
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Chapter 2

The Eight Epochs of Math as Regards Past and Future

Matrix Computations

Frank Uhlig

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.73329

Abstract

This survey paper gives a personal assessment of epoch-making advances in matrix
computations, from antiquity and with an eye toward tomorrow. It traces the develop-
ment of number systems and elementary algebra and the uses of Gaussian elimination
methods from around 2000 BC on to current real-time neural network computations to
solve time-varying matrix equations. The paper includes relevant advances from China
from the third century AD on and from India and Persia in the ninth and later centuries.
Then it discusses the conceptual genesis of vectors and matrices in Central Europe and in
Japan in the fourteenth through seventeenth centuries AD, followed by the 150 year cul-
de-sac of polynomial root finder research for matrix eigenvalues, as well as the superbly
useful matrix iterative methods and Francis’ matrix eigenvalue algorithm from the last
century. Finally, we explain the recent use of initial value problem solvers and high-order
1-step ahead discretization formulas to master time-varying linear and nonlinear matrix
equations via Zhang neural networks. This paper ends with a short outlook upon new
hardware schemes with multilevel processors that go beyond the 0–1 base 2 framework
which all of our past and current electronic computers have been using.

Math subject classifications: 01A15, 01A67, 65-03, 65F99, 65Q10

Keywords: math history, math computations, matrix, matrix computations, Zhang neural
network, time-varying model, time-varying computations, 1-step ahead discretization
formulas, time-varying equations, eigenvalues, computer hardware, numerical analysis

1. Introduction

In this paper we try to outline the epoch making achievements and transformations that have

occurred over time for computations and more specifically for matrix computations. We will

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

trace how our linear algebraic concepts and matrix computations have progressed from the

beginning of recorded time until today and how they will likely progress into the future. We

take this limited tack simply because in modern times, matrices have become the elemental

and universal tools for most any computation.

This evolution of our matrix methods will be described in broad strokes. My main emphasis is

to trace the mathematical genesis of matrices and their uses and to learn how the modern

matrix concept has evolved in the past and how it is evolving. I am not interested in matrix

theory by itself, but rather in matrix computations, i.e., how matrix concepts and algorithms

have been developed from approximately 3000 BC to today, and even tomorrow.

This paper describes eight noticeably separate epochs that are distinguished from each other

by the introduction of evolutionary new concepts and subsequent radically new computa-

tional methods. Following the historical trail through six historically established epochs, we

will then look into the present and the near future.

What drives us to conceptualize and compute differently now, and what is leading us into the

seventh and possibly eighth epoch? When and how will we likely compute in the future?

I am not a math historian, I have never taught a class in math history. Instead, throughout my

academic career, I have worked with matrices: in matrix theory, in applications, and in numer-

ical analysis. I like to construct efficient new algorithms that solve matrix equations. The idea

for this paper is in part due to my listening by chance to a very short English broadcast from

Egyptian radio on short wave some 40 years ago in the 1970s. It described an Egyptian

papyrus from around 2000 BC that dealt with solving linear equations by row reduction and

zeroing out coefficients in systems of linear equations, i.e., by what we now call “Gaussian

elimination.” When I heard this as a young PhD, I was fascinated and wrote the station for

more information. They never answered, and when I was in Cairo many years later, the

Egyptian Museum personnel could not help me either with locating the source.

Thus, I became aware that Carl Friedrich Gauß did not invent what we now call by his name,

but who did?

For many decades, this snippet of math history just lingered in my mind until a year ago when

I was sent a book on Zhang neural network (ZNN) methods for solving time-varying linear

and nonlinear equations and was asked to review it. The ZNN methods were—to me and my

understandings of numerics then—so other-worldly and brilliant that I began to think of the

incredible leaps and “bounces” that math computations have gone through over the eons,

from era to era. I eventually began to detect seven or eight computational sea changes, what I

call “epochs,” in our ability to compute with matrices, and that is my topic.

2. A short history of matrix computations

Nobody knows how numbers and number systems came about, just like nobody knows “who

invented the wheel.” I will start with a few historical facts about number systems and how

they developed and were used across the globe in antiquity.

