty y y NY , = [ (1) (2) ... ( )]Te e e NE , 

ϕ

ϕ

⎡ ⎤
⎢ ⎥

Φ = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M

(1)

( )

TT

T N

 

where θϕ= − ˆ( ) ( ) ( )Te t y t t . 
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Using these notations on can obtain 

 θ= − Φ ˆE Y  (9) 

then (8) can be rewritten as 

 =
1

2
TJ WEE  (10) 

where W  is a diagonal matrix of weights. 

Substitute for E  in (10) 

 θθ= − Φ− Φ
1 ˆˆ ( )( )
2

T
J W YY  (11) 

Expand (11) and calculate its gradient with respect to θ̂  

 θ θθ θ= − Φ − + ΦΦ Φ
1 ˆ ˆˆ ˆ
2

T TT T T TJ WY W WY WY Y  (12) 

 θ
θ

∂
= − Φ + ΦΦ

∂
ˆ

ˆ
J TT TW WY  (13) 

Equating gradient to zero 

 

θ θ

ϕ ϕ ϕ

−
= = Φ ΦΦ

−

= ∑ ∑
= =

1ˆ ˆ( ) ( )

1

[ ( ) ( ) ( )] ( ) ( ) ( )
1 1

TTN WYW

N N
Tw t t t w t t y t

t t

 (14) 

provided that the inverse is existed; this condition is called an excitation condition. 
Bias and Variance 
There are two different source cause model inadequacy. One is the model error that arises 
because of the measurement noise and system noise. This causes model variations called 
variance errors. The other source is model deficiency, that means the model is not capable of 
describing the system. Such errors are called systematic errors or bias errors (Ljung & Glad, 
1994). 
The least-squares method can be interpreted in statistical terms. Assume the data are 
generated by 

 ϕ θ= +( ) ( ) ( )Ty t t e t  (15) 

where ={ ( ), 1, 2, ...}e t t  is a sequence of independent, equally distributed random variables 

with zero mean. ( )e t  is also assumed independent of ϕ( )t . The least-squares estimates are 

unbiased, that is, θ θ=ˆ( ( ))E t  and an estimate converges to the true parameter value as the 

number of observations increases toward infinity. This property is called consistency 
(Astrom & Wittenmark, 1995). 
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Recursive Least-Squares (RLS) 
In adaptive controller such as self-tuning regulator the estimated parameters are needed on-
line. The least-squares estimation in (14) is not suitable for real-time purposes. It is more 
convenient to convert (14) to a recursive form. 
Define 

 
ϕ ϕ

ϕ ϕ

− = Φ = ∑Φ
=

−= − +

1( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1( 1) ( ) ( ) ( )

t
TTt t W t t w i i iP

i
Tt w t t tP

 (16) 

From (14) 

 θ ϕ
−

− = − ∑
=

1
ˆ( 1) ( 1) ( ) ( ) ( )

1

t
t t w i i y iP

i
 (17) 

Expanding (14) and substituting for ϕ
−
∑
=

1
( ) ( ) ( )

1

t
w i i y i

i
 from (17) 

 
θ ϕ ϕ

θ ϕ

−
= +∑

=

−= − − +

1
ˆ( ) ( )( ( ) ( ) ( ) ( ) ( ) ( ))

1

ˆ1( )( ( 1) ( 1) ( ) ( ) ( ))

t
t P t w i i y i w t t y t

i

P t t t w t t y tP

 (18) 

From (16) it follows that 

 
θ θϕ ϕ ϕ

θ θϕ ϕ

−= − − +

= − + − −

ˆ ˆ1( ) ( )(( ( ) ( ) ( ) ( )) ( 1) ( ) ( ) ( ))

ˆ ˆ( 1) ( ) ( ) ( )( ( ) ( ) ( 1))

Tt P t t w t t t t w t t y tP

Tt P t w t t y t t t
 (19) 

Using (16) and (19) together establish a recursive least-squares (RLS) algorithm. The major 
difficulty is the need of matrix inversion in (16) which can be solved by using matrix 
inversion lemma. 

