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Abstract

Advancements in integrated neuroscience are often characterized with data-driven
approaches for discovery; these progressions are the result of continuous efforts aimed at
developing integrated frameworks for the investigation of neuronal dynamics at increas-
ing resolution and in varying scales. Since insights from integrated neuronal models
frequently rely on both experimental and computational approaches, simulations and
data modeling have inimitable roles. Moreover, data sharing across the neuroscientific
community has become an essential component of data-driven approaches to neurosci-
ence as is evident from the number and scale of ongoing national and multinational
projects, engaging scientists from diverse branches of knowledge. In this heterogeneous
environment, the need to share neuroscientific data as well as to utilize it across different
simulation environments drove the momentum for standardizing data models for neuro-
nal morphologies, biophysical properties, and connectivity schemes. Here, I review
existing data models in neuroinformatics, ranging from flat to hybrid object-hierarchical
approaches, and suggest a framework with which these models can be linked to experi-
mental data, as well as to established records from existing databases. Linking neuronal
models and experimental results with data on relevant articles, genes, proteins, disease,
etc., might open a new dimension for data-driven neuroscience.

Keywords: databases, hierarchy-based data models, integrated neuroscience, LEMS,
layer-oriented data models, NeuroML, object-based data models

1. Introduction

Integrated neuroscience (IN) is an emerging field of research with implications that range from

the derivation of neural networks motifs [1] to approaching one of the most important ques-

tions ever tackled: the nature of consciousness [2]. IN has emerged from the aspiration for

insights, which could only be inferred from data obtained across multiple spatial scales

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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(Ångströms to centimeters) and temporal scales (milliseconds to years). An integrated
approach toward neuroscience requires multiscale neural data—from molecular regulations
(S1) and the dynamics of individual synapses (S2) to information processing in neural net-
works (S3) and to the orchestrated function of brain maps (S4) and systems (S5) (Figure 1).

In their seminal paper “Neuroscience on the NET” [3], Peter Fox and Jack Lancaster draw
parallels between neuroinformatics and the “genome informatics community” that have gained
remarkable insights leveraging the Web to generate federated frameworks for “collective
wisdom.” Fox and Lancaster called the “prospective developers of neuroscience databases” to
“absorb the collective wisdom of these network pioneers,” handle the challenge of “sematic
compatibility,” and develop a neuroscientific database federation to realize the field’s potential
of “scientific exploration.” The increased attention over the past decade to data-driven neurosci-
ence is attested by the number of published papers having these terms as keywords. Tracking the
number of published papers on the subject (retrieved from PubMed) follows an exponential
curve, where the “knee” of the curve is in 2010 (Figure 2, left). A combination of an integrated
approach to neuroscience with the establishment of a federated framework for “collective
wisdom” of neuroscientists and engineers can fuel the celebration of the “era of the brain.”

1.1. The data tail

Neuroscientific data flow from various resources, ranging from government funded consor-
tiums of laboratories, to individual laboratories spread worldwide.

Figure 1. Schematics of the spatial scales (molecules to complete nervous systems) of integrated neuroscience.
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1.1.1. “Big science” initiatives

Today, one of the most ambitious endeavors aiming at integrated neuroscience is the human

brain project (HBP) [4]. HBP is a multinational EU-funded research initiative, aimed at advanc-

ing multiscale brain-inspired information technology. Neuroinformatics lies at the core of HBP

and orchestrated by COLLAB, a Web-based collaborative cloud-based system, developed

within HBP’s neuro informatics platform (NIP). COLLAB is fueling the project’s other plat-

forms (brain simulation, neurorobotics, medical informatics, and neuromorphic computing)

with immense upstream and downstream data flows. It is distributed as a software as a service

(SaaS) by HBP’s high-performance analytics and computing platform (HPAC), enabling mas-

sive data archiving and distribution of virtual machines (VM) to collaborators, empowering

them with high-end supercomputing capabilities for simulation and data analytics. COLLAB’s

mission is not a trivial one: it must be interfaced with heterogeneous data types and ontologies

to manage metadata storage and provide a query system with which rodent and human brain

atlases can be constructed and populated using different data modalities (anatomy, physiol-

ogy). Moreover, COLLAB should link its data with foreign maps, databases, and atlases. HBP

precedent is the human genome project (HGP) [5], a project that radically changed the ways

research in molecular biology is carried out and how we perceive it. HGP has new disciplines

as heirs, ranging from personalized genomic-based medicine to comparative genomics. It has

established innovative approaches to biological database creation and maintenance, such as

the construction of public small-molecule libraries with which biological pathways can be

standardized. HBP approach aims to do the same for neuroscience.