Recent Trends in Computational Science and Engineering26

2.1. Early number systems

Humankind’s first developments of number systems were very diverse and geographically

widely dispersed, yet rather slow. The first circle cipher for zero occurred in Babylonia around

2500 BC or 4500 years ago. A continent or two removed, the Mayans used the same concept

and circle zero symbol from around 40 BC. In India, it was recognized during the seventh

century. But zero only became recognized as a “number to compute with” like all the others in

the 9th century in Central India. Our decimal system builds on the ten numbers 0, 1, 2, 3, 4, 5, 6,

7, 8, and 9. The decimal positional system came from China via the Indus valley, and it started

to be used in Persia in the ninth century. It was combined with or derived from a Hindu

number system of the same time period.

In fact Westerners call the current decimal number symbols wrongfully “Arabic,” but most

Westerners (and I) cannot read the license plates on cars in Egypt since the Arabic world does

not use our Persian/Hindu numbers in writing but its own script using Arabic letters to desig-

nate numbers. Should we call our “western” numbers “Farsi” or “Hindu” instead?

Various bases have been used for numbering. There have been base 2, base 8, base 10, base 12,

base 16, base 60, and base 200 number systems and possibly more at some time somewhere

throughout human history. Counting and simple computations started with notched sticks for

record keeping and with the invention of sand or wax tablets and then the abacus. These simple

tools were developed a little bit differently and independently in many parts of the globe.

2.2. Antiquity: first epoch

Around 2200 to 1600 BC, Sumerian, Babylonian, and Egyptian land survey computations

became mathematized in order to mark and allot land after the yearly Euphrates, Tigris,

and Nile floods. That lead to linear equations in 2, 3, or 4 variables and subsequent

methods to solve them that amounted to what we now call row reduction or Gaussian

elimination.

Mathematical computations did not advance much during the Greek times as Greek mathe-

maticians were mainly interested in mathematical theory and in establishing the concept of a

formal proof, as well as elementary number theory of which the Euclidean algorithm is still

used today.

Neither did the complicated Roman numerals lend themselves to easy computations, and no

further computational advances happened there.

2.3. Early mathematical arts in China, India, and the Near East: second epoch

(Based in part on a lecture at Hong Kong University in 2017, given by Xiangyu Zhou, Chinese

Academy of Sciences, for Chinese sources, and on Indian and Arabic sources from elsewhere).

In prehistoric and historic times (1600 BC–1400 AD), knot and rod calculus were prevalent in

China. They were based on a decimal positional system, so-called rod numerals. These com-

prised the most advanced number system of the time, and it was used for several millennia

The Eight Epochs of Math as Regards Past and Future Matrix Computations
http://dx.doi.org/10.5772/intechopen.73329

27

before being adopted and expanded in Persia and India in the ninth century AD and later on

adopted in Central Europe.

The Mathematical Classic of Sunzi by Suanjing (from the third to the fifth century) gives a

detailed description of the arithmetic rules for counting rods. In the Indus valley, clay tablets

covered with sand were used for mathematical computations several millennia ago. Bhaskara

(600–680 AD) in India was the first one to write numbers in the Hindu positional decimal

system which used the circle for zero. In 629 AD he approximated the sine function by rational

expressions while commenting on Aryabhatta’s (476–550 AD) book Aryabhatiyabhisya from

499 AD. An Indian contemporary of Bhaskara, Brahmagupta (598–665 AD), was the first one

to establish the rules that govern computing with zero. Brahmagupta texts were written in

Sanskrit verse that used the Sanskrit word for “eyes” to denote 2, “senses” for the number 5,

etc. This was common in Indian mathematics and science writings at the time. The earliest

record of multiplication and division algorithms using the Hindu numerals 1 through 9 and 0

was in writings by Al Khwarizmi 780–850 AD, a Persian mathematician employed in Bagdad.

His The Book of Manipulation and Restoration established the golden rule of Algebra that an

equation remains true if one subtracts the same quantity from both sides. He also wrote down

multiplication and division rules that are identical to those of Suanjing from the third to fifth

century in China. To Suanjing we also owe the Chinese remainder theorem. Finally, the

advanced Hindu-Arabic decimal number system was introduced into the west by Leonardo

Fibonacci (1175–1250 AD) of Pisa in his Liber Abaci or The Book of Calculations (1202),

Applied and numerical computations were driving much of Chinese mathematics. Wang

Xiaotang (580–640 AD), for example, tried to find the roots of cubic polynomials that appeared

in civil engineering and water conservation problems. In the Mathematical Treatise in Nine

Sections of 1247, Qin Jiushao (1202–1261) developed the “Qin Jiushao method” which is now

commonly called the “Horner-Ruffini scheme” for computing with and finding roots of poly-

nomials iteratively. William George Horner [1] and Paolo Ruffini (1804–1807–1813) reinvented

the Qin Jiushao method unknowingly 600 years later.

