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Abstract

This chapter included an explanation of the role of cyclodextrin as an ionophore for the
preparation of voltammetric and potentiometric sensors for different compounds. There
was a surveying of the different recorded cyclodextrin-based sensors for drug, organic, or
inorganic cations. It also explained the performance characteristics for the first reported
sensor for nickel based on β-cyclodextrin as an example.
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1. Introduction

The ion-selective membrane electrodes are based on selecting an appropriate matter which

works like a sensing part. The sensing materials are the main component of the potentiometric

ion sensors. They are responsible for forming a type of discrimination in the electrode behavior

toward one ion rather than others. There are several types of the sensing material. They might

have host-guest structure, which allows the inclusion of the analyzed ionic material. Another

type is able to form a complex with the analyte ion. The third type is based on ion exchange

reaction with the ion under investigation.

A potential difference will be aroused when the analyte ion can penetrate across the phase

boundary between the two phases (analyte solution and internal reference solution) (Figure 1).

Accordingly, an electrochemical equilibrium will be formed due to different potentials at both

sides of the membrane. The potential difference (E) across the membrane is described by the

Nernst equation:

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



E ¼ E
�

þ RT=ZFð Þ ln a (1)

where E� is the standard cell potential, R is the general gas constant, Z is the valency of the

analyte ion, F is the Faraday constant, and a is the activity of the analyte ion.

Cyclodextrin is produced from starch by enzymatic conversion. They are formed of a cycle of

oligosaccharides. There are three types of cyclodextrin according to the size of the ring. They

may be composed of 5-, 6-, or 7-membered ring. They are named like α, β, and γ, respectively

(Figure 2).

Typical cyclodextrins contain a number of glucose monomers ranging between 6 and 8. They

create a cone shape, which is suitable for the inclusion of different cations (Figure 3).

Many researches were recorded where cyclodextrin was used for preparing sensor membrane

electrode for the determination of organic compounds. The studies about the application of CD

as an ionophore for sensors of inorganic cations were rarely found. The recorded sensors were

either voltammetric sensors or potentiometric sensors.

Figure 1. The response of membrane toward different ions.

Figure 2. Structure formula of α, β, and γ-cyclodextrin.
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1.1. Voltammetric sensors

Voltammetric sensors are an electrochemical sensor based on measurements of the diffusion

current at polarization potential. Several examples of voltammetric sensors were recorded in

the literature. They were used for the determination of amine-containing organic/pharmaceu-

tical compounds.

Komiyama [1] prepared cyclodextrin electrode for the determination of p-nitrophenolate. The

electrode was prepared by dipping Pt-wire into cyclodextrin polymer. Stefan et al. [2] used a

multidextrin as a sensor for preparing selective membrane for S-captopril. Lenik and

Nieszporek [3] constructed a modified glassy carbon ibuprofen electrode.. The electrode was

based on multi-walled carbon nanotubes and β-cyclodextrins. It showed wider linear range

(3.2 � 10�5 –1 � 10�2 mol L�1) and lower limit of detection (1.25 � 10�5 mol L�1). It was

applied like a sensor for GC. The determination of some neurotransmitters such as dopamine

(DA), epinephrine (EP), norepinephrine (NEP), levodopa (L-DOPA), 3,4-dihydroxy-phenyl

acetic acid (DOPAC) and serotonin (ST) was applied by reduced graphene oxide (RGO)

composite glassy carbon electrode modified with ionic liquid crystal (ILC), 1-butyl-1-methylpi-

peridinium hexa-fluoro-phosphate, and cyclodextrin [4].

CD-based sensor was applied for the determination of an antibiotic chloramphenicol by Sun

et al. [5]. They used a voltammetric sensor on mesoporous carbon @polydopamine and β-CD.