Inspired by HGP and HBP, a new scientific endeavor termed “BRAIN”was initiated in the US

by the White House, “aimed at revolutionizing our understanding of the human brain” [6] and

like the other initiatives to “empower individual labs by providing…open-access databases.”

Another ambitious project is the NIH-funded human connectome project (HCP), which aims

to characterize the human brain connectivity and functions. In this project, colossal amount of

data will be gathered from many hundreds of patients with state-of-the-art 3D fMRI machines,

EEG and MEG. Full-genome sequencing from all subjects will be performed as well. Behav-

ioral measures in different domains (cognition, emotion, perception, and motor function) will

also be recorded [7]. Other governmentally funded integrated neuroscience programs include

the “Brain Canada” [8] and the “China Brain Project” [9]. All aforementioned acknowledge the

Figure 2. Number of papers linking neuroscience and data across the last 4 decades (right), the emergence of the long-tail

and dark data volumes from exploring the size and number of neuroscientific data sets.
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fact that establishing standardized data collection and processing, as well as mechanisms for

data sharing and credit allocation, are fundamental to their project’s success.

1.1.2. The long tail data

Enormous “big-science” initiatives such as the HBP, HGP, and the BRAIN have large coordina-

tion teams, and as mentioned above, great emphasis is given within their scope to data and

copyrights. Moreover, they are usually required (by the funding agency) to share their results

with the community. However, routine scientific work in individual labs or small consortiums

generates themajority of scientific data. Although each lab produces relatively limited amount of

data, together they constitute the bulk of neuroscientific information. These granular, individu-

ally assembled data sets (usually given as publishable units) are referred to in the literature as

“long-tail data.” The tail of data also includes “dark-data,” which is comprised of unpublished

information, sitting aimlessly in personal hard drives or in restricted shared folders (Figure 2,

right). Within this tail of neuroscientific data lies a unique opportunity—the possibility of assem-

bling these scattered pieces of knowledge into “deep” data collections [10]. Ferguson and col-

leagues reviewed “data sharing” in the long tail of neuroscience [11]. While describing the

limitations of data sharing among individual labs, they demonstrated the impact such an

attempt would make through the success of the IMPACT consortium [12]. IMPACT collected

tailed clinical data from over 43,243 patients who have suffered from traumatic brain injury (TBI)

over the span of 20 years into a “deep” database. Their data were mined to derive a prognostic

model with unprecedented precision for predicting recovery, ushering a new era for TBI preci-

sion medicine [13]. IMPACT demonstrated the way “deepening” long-tail data can provide

incredible insights and even revolutionize treatment. Another example is the recently established

data sharing community for spinal cord injury (SCI) research [14].

1.1.3. Deepening the long tail data

The main challenges of deepening tailed neuroscientific data encompass all levels of data han-

dling and association including acquisition, quality control, representation, system implementa-

tion, user interface and documentation, data analysis, budget and maintenance, and federation

[15]. Among all these dimensions, data representation is the most extensively discussed, as it

stands as a prominent bottle neck in the definition of data sharing standards. Recently, a group of

thought leaders, comprised of scholars, librarians, archivists, publishers and research funders,

came together to provide the research community with guidelines toward the creation of stan-

dards for data sharing, which they termed the “FAIR Data Principles” [16]. The FAIR guidelines

dictate that data should be (1) findable, with a rich assigned standardized metadata and persis-

tent identifier; (2) accessible, via an identifier and an open, free, and universally implementable

communications protocol; (3) interoperable, via broadly applicable language for knowledge

representation; and (4) reusable, via domain-relevant community standards. A great emphasis

is therefore given in the FAIR guidelines to carefully constructed metadata.