Matrix inversion lemma. Let A , C  and − −+1 1D BC A  be non-singular square matrices. 

Then 

 
−− − − −− −+ = − +

11 1 1 11 1( ) ( )A BCD B DA A D B AC A  (20) 

For the proof see (Ljung & Soderstrom, 1985) or (Astrom & Wittenmark, 1995). □ 
Applying this lemma to (16) 

 

ϕ ϕ

ϕ ϕϕ ϕ

−−= − +

−
+ −= − − − −

11( ) [ ( 1) ( ) ( ) ( )]

11
[ ( ) ( 1) ( )]( 1) ( 1) ( ) ( ) ( 1)

( )

TtP t w t t tP

T TI t t tt t t t tPP P P
w t

 (21) 
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Thus the formulas of RLS algorithm can be written as 

 

θ θ θϕ ϕ

ϕ ϕϕ ϕ

= − + − −

−
+ −= − − − −

ˆ ˆ ˆ( ) ( 1) ( ) ( ) ( )( ( ) ( ) ( 1))

11
[ ( ) ( 1) ( )]( ) ( 1) ( 1) ( ) ( ) ( 1)

( )

Tt t P t w t t y t t t

T TI t t tt t t t t tPP P P P
w t

 (22) 

It is worthwhile to note that if y  is a scalar, ϕ ϕ+ −
1

( ) ( 1) ( )
( )

TI t t tP
w t

 will be a scalar too 

and there is no need to any matrix inversion in RLS algorithm. 
In model (1), the vector of parameters is assumed to be constant, but in several cases 
parameters may vary. To overcome this problem, two methods have been suggested. First is 
to use a discount factor or a forgetting factor; by choosing the weights in (8) one can 

discount the effect of old data in parameters estimation. Second is to reset the matrix )(tP  

alternatively with a diagonal matrix with large elements; this causes the parameters are 
estimated with larger steps in (22); for more details see (Astrom && Wittenmark, 1995). 
Example: For a doubly-fed induction machine (DFIM) drive  the following models linear in 
parameters can be obtained without and with considering iron loss resistance respectively 
(abjadi, et all, 2006) 

Model 1. 

ϕ ω ω ω

θ

= −

= − − − − −

=

[ , , , , ]

[ , , , , ]

y v vds dr
T p pi i i i i i ids ds r qs dr dr r qs r qr

T R L R L Ls ls r lr m

 

Model 2. 

ϕ ω

ω ω

θ

= −

= − − −

− − + − − −

= +

2[ ( ), , , ,

2, ( ), , , ]

[ , , , , , , , , ]

y v vds dr

T pp p pv v i i i ids dr ds ds ds r qs

pp pi i i i i i ids r qs r qs qr dr dr dr

L R L L L R L L Lm s m ls m r m lr mT R L L L Rs ls m lr r
R R R R Ri i i i i
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  (a)  model 1   (b) model 2 
Figure 2. Estimated parameters for DFIM 
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To solve the problem of derivatives ( ipip drds , ) in model 1, a first order filter is used and 

in order to solve the problem caused by second derivatives in model 2, a second order filter 
is used. 
The true parameters of the machine are given in Table 1. Using RLS algorithm, the estimated 
values of parameters are shown in Fig. 2. In Fig. 2.a. at the time t=1.65 s the value of the 

magnetizing inductance ( Lm ) increases 30 %. In this simulation the matrix )(tP  has been 

reset each 0.1 s with a diagonal matrix. 