Chinese rod calculus was the method of choice for computing in China until the abacus took

over during the Ming dynasty (1388–1644). Cheng Dawei (1355–1606) is the author of the first

“numerical analysis” book titled The General Source of Computational Methods published in 1592.

It describes methods to add, subtract, multiply, and divide on an abacus. The abacus itself was

invented in various incarnations at various times and in several locations of the globe. It

essentially combines several decimal rods on one board with beads on strings.

Chinese mathematicians from the third century BC onward to the tenth century AD brought

us the The Nine Chapters on the Mathematical Arts that uses the numbers 1 through 9. This book

was later disseminated further to the west and to India and Persia as described above. In

Chapter 7, determinants first appeared conceptually, while Chapter 8 abstracts the concept of

linear equations to represent them by matrix-like coefficient tableaux. These “matrix equa-

tions” were solved in China, again by “Gaussian elimination,” 1500 years before Gauß’ birth

and 1800 years after the middle-eastern seasonal flood prone countries had first used the

Gaussian algorithm around 1800 BC. Gauß himself described the method as the “common

Recent Trends in Computational Science and Engineering28

method of elimination” in his papers, and mathematicians then attached his name to it as

an honor.

2.4. The genesis of vectors and matrices: third epoch

To advance matrix computations further, there was a need to conceptualize coordinates and

vectors in space.

In the fourteenth century AD, Nicole Oresme developed a system of orthogonal coordinates

for describing Euclidean space. This idea was taken up by René Descartes in the seventeenth

century and is familiar to all of us now under the concept of Cartesian coordinates. Thereby,

the world became ready for matrices and matrix computations in their own right.

In 1683 Gottfried Leibnitz in Germany and Seki Kowa in Japan both unbeknownst to each

other reinvented the concept of a matrix as a rectangular array of coefficients for studying

linear equations. Leibnitz also used and suggested row elimination to simplify and find their

solutions. These efforts enabled Gauß to repeat what the Egyptians had done four millennia

earlier: he was asked to survey the lands of his ruler, the Archduke George Augustus of

Hanover, and measure the size of this kingdom inside Germany in the early 1800s. Beginning

in the 1820s, Gauß, as Professor of Geodesy (and not of Mathematics) in Göttingen, would

measure the angles and distances between many of the highest points there, such as the

Brocken; the Inselsberg, 104 km apart; and the hills around Göttingen, and later he expanded

the surveys all the way to the North Sea coast. He and his assistants did this multiple times,

preferably when the weather was clear. Thereby, they set up systems of linear equations with

generally more equations than unknown due to repeated measurements on different days.

To solve these overdetermined and naturally “unsolvable” systems Ax ¼ b, Gauß devised the

normal equation ATAx ¼ ATb (1823) [2] and solved them approximately. But the normal

equations method eventually turned out to be numerically unsound. It took over a century to

find out why, the reason being that condition numbers multiply (see Olga Taussky [3]).

2.5. Eigenvalues and the characteristic polynomial: fourth epoch

As differential operators and matrices were beginning to be investigated and dealt with by the

early 1800s, their connections and similarities were slowly recognized in the mathematics

world.

The replication of certain functions f 6¼ 0 by a given differential operator a was noticed first

and became the subject of studies. What were the functions f for which a f ¼ αf for some

scalar α? How could they be found froma, and what about α?

In 1829, Augustin Cauchy [4, p. 175] began to view the erstwhile “eigenvalue equation”

a f ¼ αf as a “null space equation,” namely, a f � αf ¼ 0 or a� α idð Þ f ¼ 0 for the identity

operator with id f ¼ f for all f . Complete knowledge of the eigenvalues α and eigenfunctions f

of a differential operatora allowed for a simple sum representations of the general solution of

The Eight Epochs of Math as Regards Past and Future Matrix Computations
http://dx.doi.org/10.5772/intechopen.73329

29

the linear differential equation described bya. Thus, Cauchy’s “null space equation” became

essential for determining the behavior of systems governed by linear differential equations.