Following the importance of data standardization in computational modeling in biology, and

particularly in neuroscience, the COMBINE consortium has been initiated in 2009 [17]. COM-

BINE aims to coordinate and facilitate different community-based standardization efforts in

the field of computational biology. COMBINE’s neuro-related standardization efforts include
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computational neuroscience ontology (CNO) [18], NeuroML [19], and spiking neural markup

language (SpineML) [20].

One of the most prominent database federations for the neuroscientific community is the

neuroscience information framework (NIF) [21], which has been cataloging and surveying the

neuroscience resource landscape since 2006. NIF currently gives access to over 250 data

sources categorized to different subjects ranging from software tools to funding resources.

NIF provides a distributed query engine to tailed data, which is independently created and

curated. This type of distributed search among independent databases is enabled through

NIF’s DISCO registry tool with which a Web resource can send automatic, or manual, data

updates to the NIF system [22].

1.2. Models for computational neuroscience

Linking neuroscientific data with simulation environments has deep roots in the origins of

neuronal modeling and databases. Starting with the seminal works of Alan Hodgkin, Andrew

Huxely, and Wilifrid Rall during the 1970s, which established today’s most utilized models for

neuronal dynamics, the scale of simulating neural networks has picked up. As computing

resources became abundant, neuronal simulations began to be carried out by an increasing

number of labs, creating the need for a database in which already established models could be

realized and build upon.

Models of neuronal dynamics span over all scales abstraction, where each abstraction level

encapsulates an increasing amount of details (Figure 3) [23].

Increasing level of complexity entails increasing amount of required data. Databases for com-

putational models are therefore well integrated with simulation platforms such as NEURON

[24] and GENESIS [25].

Figure 3. Models’ schematics in computational neuroscience.
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PyNN [26] and NeuroML are independently developed approaches to allow standardization

of neuronal modeling, enabling models’ utilization across simulators. While NeuroML took

the declarative approach for modeling, explicitly specifying the model using in a structured

format (with XML), PyNN took the procedural approach, specifying the models using func-

tions and procedures, in this case, executing python scripts on different simulators.

Neuronal modeling usually requires morphological, connectivity, and physiological data.

Neuromorph.org is the largest federated collection of 3D neuronal reconstructions and associ-

ated metadata [27]. For each neuron, a rich metadata is gathered, including miscellaneous

information ranging from file format to the source specie, sex, age, weight, etc. Forward auto-

matic analysis, ranging from size to topology, is also made for each morphology, leading to a

range of morphological insights [28]. NeuroMorpho.Org is carefully curated and administrated,

with a team responsible for file transfer, conversion, annotation and curation, minimizing the

burden on the data submitter. A model can be submitted to NeuroMorpho.Org only when it is

associated with published results—a curation decision that on one hand ensures data quality but

on the other hand rejects the wealth of information residing on the dark side of the data tail.

Since neuronal modeling incorporates morphological data, as well as physiological data, inter-

operability between the two is essential. Indeed, the NeuroMorpho.Org database can be utilized

with other complementary resources such as the CellPropDB, NeuronDB [29], ModelDB [30],

and MicrocircuitDB (all four are curated by SenseLab at Yale university). While CellPropDB is

comprised of data regarding receptors, channels, and transmitters, NeuronDB distributes these

elements across a specific neuron. ModelDB comprised of computational models of neurons

derived from NeuronDB. MicrocircuitDB contains circuit modeling, which was built upon data

from ModelDB. Today, all SenseLab databases are tightly coupled with Neuron [31].

2. Data models

Neuroscientific data models must encompass the different levels of neuronal scales: starting at

the molecular regime, going up to the membrane and synapse levels, moving through the

dendritic tree and axonal branches, and finishing at the circuit and system levels. Each level

encapsulate further details. For example, at the circuit level, data on proteins and ions is

‘hidden’ at the encapsulated lower levels of representation. Various data models exist for each

scale—here I chose a representative for each model, which in my opinion reflects its main

properties. Please note that the schematics shown below for each data model, particularly for

Neuron’s object-based representation schemes, do not aim to accurately specify the objects

hierarchy scheme in terms of inheritance or composition. They are given here to purely

illustrate the general approach for modeling.