= 5.5kWPn  = 300mHLm  

= Ω1.2Rs  = 14mHLls  

= Ω0.9Rr  = 12mHLlr  

Table 1. Machine parameters 

Simplified algorithms 
There are simplified algorithms with less computation than RLS. Kaczmarz’s projection 
algorithm is one of these algorithms. In this algorithm the following cost function is 
considered 

 α θϕθ θ θ θ= + −− − − −
1 ˆˆ ˆ ˆ ˆ ( ( ) ( ) ( ))( ( ) ( 1)) ( ( ) ( 1))
2

T TJ y t t tt t t t  (23) 

In fact in this algorithm θ̂ ( )t  is chosen such that θ θ− −ˆ ˆ( ) ( 1)t t  is minimized subject to the 

constraint θϕ= ˆ( ) ( ) ( )Ty t t t .  α  is a Lagrangian multiplier in (23), taking derivatives with 

respect to θ̂ ( )t  and α  the following parameters estimation law is obtained (Astrom & 

Wittenmark, 1995) 

 
ϕ

θ θ θϕ
ϕϕ

= − + − −
( )ˆ ˆ ˆ( ) ( 1) ( ( ) ( ) ( 1))

( ) ( )

t Tt t y t t t
T t t

 (24) 

To change the step length of the parameters adjustment and to avoid zero denominator in 
(24) the following modified estimation law is introduced 

 
γϕ

θ θ θϕ
λ ϕϕ

= − + − −
+

( )ˆ ˆ ˆ( ) ( 1) ( ( ) ( ) ( 1))
( ) ( )

t Tt t y t t t
T t t

 (25) 

where λ > 0  and γ< <0 2 . 

This algorithm is called normalized projection algorithm. 
Iterative Search for Minimum 

For many model structures the function θ= ˆ( )J J  in (8) is a rather complicated function of θ̂ , 

and the minimizing value must then  be computed by computer numerical search for the 
minimum. The most common method to solve this problem is Newton-Raphson method 
(Ljung & Glad, 1994).  

To minimize θ̂( )J  its gradient should be equated to zero 

 
θ

θ

∂
=

∂

ˆ( )
0

ˆ
J

 (26) 
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It is achieved by the following recursive estimation 

 θ θ µ θθ
− ′= − − − −′′ −

1ˆ ˆ ˆˆ( ) ( 1) ( 1) ( ( 1))[ ( ( 1))]t t t J tJ t  (27) 

Continuous-Time Estimation 
Instead of considering the discrete framework to estimate parameters, one can consider 
continuous framework. Using analogue procedure similar parameter estimation laws can be 
obtained. For continuous gradient estimator and RLS see (Slotine & Weiping, 1991). 
Model-Reference Estimation Techniques 
Model-reference estimation techniques can  be categorizes as techniques analog regression 
methods and techniques using Lyapunove or Passivity Theorem. For a detail discuss on 
techniques analog regression methods see (Ljung & Soderstrom, 1985) and for examples on 
Lyapunove or passivity theorem based techniques see (Soltani & Abjadi, 2002) & (Elbuluk, 
et all, 1998). 
In model-reference techniques two models are considered; one contains the parameters to be 
determined (adaptive model) and the other is free or independent from those parameters 
(reference model). The two models have same kind output; a mechanism is used to estimate 
the parameters in such a way that the error between these models outputs becomes 
minimized or converges to zero. 

3.2 Other Algorithms 
Maximum Likelihood Estimation 
In prior sections it was assumed that the observations are deterministic and reliable. But in 
stochastic studies, observations are supposed to be unreliable and are assumed as random 

variables. In this section we mention a method for estimating a parameter vector θ  using 

random variables. 