It showed a response for chloramphenicol in the range of 5 � 10�7 � 5 � 10�5 M. Li et al. [6]

determined o- and p-nitrophenol by using reduced graphene oxide-CD-Chitosan electrochem-

ical sensor. It was based on the host-guest recognition sites on CD and abundant functional

groups of Chitosan. It showed linear range for 0.12–0.2 and 4–50 μM for NPH. But for pNPh it

was from 0.06 to 0.16 μM and 5 to 40 μM. Yi et al. [7] applied electropolymerization for βCD

and L-arginin on the surface of carbon nanotubes @graphene nanoribbons (CNTs@GNRs) for

preparing a modified electrode for 2- and 4-aminophenols (AP). A linear response ranging

from 25.0 to 1300.0 nM for both 2- and 4-AP and the detection limits (DLs) of 2- and 4-AP

obtained in this work were 6.2 and 3.5 nM, respectively.

Figure 3. γ-CD toroid structure showing spatial arrangement.
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1.2. Potentiometric sensors

They are a type of sensors based on measuring the potential changes with concentration in

accordance with the Nernst equation.

Odashima et al. [8] used a long derivative chain of β-cyclodextrin for preparing a new sensory

element for the determination of organic amines. Stefan et al. [9] used either α or γ-cyclodextrin-

based electrodes for the determination ofR-baclofen. The detection limitswere 7� 10�9mol�1L�1

for α-cyclodextrin-based electrode and 1.44 � 10�10 mol�1 L�1 for γ-cyclodextrin-based elec-

trode. (2-hydroxypropyl)-β-cyclodextrin, heptakis(2,3,6-tri-O-methyl)-β-cyclodextrins and hepta-

kis(2,3,6-tri-O-benzoyl)-β-cyclodextrin were applied for preparing diclofenac electrode by Lenik

[10]. Staden and Nejem [11] determined L-vesamicol by CD derivative-based potentiometric

sensor. The detection limit was of the order of 10�10 M. They showed a linear range between

10�9 and 10�7 M. Lenik and Łyszczek [12] determined naproxen by functionalized β-CD. It is

based on inclusion complex of naproxen with β-CD-derivative. The linear range was 5.0� 10�5–

1.0 � 10�2 mol L�1. Staden and Holo [13] determined L-histidine by an entioselective potentio-

metric membrane electrode based on CD. They applied carbon paste impregnated with α-, β-, 2-

hydroxyl-3-trimethylammoniopropyl-β-(as chloride salt) and γ-cyclodextrins (γ-CDs). The

recovery of L-his in the presence of D-his was higher than 99.10%. L-proline electrode was

constructed based on carbon paste impregnated with α, β, or γ cyclodextrin [14]. The detection

limit of the membrane was in the region of 10�10–10�9 M.

All the aforementioned cyclodextrin applications were examples of sensors for drug analy-

sis. The application of cyclodextrin for sensors for inorganic cations is rarely found. We

choose one of these sensors that was sensing for nickel which was constructed by Zareh

et al. [15], to study as an example of CD sensors. Two membrane compositions (Table 1)

were prepared for the optimization to get the best. Electrode type I comprised DEP, while II

comprised NPOE. The behavior of DEP-containing electrodes showed better Nernstian slope

value than NOPE-containing membrane electrode. Both electrode types showed the same linear

range of 5.01 � 10�5 –10�2 M. Figure 4 shows the calibration graphs for each electrode type.

The effect of inner filling (IF) solution was studied by the application of the electrode type I

containing three types of IF-solutions (A, B, and C). They were corresponding to compositions

(0.1 M KCl + 0.1 M NiCl2), (0.01 M KCl + 0.01 M NiCl2), and (0.001 M KCl + 0.001 M NiCl2),

respectively. The slopes of Ni electrode were 30.9, 28.17, and 29.7 mV/decade, for electrodes

with IFA, B, and C, respectively. When A and B IF was applied, the lower linear range reached

5.0 � 10�5 M. In the case of IF solution type C, the linear range was not less than 5 � 10�4 M.

Table 2 summarizes the obtained results.