2.1. Structuring data

Following samples acquisition, data must be structurally organized. It can be structured in

either a “flat file,” a tabular formation, a structured file (such as XML), an object based, or a

layer-oriented scheme (Figure 4). Data in a flat file are stored in an unstructured manner and

therefore manipulating it would require reading it entirety into memory. Data can be
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structured as a table, where each value is headed with a type and usually also with a size

identifier. eXtensible markup language (XML) is a different approach for data structuring, in

which data is arranged in schemes, where each subsequent level increases the scope of the

previous one. XML gained industry momentum due to its simplicity and flexibility, enabling

declarative specifications rather than coding. This facilitates automated transformation of

model specifications into multiple other formats. One of the main alternatives to data model-

ing is object-based representation of information, in which entities are defined with a set of

properties and connected as attributes. Object-based representation allows the encapsulation

of internal details of the data associated with the heterogeneity of the underlying data sources.

Another approach is the layer-oriented approach (LOA), in which interlinked declarative

languages (or layers) specify the model. The rationale behind the LOA is the premise that

computational models are not a “flat collection of equations” but rather a hierarchical structure

from which the underlying biological concept is reflected.

2.2. Models of morphological data

Before data can be modeled, it needs to be abstracted. The level of neuromorphological details

with today’s advanced imaging techniques, such as the two photons microscopy, is staggering.

Moreover, since image stacks cannot be directly used for computational modeling due to their

nontrivial interpretability and size, morphology must be reconstructed from them. Encapsula-

tion of the details of neuromorphological data needs to consider its application, which in our

case is computational modeling. Since different environments such as Neurolucida, NEURON,

and GENESIS use a different representation of morphological data (Figure 5), a generalized

representation, such as the MorphoML, is required to enable easy conversion to each format.

2.2.1. Flat structuring of morphological data

Neuromantic [32] is a semiautomatic stand-alone freeware reconstruction application, in

which serial image stacks (JPEG to TIFF) are used to reconstruct dendritic trees. Reconstruc-

tions are stored in the SWC data format. SWC is one of the most widely used data models for

neuromorphological data, for which a standardized version is used by Neuromorpho.org (not

to be confused with Adobe file format). It is ASCII encoded text, where each line represents a

single morphological sample point, which is represented by seven data items: id, structure

identifier, 3D location, radius, and parent id. For example, the data entry:

Figure 4. Schematics of data structuring paradigms.

2 1 -2 -3.33 0 7.894 1
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signifies a sample point with id number 2, connected to sample point number 1, identified as

being located at the soma (structure identifier 1), located at (x = �2, y = �3.33, z = 0), in a

compartment with a 7.894 radius. SWC files are generally small in size, trivial to read, and

widely adopted across applications.

2.2.2. Hierarchical structuring of morphological data

Another approach for neuromorphological data modeling is using XML. One example is the

MorphoML [33], which is a part of NeuroML. For example, defining soma and a dendrite can

be written as:

This XML-based neuromorphological specification can be verified using a dedicated software,

as well as be converted to GENESIS or NEURON readable formats. Schematics of hierarchy-

based representations of neuromorphological data are illustrated in Figure 6 (left).

2.2.3. Object-based structuring of morphological data

NEURON, one of the dominant players in computational neuroscience, has a dedicated file

type termed “HOC.” It has C-like syntax with an additional object-oriented expressability. One

Figure 5. Representation of morphological data across different environments.

<cells>

<cell name = "Example">

<meta:notes>A Simple cell</meta:notes>

<segments>

<segment id = "0" name = "Soma" cable = "0">

<proximal x = "0.0" y = "0.0" z = "0.0" diameter = "16.0"/>

<distal x = "0.0" y = "0.0" z = "0.0" diameter = "16.0"/>

</segment>

<segment id = "1" name = "Dend" parent = "0" cable = "1">

<proximal x = "8.0" y = "0.0" z = "0.0" diameter = "5.0"/>

<distal x = "28.0" y = "2.0" z = "0.0" diameter = "6.0"/>

</segment>

</segments>

<cables>

<cable id = "0" name = "SomaCable" />

<cable id = "1" name = "DendriteCable" />

</cables>

</cell>

</cells>
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of the uses for “HOC” is defining a neuronal morphology by constructing an array of “section”

objects, each defined by a series of four points (using neuron’s “pt3dadd” function): three

coordinates and a radius. Sections can be connected to one another (using neuron’s “connect”

function). For example, two connected sections can be characterized by sample points: (109.72,