Cauchy’s knowledge of and interest in determinants (think of the Cauchy-Binet theorem) then led

him to define the “characteristic polynomial” of a square matrix A in 1839 [5, p. 827] as

f A αð Þ ¼ det A� αIð Þ, and thereby he initiated renewed studies in polynomial root-finding algo-

rithms in the hope of obtaining analogous diagonalization results for linear matrix times vector

products. And the search for polynomial root finders was on. By modern-day hindsight, reducing

the eigenvalue problem from an n2 data problem of the entries of a matrix An,n to one of the nþ 1

coefficients of its characteristic polynomial is data compression, and therefore it was doomed to

fail. But that remained unrealized by the mathematics community for more than 100 years.

James Sylvester finally gave the tableau concept of matrices its name “matrix” in 1848 or 1850.

And after roughly two decades 1829 ! 1839 ! 1848/50, the first century of matrix theory or

theoretical linear algebra had begun.

2.6. Back to matrix computations

Cauchy’s idea led mathematicians to try and compute the characteristic polynomials of matrices

and find their roots in order to understand the eigen-behavior of matrices. We still teach many

concepts and lessons today that are based on the “characteristic polynomial” f A xð Þ of a matrix A.

Why, we should ask ourselves. Because unfortunately studying “characteristic polynomials” in

place of matrices has turned out be a costly dead end for computational and applied mathemat-

ics: in the century and a half that followed Cauchy’s work, more than 4000 papers on computing

the roots of polynomials were published, together with 200 to 300 books on the subject, bringing

us many algorithms, all of which failed more often than not. Many illustrious careers and schools

of mathematics were founded based on this unfortunate and ever elusive goal.

During the same period, two-dimensional (2D) hand-cranked computing machines were

invented and built to effect long number multiplications and divisions. First by Charles Bab-

bage, then as commercial geared adding machines that were still being used in office work

well into the 1960s. These worked as two-dimensional abaci of sorts. But eventually digital (at

first punch card fed) computers became the tools of our computational trade in science, in

engineering, in business, in GPS, in Google, in social media, in large data, in automation, etc.

But how could we or would we find matrix eigenvalues accurately? A turnaround, a new

method, a new computational epoch was needed. From where, by whom, and how?

2.7. Iterative matrix algorithms: fifth epoch

To move us forward, it appears that matrix methods themselves might have to be developed

that would solve the matrix-intrinsic eigenvalue problem by themselves. But before that was

possible, there were further unfortunate “detours.”

Carl Friedrich Gauß—in his doctoral thesis in 1799 [6]—had disproved all earlier attempts to

establish the fundamental theorem of algebra, i.e., that all polynomials over the real numbers

Recent Trends in Computational Science and Engineering30

can be factored into as many real or complex conjugate factors as their degree says. His thesis
then included the first complete and correct proof of the fundamental theorem of algebra.

In 1824 Niels Abel [7] showed that the roots of some fifth-degree polynomials cannot be found
by using radical expressions of their coefficients; Gauß never opened or read the submitted
paper and thus in fact rejected it knowingly on the grounds that God would not have compli-
cated the World thus ... for us. Abel published his result privately, a broken man. Évariste
Galois [8, 9] extended Abel’s result in 1830 by giving group theoretic conditions for poly-
nomials to be solvable by radicals; the extended paper (introducing Galois theory) was origi-
nally rejected and appeared only posthumously in 1846 [10].

Cautioned by these “rejected” inconvenient results, the polynomial approach to matrix eigen-
value computations could have been shunned by clearer heads early on, but the “dead end”
determinants and characteristic polynomial roots road was taken instead for more than a
century. Note that Cauchy’s matrix result and most other fundamental matrix results from
the nineteenth century were formulated in terms of determinants and only in the mid-
twentieth century did the term “matrix” appear in matrix theoretical article and book titles.

A matrix-based approach to the eigenvalue problem nowadays starts from the simple fact that for

any n by n matrix A and any n vector b, the sequence of vector iterates b, Ab, A2b,…, Akb,…, Anb

contains nþ 1 vectors in n-space which makes these vectors linearly dependent. Their linear
dependency then leads to an nth-degree polynomial pb Að Þ that sends b to zero. The vanishing
polynomial for any b turns out to always be a factor of the characteristic polynomial of A and it
can be found by Gaussian elimination rather than using determinants.