Consider the random variable = ∈ℜ( , ,..., )
1 2

Ny y y y
N

 as observations of the system. The 

probability that the realization indeed should take value y  is described as θ( ; )f y , where 

θ ∈ℜd is the unknown parameter vector. A reasonable estimator for the vector θ   is to 

determine it so that the function θ( ; )f y  takes it maximum (Ljung, 1999), i.e. the observed 

event becomes as likely as possible. So we can see that  

 θ θ
θ

∧
=( ) arg max ( ; )y f yML  (28) 

The function θ( ; )f y  is called the likelihood function and the maximizing vector θ
∧

( )yML  is 

known as the maximum likelihood. For a resistance maximum likelihood estimator and 
recursive maximum likelihood estimator see (Ljung & Soderstorm, 1985). 
Instrumental Variable Method 
Instrumental variable method, is a modification of the least squares method designed to 
overcome the convergence problems. 
Consider the linear system 

 
ϕ θ= +( ) ( ) ( )Ty t t v t

 (29) 
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In the least squares method, θ̂ ( )N  will not converge to θ , if there exists correlation 

between ϕ( )t  and ( )v t (Ljung, 1999).  A solution for this problem is to replace ϕ( )t by a 

vector ζ ( )t that is uncorrelated with ( )v t . The elements of ζ ( )t  are called instrumental 

variables and the estimation method is called instrumental variable method.  
By replacing ϕ( )t by ζ ( )t

 
in the least squares method we have 

 θ ζ ϕ ζ

−⎡ ⎤
= ∑ ∑⎢ ⎥
⎢ ⎥= =⎣ ⎦

1
ˆ( ) ( ) ( ) ( ) ( )

1 1

N NTN t t t y t
i i

 (30) 

for the off-line case and 

 

θ ϑ θ ϕ

ζ
ζ

ϕ ζ

ζ ϕ

ϕ ζ

= − + − −

−
= =

+ −

− −
= − −

+ −

ˆ ˆ ˆ( ) ( 1) ( )[ ( ) ( 1) ( )],

( 1) ( )
( ) ( ) ( ),

1 ( ) ( 1) ( )

( 1) ( ) ( ) ( 1)
( ) ( 1) ,

1 ( ) ( 1) ( )

Tt t L t y t t t

P t t
L t P t t

T t P t t

TP t t t P t
P t P t

T t P t t

 (31) 

for recursive fashion.  
The instrumental variables should be chosen such that 

1. 
ζ ( )t

 and 
( )v t

 be uncorrelated, 

2. The matrix ζ ϕ∑
→ ∞ =

1
lim ( ) ( )

1

N Tt t
NN i

be invertible. 

under these conditions and if 
 

( )v t   has zero mean, θ̂ ( )N  will converge to θ . A common 

choice of instrumental variables is (Ljung & Soderstorm, 1985)  

 ζ = − − − − − −( ) ( ( 1)... ( ) ( 1)... ( ))T t y t y t n u t u t m
M M

 (32) 

where ( )y t
M

is the output of the system 

 + − + + − = − + + −( ) ( 1) ... ( ) ( 1) ... ( )
1 1

y t a y t a y t n b u t b u t m
M M n M M

 (33) 

For the recursive fashion it is common to let a
i  

and b
i

 be time-dependent. 

Bayesian Method 

In the Bayesian method, in addition to observations, parameter is considered as a random 

variable too. In this method, parameter vector θ  is considered to be a random vector with a 

certain prior distribution. The value of this parameter is determined using the observations 

tu  and ty  (input and output of the system until time t) of random variables that are 

correlated with it.  
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The posterior probability density function for  θ  is considered as θ( , )t tp u y . There are 

several ways to determine the parameter estimation θ̂ ( )t  from the posterior distribution. 

This is a very difficult problem in general to find the estimate  θ̂ ( )t  and only approximate 

solutions can be found. But under the specific conditions mentioned in the following lemma, 
there exists an exact solution.   
Lemma. (Ljung & Soderstorm, 1985) Suppose that the data is generated according to  

 
ϕ θ= +( ) ( ) ( )Ty t t e t

 (34) 

where the vector ϕ( )t
 
is a function of − −1 1,t tu y and { }( )e t

 
is a sequence of independent 

Gaussian variable with =( ) 0Ee t and =2( ) ( )
2

Ee t r t . Suppose also that the prior distribution 

of θ  is Gaussian with mean θ
0

and covariance matrix 
0

P . Then the posterior distribution  

θ( , )t tp u y
 
is also Gaussian with mean θ̂ ( )t and covariance matrix ( )P t , where θ̂ ( )t

 
and 

( )P t are determined according to 

 