125.39, 19.28) and (109.93, 125.85, 19.01) with radiuses 3.96136 and 3.88, respectively, for the

first section and (115.42, 125.23, 15.19) and (115.69, 125.16, 15.05) with radiuses 0.752 and 0.64,

respectively, for the second section:

A list of sections can be linked as attributes in a “cell” class, enabling treating them in a unified

(abstracted) manner. Schematics of object-based representation of neuromorphological data

are illustrated in Figure 6 (right).

2.2.4. Tabular structuring of morphological data

One of the prevalent platforms for morphological reconstruction is Neurolucida (http://www.

mbfbioscience.com/neurolucida), which provides different data models for representation,

including ASC, DAT, and XML, for which format specification is not publicly available.

However, reversed engineered specification for Neurolucida’s DAT data format (available

create section[703]

section[0] {

pt3dclear()

pt3dadd(109.721,125.39,19.2812,3.96136,0)

pt3dadd(109.93,125.285,19.0172,3.88406,0)

}

section[1] {

pt3dclear()

pt3dadd(115.427,125.239,15.19,0.752,0)

pt3dadd(115.695,125.161,15.0518,0.649936,0)

}

connect section[1](0.0), section[0](1.0)

Figure 6. Hierarchical and object-based representation of neuromorphological data.
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through: neuronland.org) reveals a hierarchy of data blocks, each identified by a Hexadecimal-

encoded header (specifying the block type and size), followed by ASCII encoded data. For

example, name and sample data are encoded using:

The type of block determines the data which follow the header including the Tree and Sub-

Tree types to define the topology and connections of the samples. Data is therefore organized

as a table.

Frameworks such as neuroconstruct [34] can import morphology files in all of the above

formats and use them in conjunction with network specification and cellular mechanisms to

generate script files for various simulation platforms, such as NEURON, GENESIS, and

PyNN. While Neuromorpho.org adopted SWC and NEURON’s data model as their data-

sharing standard, the Human Brain Project adopted the Neurolucida data model as the

format of choice.

2.3. Models of biophysical data

The establishment of the Hodgkin–Huxley-type compartments modeling and the develop-

ment of experimental methods such as patch-clamp recording and imaging techniques are

two complementary advancements which have transformed the field of neuroscience. Molec-

ular aspects of neuroscience could be precisely measured and then used for computational

modeling. Modeling neuronal behavior at the molecular level is a crucial aspect of modern

neuroscience. Standardizing and modeling neurophysiological data, which often include

mechanisms as a set of nonlinear equations, differential equations, or kinetic reaction schemes,

are critical for utilization of computational models across simulators.

2.3.1. Object-based structuring of biophysical data

Over the years, NEURON has been extended to include a library of biophysical mechanisms,

which were developed using its dedicated high-level programming language: NMODL (which

was also adopted later by GENESIS). For example, a model for a leak current using the

canonical electrical model of a current channel, with i (leak current), e (equilibrium potential),

and g (conductance) can be defined using NMDOL with [35]:

% header : size : String

0x0001 : 0x0000000A : 'Name'

% header : size : x : y : z : d : section id

0x0101 : 0x00000018 : 2.15 : -3.25 : 18.55 : 0.54 : 0x0000

NEURON { % interface

SUFFIX leak % density mechanism

NONSPECIFIC_CURRENT I % i in charge of the balance equations

RANGE i, e, g % are functions of position

}

PARAMETER {

g = 0.001 (siemens/cm2) < 0, 1e9 >
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In this modeling paradigm for physiological data, its type is encapsulated with a “template”

class (following the object-based data structuring) and instantiate as objects where appropriate.

For example, to instantiate a leakage current (with specific values for i and g) and attribute it to a

NEURON’s cable segment, one can write:

Schematics of object-based representation of biophysical data are illustrated in Figure 7 (right).

2.3.2. Hierarchical structuring of biophysical data

ChannelML is the second layer of NeuronML, enabling specifying biophysical data with XML.