The same idea shows that vector iteration converges for every starting vector b 6¼ 0 and any
given square matrix A and this has led engineers in the early twentieth century to construct
iterative matrix algorithms that could solve linear equations and the matrix eigenvalue prob-
lem. Iterative matrix algorithms actually do go back further to the Jacobi method (1839, 1845)
[11, 12], the so-called Gauß-Seidel method, invented by Seidel alone (1874) [13], and various
SOR methods that are designed to solve linear systems iteratively. The latter generally use
matrix splittings of A rather than vector iteration. For further thoughts on early iterative matrix
methods, refer to Michele Benzi [14].

Alexei Krylov [15] introduced and studied the vector iteration subspaces span b;Ab;…;Akb
n o

in their own right. Following his ideas, large sparse matrix systems are nowadays treated
iteratively in so-called Krylov-based methods, both to solve linear equations and to find matrix
eigenvalues. Standard widely used Krylov-type iterative matrix algorithms carry the names of
steepest descent and conjugate gradient by Hestenes and Stiefel [16], Arnoldi [17], Lanczos
[18]. Others are called GMRES, BICGSTABLE, QMR, ADI, etc. Most Krylov-type methods are
matrix and problem specific, and they are now mostly used for huge sparse and structured
matrices where direct or semi-direct methods cannot be employed due to their high computa-
tional and storage costs. Krylov methods generally rely on preconditioner M for a linear
system Ax ¼ b that shifts the spectrum of M�1A for faster convergence, and they thrive on
incomplete matrix splittings, etc. Typically, they give only partial results. Who would need or

The Eight Epochs of Math as Regards Past and Future Matrix Computations
http://dx.doi.org/10.5772/intechopen.73329

31

want to know all million eigenvalues of a million by million matrix model. Krylov methods

can be tuned to give information where it is needed for the underlying system.

2.8. Francis algorithm and matrix eigenvalues: sixth epoch

The SecondWorldWar (WW2) and post-SecondWorldWar periods were filled with innovations.

The atomic era had begun, as well as rocket science; commercial air flight became popular; and

digital computers were being developed, first as valve machines and later transistorized.

Supersonic speeds were realized, computer science was developed, etc. But there were many

crashes and disasters with the new technologies: commercial aircraft (Super-Constellation,

Convair, etc.) and military ones (Starfighter, etc.) would crash weekly around the globe; and

newly built suspension bridges would collapse in strong winds.

The crux of the matter was that while matrix models of the underlying mechanical systems

could readily be made using the laws of physics and mechanics, no one could reliably compute

their eigenvalues. Engineers could not test their designs for eigenmodes in the right half plane!

And Krylov methods were unfortunately not sufficient for testing for eigenvalues in a half

plane.

If a matrix model of a mechanical or electrical or other structure, circuit, et cetera has right half-

plane eigenvalues λ, then—upon proper excitation—there would be an eigen-component of

the ever-increasing form eλt ! ∞ as t ! ∞ that resonates and self-amplifies inside the structure

itself. This then leads to ever-increasing destructive vibrations and ultimate failure. The aircraft

“flutter problem” was discovered during the Second World War. In England during WW2,

Gershgorin circles that contain all of a system’s eigenvalues were drawn out in the complex

plane by rather primitive valve computers and checked to ascertain system stability.

The general matrix eigenvalue problem was finally solved independently and similarly by John

Francis in London and by Vera Kublanovskaya in Russia nearly simultaneously around 1960.

Francis’ (or the QR) algorithm [19, 20] is based on Alston Householder’s idea to try and solve

matrix problems by matrix factorizations. Francis’ method is an orthogonal subspace projection

method and it works differently than the Krylov-based methods which solve a given matrix

eigenvalue problem by projecting onto a Krylov subspace that is derived from and suitable forA.