The response time was estimated according to the IUPAC definition [16]. It is defined as the time

between the instant when the Ni electrode was brought into contact with sample solution and

the first instant when emf/time slope becomes equal to the limiting value selected on the basis of

experimental conditions. Dynamic response was studied for both electrode types containing DEP

or NPOE. From Figures 5 and 6, the response times for electrode types I and II were between 2

and 3 s for both types of electrodes for the tested concentrations 10�2–10�4 M. This fast response

for both types will help in the application of both electrode types for real measurements.
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The detection limit (DL) of an ISE can be defined as the cross point of line segments fitted to

linear segments of emf versus log aNi2+ [16]. For membrane types I and II, the values of the

detection limits were 3.98 � 10�5 and 6.3 � 10�5 M.

The process of the electrode response is based on a nonpolarized electrochemical equilibrium.

There are two equilibrium steps to explain the response mechanism of the proposed Ni-

selective electrode. The first step is the equilibrium between Ni2+ in membrane and solution

sites. The second step is the equilibrium of formation of Ni2+-β-CDX into the membrane site.

The steps of this mechanism can be represented below:

Inner filling solution Slope, mV/Decade Linear range, M R2

A-(10�1 M NiCl2 + 10�1 M KCl) 30.89 10�2–5 � 10�5 0.9987

B-(10�2 M NiCl2 + 10�2 M KCl) 28.17 10�2–5 � 10�5 0.9986

C-(10�3 M NiCl2 + 10�3 M KCl) 29.68 10�2–5 � 10�4 0.9931

Table 2. Effect of inner filling on the performance of Ni-selective electrode based on β-CDX with DEP plasticizer.

Composition, w/w

%

PVC,

mg

βCDX,

mg

DEP,

mg

NPOE,

mg

%

Ionophore

Slope, mV/

Decade

Detection limit,

M

I-Membrane 63.6 12.8 126.4 0 6.31 28.76 3.98 x10�5

II-Membrane 60 14 0 121 7.18 23.33 6.3 x 10�5

Table 1. Composition of membrane types I and II used for preparing Ni2+-selective electrode.

Figure 4. Calibration graphs for Ni-selective electrodes with membrane contains either (a) DEP or (b) NPOE plasticizers.
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Figure 5. Dynamic response for Ni-selective electrodes with membrane type I containing DEP, for different concentra-

tions (a) 0.01 M, (b) 0.001 M, and (c) 0.0001 M Ni2+ solutions.

Figure 6. Dynamic response for Ni-selective electrodes with membrane type II containing NPOE, for different concentra-

tions (a) 0.01 M, (b) 0.001 M, and (c) 0.0001 M Ni2+ solutions.
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2. pH-effect

The potential changes versus different pH values for the DEP-membrane electrode type I and

type II were tested. In acidic part, the break was observed at pH values 3.8 and 3.2 for type I

and II electrodes, respectively. The sensitivity of β-CDX toward the H+ is the reason for the

potential break in acidic medium. The break in acidic medium was due to the inclusion of H+

into ionophore in the membrane site. Above pH 3.2 and 3.8, the potential was not changed

whatever the pH value for types I and II, respectively. This was due to the absence of the H+ ion

concentration, which disturbs the equilibrium. Representative curves for nickel with mem-

brane types I and II are shown in Figure 7.

3. Selectivity properties

The selectivity of Ni electrode with different membrane types I and II was calculated according

to the SSM [16]. Table 3 shows the obtained values of the selectivity coefficient (KPot
Ni

2+
, j
z+).

From the results, it can be reported that most of the tested interferents for Ni-ISE type I showed

perfect selectivity. When the electrode type I was used, the values of the selectivity coefficient

toward divalent cations were so perfect to consider this electrode selective for Ni++ cation. The

recorded values for most of the tested divalent cations were of the order of 10�3. In case of

trivalent cations, this type of electrode showed better selectivity coefficient values (of order

10�5). When electrode type II was used, the selectivity coefficient values were higher than that

for electrode type I. It showed values of order 10�2 for trivalent cations and 10�1 for most of the

divalent cations. This can be attributed to that in type II electrode the NPOE has active sites to

interact with cationic species which lowers the selectivity toward Ni++ [17]. The tested mono-

valent cations (Na+, K+, and NH4
+) showed interference with the measurements with either

type I or type II. Accordingly, it is recommended that measurements with the proposed

electrodes should be conducted in the absence of these cations.