For example, specifying a Na + channel in ChannelML can be written as:

e = -65 (millivolt)

}

ASSIGNED {

i (milliamp/cm2)

v (millivolt)

}

BREAKPOINT { % to be incrementally executed by the simulator

i = g * (v - e)

}

cable {

nseg = 5

insert leak

g_leak = 0.002 % S/cm2

e_leak = -70 % mV

}

print cable.i_leak(0.1) % show leak current density near 0 end of cable

<channelml>

<channel_type name="NaChannel" density="yes">

<current_voltage_relation

cond_law="ohmic" ion="na" default_erev="50" default_gmax="120">

<gate name="m" instances="3">

<closed_state id="m0"/>

<open_state id="m"/>

<transition name="h" from="m0" to="m" expr_form="exp_linear"

rate="1" scale="10" midpoint="-40"/>

<transition name="beta" from="m" to="m0" expr_form="exponential"

rate="4" scale="-18" midpoint="-65"/>

</gate>

<gate name="h" instances="1">

<closed_state id="h0"/>

<open_state id="h"/>

<transition name="alpha" from="h0" to="h" expr_form="exponential"

rate="0.07" scale="-20" midpoint="-65"/>

<transition name="beta" from="h" to="h0" expr_form="sigmoid"

rate="1" scale="-10" midpoint="-35"/>

</gate>

</current_voltage_relation>

</channel_type>

</channelml>
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Neuroconstruct support both data models. Moreover, scripts for converting ChannelML spec-

ification to NEURON are also available. Schematics of hierarchy-based representation of

biophysical data are illustrated in Figure 7 (right).

2.3.3. Layer-oriented structuring of biophysical data

Another approach for physiological modeling is the layer-oriented approach (LOA) [36], in

which the mathematical model (usually a set of differential equations) is governed by

interlinked aspects of its structure. The LOA rationale is that biophysiological models such as

the Hodgkin–Huxley model for ion channels have a hierarchical structure from which

the underlying biological concept is reflected. Layer structure and relations are described in

Figure 8.

By structuring mathematical behavior in a layered-structure manner, modules can be reused

where different parameters are incorporated. One can utilize for example the same computa-

tional mechanism for membrane potential with either Hodgkin-Huxley model or GHK model

or utilize the same gating dynamics for different dynamic models. Here, each layer is defined

using a XML-like definition language (similarly to what was shown above), where connections

between layers are defined separately in a meta-data file.

2.4. Models of network data

A model of a neural network must indicate at the very least the following specifications:

connectivity scheme, as well as neuron and synapse models (typically by a set of differential

equations, spike generation criteria, and refractory periods) [37].

2.4.1. Hierarchical structuring of network data

NetworkML is NeuroML’s third specification level, which allows positioning neurons in 3D,

as well as defining their connectivity pattern, and synaptic specifications to other neurons.

It uses three core elements for network description: population (cells of a specific type),

Figure 7. Hierarchical and object-based representation of biophysical data.
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projection (set of synaptic connections between populations), and input (describes an exter-

nal electrical input into the network). Networks can be described with either instance-based

(explicit list of positions and synaptic connections) or template-based (e.g., placing and

connecting N cells randomly in a particular rectangular region) representation. For example,

placing two populations of neuron PopA and PopB in 3D can be specified in NetworkML

with [19]:

PopA and PopB can be connected with “projection”:

Figure 8. Layer-oriented representation of biophysical data.

<populations>

<population name="PopA" cell_type="CellA">

<instances size="2">

<instance id="0"> <location x="0" y="0" z="0"/> </instance>

<instance id="1"> <location x="10" y="0" z="0"/> </instance>

</instances>

</population>

<population name="PopB" cell_type="CellB">

<instances size="3">

<instance id="0"> <location x="0" y="100" z="0"/> </instance>

<instance id="1"> <location x="10" y="100" z="0"/> </instance>

<instance id="2"> <location x="20" y="100" z="0"/> </instance>

</instances>

</population>

</populations>
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Schematics of hierarchy-based representation of network data are illustrated in Figure 9 (left).

2.4.2. Object-based structuring of network data

In NEURON, neurons can be interconnected to form networks using the object-based approach.