θ θ θ ϕ

ϕ
ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

θ θ

= − + − −

−
= =

+ −

− −
= − −

+ −

= =

ˆ ˆ ˆ( ) ( 1) ( )[ ( ) ( 1) ( )],

1 ( 1) ( )
( ) ( ) ( ) ,

( ) ( ) ( ) ( 1) ( )2 2

( 1) ( ) ( ) ( 1)
( ) ( 1) ,

( ) ( ) ( 1) ( )
2

ˆ(0) , (0)
0 0

Tt t L t y t t t

P t t
L t P t t

Tr t r t t P t t

TP t t t P t
P t P t

Tr t t P t t

P P

 (35) 

For the proof see (Ljung, 1985). 

4. Nonlinear models 

There are many applications that linear in parameters models dose not suffice to describe 
the system. Systems with nonlinearities are very common in real world; in this section some 
models suitable for such systems are introduced. 
Wiener and Hammerstein System 
Some especial cases of nonlinearities in system are static nonlinearities at the input or the 
output or both of them. In other words there are systems with dynamics with a linear 
nature, but there are static nonlinearities at the input or the output or both of them. Example 
for static nonlinearity at the input is saturation in the actuators and static nonlinearity at the 
output is sensors characteristics (Ljung, 1999). 
A model with a static nonlinearity at the input is called a Hammerstein model while a 
model with a static nonlinearity at the output is called a Wiener model. Fig. 3 shows these 
models. 
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Figure 3. Hammerstein and Wiener models 

Fuzzy System 
Fuzzy Systems or knowledge-based systems are a type of nonlinear systems that can be 
used to approximate nonlinear behavior of many practical systems (Wang, 1997). 
Certain types of fuzzy systems can be written as compact nonlinear formulas. In this section 
we will consider Takagi-Sugeno fuzzy systems that are a common used type of fuzzy 
systems.  
Consider a multi input-single output Takagi-Sugeno fuzzy system given by (Passino & 
Yurkovich, 1998) 
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Where, µ ( )x
i

 is the certainty of the premise of the i-th rule (Trabelsi & Lafont, 2004) 
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With extending (36) we have 

 

µ µ µ

µ µ µ

∑ ∑ ∑
= = == + + +

∑ ∑ ∑
= = =

( ) ( ) ( )
,0 ,1 1 ,

1 1 1...

( ) ( ) ( )
1 1 1

R R R
a x a x x a x x
i i i i i n n i

i i iy
R R R

x x x
i i i

i i i

 (37) 

If we define 
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 θ = [ , ,..., , , ,..., ,..., , ,..., ]
1,0 2,0 ,0 1,1 2,1 ,1 1, 2, ,

Ta a a a a a a a a
R R n n R n

 (40) 

We can write (36) as 

 ξ θ= ( )Ty x  (41) 

We see that (41) is in the same form as we defined for linear systems and is linear versus θ . 

Thus it is possible to use mentioned Estimators like  recursive least square and Gradient 

Estimators to estimate parameter vector θ . 

Neural Network System 
Another common method to model systems is using artificial neural network for the details 
see (Ljung, 1999). 

5. Conclusion 

In this chapter, some parameters estimation algorithms are presented; among them RLS is 
one of the most common parameters estimation algorithms, which is discussed in details. 
The main key to use this algorithm or similar ones is the model must be linear in 
parameters. 
Two practical examples from the field of electrical motor drives are introduced to show that 
even from nonlinear complex systems one may obtain models linear in parameters.  
There are several ways to model a real system. Some of the models used to predict the 
behaviour of systems are presented. 
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