Figure 7. pH-effect for Ni electrode for 0.001 M Ni2+ solutions for electrodes comprising (a) DEP and (b) NPOE.
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The relation between ionic radius [18] of interferent cations and the values of selectivity

coefficient for both electrode types is shown in Figures 8 and 9. It was found that there was

an increase in the selectivity coefficient values with increasing the ionic radius of the tested

cations. This was true for both electrode types I and II. The increment values in case of type I

were less than those in case of type II. This was attributed to that the increase in ionic volume

was suitable for the β-CDX cavity.

Interferent KPot
Ni

2+
, j
z+

I-DEP II-NPOE

Ir3+ 7.67 � 10�5 1.4 � 10�2

Fe3+ 4.38 � 10�5 1.3 � 10�2

Zn2+ 1.1 � 10�3 6.1 � 10�2

Co2+ 1.8 � 10�3 3.5 � 10�2

Cu2+ 2.1 � 10�3 3.0 � 10�1

Ba2+ 2.2 � 10�3 3.0 � 10�1

Mg2+ 1.6 � 10�3 1.5 � 10�1

Ca2+ 2.2 � 10�3 2.0 � 10�1

Cd2+ 2.2 � 10�3 1.6 � 10�1

Hg2+ 1.7 � 10�3 2.0 � 10�1

Mn2+ 1.5 � 10�3 1.7 � 10�1

Pb2+ 2.9 � 10�3 1.2 � 10�1

Table 3. Selectivity coefficient values for nickel electrodes based on β-CDX incorporating (DEP) [I], and (NPOE) [II] as

plasticizers.

Figure 8. Correlation between ionic radius (pm) of the tested cations and selectivity coefficient (KPot Ni2+, j
z+) for Ni-ISE

with membrane type I for 0.0001 M solutions.
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4. Determination of nickel in its samples

In this chapter, two types of samples containing nickel were used. They were representative for

food samples and stainless steel samples. Five steel samples (A–D) and one food (E) sample

were chosen. On the one hand, 0.1 g of each stainless steel sample was dissolved into aqua-

Regia, heated at 105�C, and diluted to 250 ml using bi-distilled water. This solution was

measured directly. On the other hand, 0.5 g chocolate sample (E) was dissolved in 100 ml after

digestion with HNO3, HClO4, and H2O2. In this case, 1 ml was diluted to 50 ml, and the result

solution was subjected to potential measurements using the proposed Ni-selective electrode.

The obtained Ni values into the stainless steel samples (A–D) were between 1.467 and

7.354 ppm. The chocolate sample E showed Ni content 14.707 ppm. All the obtained values

agreed with the values given by AAS analysis of the same samples [19]. The obtained values of

Figure 9. Correlation between ionic radius (pm) of the tested cations and selectivity coefficient (KPot Ni2+, j
z+) for Ni-ISE

with membrane type II for 0.0001 M solutions.

No. Sample Ni2+, ppm RSD*, %

AAS method Ni-ISE method

A Test tube holder 1.437 1.467 1.95

B Shaving blade 6.005 7.354 2.51

C Screwdriver 4.181 4.640 2.13

D Coin (1/4 pound) 4.61 3.686 1.81

E Chocolate (Cadbury Dairy Milk) 12.158 14.707 2.34

*(4-determinations).

Table 4. Determination of nickel in its samples using the proposed Ni-ISE.
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Ni in chocolate agreed with previously recorded values [20]. Table 4 shows the obtained

results for analysis by using both the proposed electrode and an AAS method for the same

samples.

5. Conclusions

Cyclodextrin (CD) is one of the important reagents that is able to form inclusion complex with

a variety of compounds. This property helps its use as an ionophore for preparing electro-

chemical sensors for many organic pharmaceutical cations. The recorded electrochemical sen-

sors were either potentiometric or voltammetric. Up to date, the application of CD for

preparing inorganic sensors was rarely found.
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