For example, giving an array of “cell” objects (each encapsulates its defining sections, such as a

soma and dendrites), they can be connected (e.g., circle topology) using Neuron’s ExpSyn and

NetCon object using (written in NEURON-Python):

Schematics of object-based representation of network data are illustrated in Figure 9 (right).

for i in range(N): % N cells

src = cells[i] % select source cell

tgt = cells[(i + 1) % N] % select target cell

syn = h.ExpSyn(tgt.dend(0.5)) % place a synapse in the middle of the target

nc = h.NetCon(src.soma(0.5)._ref_v, syn, sec=src.soma)

% Connect source soma to target synapse

nc.weight[0] = .05

nc.delay = 5

<projections units="Physiological Units">

<projection name="NetworkConnection" source="PopA" target="PopB">

<synapse_props synapse_type="DoubExpSynA" internal_delay="5" weight="1" threshold="-20"/>

<connections>

<connection id="0" pre_cell_id="0" pre_segment_id = "1"

post_cell_id="1" post_segment_id = "0" post_fraction_along = "0.25"/>

<connection id="1" pre_cell_id="1" pre_segment_id = "1"

post_cell_id="0 post_segment_id = "0" post_fraction_along = "0.25"/>

</connection>

</connections>

</projection>

</projections>

Figure 9. Hierarchical and object-based representation of network data.
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2.5. Integrated models

When it comes to integrated structuring of neuromorphic data, NeuroML is a prominent

standard. It is defined using MorphML, ChannelML, and NetworkML, as they were

described above. This integrated approach for neuroinformation standardization enables

Figure 10. NeuroML 1 integrated approach to morphological, biophysical and network modeling.

Figure 11. NeuroML 2 hybrid approach to morphological, biophysical and network modeling.
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such models to be directly converted and mapped into different simulation frameworks.

When integrating standard representation models with a “Meta Simulator” such as the

NeuroConstruct or PyNN, a powerful framework is established. With such an approach,

data can be distributed across multiple simulators, compared, and then validated with

experimental data (Figure 10) [19].

In the second version of NeuroML, a new holistic approach is being developed for modeling,

termed Low Entropy Model Specification (LEMS). LEMS is a hierarchical, XML-based lan-

guage in which ion channels, synapses, neurons, and networks can be specified together. It

combines a hybrid hierarchical object-based approach to modeling. An illustration is given in

Figure 11. Detailed example is given in [38].

3. Rapid development of specialized neurocentric databases

In contrary to primary and secondary databases, specialized databases are mostly curated by

individual laboratories or consortiums. They are characterized with a research-specific relational

schema and specialized data types. Specialized databases are under constant development,

aiming at supporting the rapid advancements in experimental techniques, which often produce

vast amount of heterogeneous data. Most specialized databases are comprised of both new

results and datasets–derived entries, constituting a hybrid approach of the new and the

established. This stands as a major challenge to specialized data base designer, which have to

support data querying, acquiring, and parsing from established data sources, as well as to

integrate (or link) the results, with their own data model.

Specifically, the curation of specialized databases for neuroinformatics is an ever-growing

challenge due to the need for organizing, structuring, and interconnecting vast amount of

data, with standardized data structures. Here, an open-source framework for the curation of

specialized databases is proposed. Our framework has the potential of realizing two com-

plementary needs in the context of neuroinformatics: (1) structuring experimental data with

standardized models which can be used for cross-simulations and (2) incorporating the

experimental data and models with other data such as relevant diseases, articles, and bio-

logical models.

3.1. Framework

Databases often use a stable URL syntax, which renders a standard set of input parameters

into the information needed to search and fetch the requested data. The proposed framework

supports the generation of URL structured interface to local and remote data sets, including

NCBI’s databases, Malacards, and Biomodels. It was implemented with Java, extended to

support objects’ persistency with EclipseLink. I chose Apache Derby (part of the Apache DB

Project) for data management. Derby is written in Java, and it is suitable for code embedding

due to its small footprint and ease of use. Syntactic analysis was based on the w3c.dom open

libraries, Apache Commons, J3D, and jsoup. The framework is described in length and exem-

plified for the curation of a database dedicated for aneurysms in [39].
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In the context of neuroinformatics, the user can therefore take her morphology, biophysical,

and connectivity experimental data, encapsulate them into interconnected classes (thus, creat-

ing a schema), and then link each of them to a structured data model (such as the ones

described above). Each data model can be connected to articles, biological models, and dis-

eases, which can be derived from existing databases and deposited in a specialized local

database. Data can be retrieved later for further analysis. See schematics in Figure 12.