A “divide and conquer” matrix factorization strategy was first employed by Heinz Rutishauser

(1955, 1958) [21, 22] in his LR matrix eigenvalue algorithm: if one can factor A ¼ LR into the

product of a lower and an upper triangular matrix L and R as A ¼ LR and if L is invertible, then

for the reverse order product A1 ¼ RL we have A1 ¼ L�1AL since R ¼ L�1A. If A1 again allows

an LR factorization A1 ¼ L1R1 with L1 nonsingular, then by reverse order multiplication we

obtain

A2 ¼ L�1
1 A1L1 ¼ L�1

1 L�1ALL1

and so for the sequence of likewise constructed matrices Ai for i ¼ 3,… if the respective LR

factorizations are possible at each stage i. In this case the iterates Ai clearly remain similar to

the original matrix A, and thus the iterates all have the same eigenvalues as A. Note, however,

Recent Trends in Computational Science and Engineering32

that if, for example, the (1,1) entry A 1; 1ð Þ is zero in A, then there exists no un-pivoted LR

factorization for A, and the method breaks down since pivoting is a one-sided matrix process

and not a similarity. Therefore, Rutishauser’s method is only applicable to a limited set of

matrices A for which every LR iterate Ai allows an un-pivoted LR factorization. Rutishauser

had noted that if LR factorizations are possible for all iterates Ai, and the Ai becomes nearly

upper triangular for large i with A’s eigenvalues on the diagonal. (Very loosely said.)

John Francis was very interested in the flutter problem at the time when, by chance, someone

dropped Rutishauser’s 1958 LR paper [22] on his desk at the CRDC in London. (In my interview

with John Francis in 2009 [23], he did not know who that might have been.) Francis was aware through

contacts with Jim Wilkinson of the backward stability of algorithms that involve orthogonal

matrices Q. So rather than using Gaussian elimination matrices L, Francis experimented with

orthogonalA ¼ QR factorizations. At roughly the same time, Vera Kublanovskaya worked on an

LQ factorization of A as A ¼ LQ and subsequent reverse order multiplications [24] in Leningrad,

Russia. Her LQ algorithm would also compute the eigenvalues of matrices reliably.

Rutishauser had observed convergence speedup for his LR method when replacing A by

A� αI, i.e., shifting. Hence Francis experimented with shifts for QR and then established

the “implicit Q theorem” [20] in order to circumvent computing eigenvalues of real matrices

over the complex numbers. Implicit shifts also avoid rounding errors that would be introduced

by explicit shifts. Francis’ second paper (1962) [20] also contains a fully computed flutter

matrix problem of size 24 by 24. The eigenvalues of such “large” problems had never before

been computed successfully.

Francis’ implicit Q theorem then allowed Gene Golub and Velvel Kahan [25] to compute

singular values of large matrices for the first time, and this application later spawned the

original Google search engine and brought us—in a way—into the Internet age.

In 2002 the multishift QR algorithm was developed by Karen Braman et al. [26, 27]. It relies

on subspace iteration, extends Francis’ QR, and combines it with Krylov like methods. This

extension allows us today to compute the complete eigenvalue and singular-value structure of

dense matrices of sizes up to 10,000 by 10,000 economically on laptops.

What is being missed today computationally? What epoch(s) might come next? Why and how?

2.9. Two new epochs ahead: the seventh and eighth epochs (yet to come)

Two new epoch generating impulses have become visible on the matrix computational horizon

of today:

A. One expands our computational abilities from static problem-solving algorithms to real-

time methods for time-varying problems.

B. The other involves computer hardware advances.

2.9.1. Time-varying problems and real-time solvers: seventh epoch

Our current best numerical codes can solve static problem very well; that is what they are

designed for.

The Eight Epochs of Math as Regards Past and Future Matrix Computations
http://dx.doi.org/10.5772/intechopen.73329

33

As we begin to rely more and more on time-dependent sensoring and on robotic manufacture,

we need to learn how to solve our erstwhile static equations but now in real time and with

time-varying coefficients and preferably accurately as well. It seems quite alluring to try and

solve a time-varying problem by using the static time-dependent inputs at each instance

statically. But such a naive solution cannot suffice since at the next time step, whose “solution”

has just been computed “statically”, the problem parameters have already changed and thus

our “static” solution solves a completely different problem, which—unfortunately—has little

value. If any at all.

2.9.2. Computer hardware: eighth epoch

Since the earliest electronic computing devices of the 1940s, all our computers have worked as

giant and embellished Turing machines with logic gates, switches, and memory that rely only

on two numerical states: 0 and 1 or on or off. Hence, all our computer data is stored and

manipulated as sequences of 0 and 1.