The proposed framework can be implemented with different packages and programming

environments. For example, Java was utilized to map data entities to NCBI’s PubChem schema

and to provide functions to invoke NCBI eUtilities and PubChem web services [40]. Similarly,

objects persistency can be attained with either Python, Java, or C++. Python’s standard library

for example supports a family of hash-based file formats and objects serialization. The Java

Persistence API (JPA) was also implemented by various development groups, including

Apache OpenJPA, Hibernate, and EclipseLink, offering metadata-based automatic creation of

data models. Providers of database management frameworks are likewise varied and include

Apache Derby and the cloud-based MongoDB.

3.2. Implementation

I have recently proposed a framework for the development of specialized databases [39]. In this

framework, Java was chosen as the development environment, with which interfaces to online

databases such as MalaCards (to retrieve disease information), Biomodels (to retrieve biological

models), and NCBI’s databases (to retrieve gene, taxonomy, protein, and articles data) were

designed. By integrating these interfaces with EclipseLink (JPA provider), Apache Derby (database

Figure 12. Database integrated approach to morphological, biophysical and network modeling.
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manager), and a range of data parsers, a versatile framework for the curation of specialized data-

bases is provided. This framework can be used to integrate new data and database-derived infor-

mation into auser-defineddatamodel.A schematic of the implementation is presented inFigure 13.

In the framework’s main data flow, structured URL interfaces are used to establish connections

between the user-defined data model to online data sets. Here, I used Entrez to interface with

NCBI’s data sets. NCBI’s Entrez Programming Utilities provide a structured URL interface to

their dozens of databases covering a variety of biomedical data, including gene and protein

sequences, gene records, three-dimensional molecular structures, and biomedical literature [41].

Efforts to provide a similar utility for the neuroscientific community were also made. For

example, Samwald and colleagues developed the “Neuron Entrez” [42], which integrates

several neuroscientific ontologies: NeuronDB and ModelDB, subcellular anatomy ontology

(SAO), and an OWL conversion of the cell centered database (CCDB). Once matured, this type

of integrated neurocentric retrieval of data can greatly enhance frameworks, such as the one

being proposed here.

A series of data processing tools were utilized to implement parsers for syntactic analysis of

the retrieved data. The w3c.dom package provides the document object model (DOM) inter-

faces, which were used as the API for XML processing. This is essential for handling NeuroML

structured data. The Apache Commons’ libraries, the jsoup library, and the org.j3d library of

the Java 3D Community were utilized for CSV, html, and STL parsing, respectively.

Figure 13. Realization of the database integrated approach to morphological, biophysical and network modeling.
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The user utilizes Java object-oriented approach to encapsulate the retrieved data and to inte-

grate it with her own data model. Object-relational mapping (converting Java objects to

relational tables) is defined via persistence metadata. Metadata is defined via annotations

embodied in the Java class and with an accompanying XML file. This allows EclipseLink to

statically and dynamically query the database with SQL-like syntax. Apache Derby supports

SQL data storing and querying in a client/server operation mode (commonly used database

architecture). Suggested implementation for the above is provided via NBEL-lab.com and

distributed under the creative common agreement.

4. Conclusions

Recent developments in Integrated Neuroscience (IN) are often characterized with efforts

to up-scale data production and to provide frameworks from which new insights can

emerge [43]. Since insights from integrated neuronal models often rely on the combination

of experimental and computational approaches [44], simulations and modeling have a key

role. Moreover, sharing neuroscientific data in the heterogeneous environment of IN drove

the momentum for standardizing data models for neuronal morphologies, biophysical

properties, and connectivity. Here, I propose a framework with which standardized

models can be structured with experimental data, as well as with established data from

existing databases. A combination of an integrated approach to neuroscience with the

establishment of a federated framework for “collective wisdom” of neuroscientists and

engineers might open a new dimension for data-driven neuroscience and fuel the celebra-

tion of the “era of the brain.”
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