Lately our computing ability has come up against the limits of storing and working with data

and processors that can only deal with zeros and ones. Our processing speeds have not

advanced significantly over the last couple of years; we are still stuck with 3–4 GHz processors.

To alleviate this bottleneck, chip makers have created multiprocessor chips, and software firms

have introduced better and quicker software and operating systems, but the basic processor

speed has not budged much.

At this time computer scientist and manufacturers are trying to overcome this 0–1 bottleneck

by replacing our 0–1 processors, chips, memories, and transistors by improved transistors and

chips that can store and process multistates, such as 0-1-2-3-4 or 0-1-2-3-4-5-6-7-8 or even

higher-numbered data representations. This could lead us to another computing sea change

bringing us into a new computational epoch via hardware. And, further out on the horizon lies

the possibility of having infinitely many quantum states based computers.

3. On neural network methods: seventh epoch (already under way)

The last century brought us valuable tools to solve most static problems that involve matrices.

Our current numerical matrix tools can solve static linear equations and matrix equations such

as Sylvester or Lyapunov equations, as well as eigenvalue problems, and generalizations of all

of these, both of the dense or structured and of the solvable or unsolvable kinds. Likewise, we

can solve static optimization problems of all sizes and for nearly all structured matrices and

thereby solve most if not all static applications.

But what can we do with such problems when the entries are time-varying and the problem

parameters change over time?

In numerical computations, there has always been a see-saw between models that resulted in

derivative-inspired differential equations and in linear algebra based matrix equations. Their

Recent Trends in Computational Science and Engineering34

respective computational advantages differ from problem to problem. Neural networks (NN)

are an amalgam of matrix methods and differential methods and use a mixture of both. NN

methods are designed to solve time-varying dynamical systems. Numerical methods for time-

varying dynamical systems first came about in the 1950s and subsequently have gained

strength in the 1980s and 1990s and beyond (see the introduction in Getz and Marsden [28], for

example). There are essentially three ways to go about solving the dynamical systems via differ-

ential equations: homotopy methods, gradient methods, and ZNN neural network methods

introduced by Yunong Zhang et al. [29]. To solve a time-varying equation f X tð Þð Þ ¼ G tð Þ, the

ZNN method starts from the error equation E tð Þ ¼ f X tð Þð Þ � G tð Þ and stipulates exponential

decay of the error function E tð Þ to zero by trying to solve the differential equation:

_E tð Þ ¼ �λE tð Þ (1)

for a positive decay constant λ. Ideally, the error differential equation (1) of a given problem

can be discretized using high-order and convergent 1-step ahead difference formulas for the

unknown. Their aim is to predict or simulate the solution at time tkþ1 in real time from earlier

event instants tj with j ≤ k with a high degree of accuracy and low storage cost. The ZNN

method will be explained below for three standard time-varying problems.

3.1. A neural network approach to solve time-varying linear equations: A tð Þx tð Þ¼b tð Þ

Here A tð Þ is a nonsingular time-varying n by n matrix and b tð Þ∈Rn is a time-varying vector,

respectively. Clearly, the unknown solution x tð Þ of the associated linear equation A tð Þx tð Þ ¼ b tð Þ

will be time-dependent as well.

The first paper on Zhang neural networks (ZNN) was written by Yunong Zhang et al. [29].

Today, there are well over 300 papers, mostly in engineering journals that deal with time-varying

applications of the ZNN method, either in hardware chip design for specialized computational

tasks as part of a plant or machine or for time-varying simulation problems in computer

algorithms and codes. Unfortunately, the ZNN method and the ideas behind ZNN are hardly

known today among numerical analysis experts. The method itself starts with using Suanjing’s

and Al Khwarizmi’s ancient rule for reducing equations which first appeared 1 1/2 millennia

ago. Recall that this simple rule was also employed by Cauchy [4] to transform the static matrix

eigenvalue problem from Ax ¼ λx to Ax� λx ¼ 0 and finally to det A� λIð Þ ¼ 0. For the time-

varying linear equation problem, Zhang’s neural network method starts with

A tð Þx tð Þ � b tð Þ ¼ 0

and then works on the error function

E tð Þ ¼ A tð Þx tð Þ � b tð Þ : R! R
n

and its time derivative _E tð Þ. Note that standard static methods would likely look at the error

norm ∥E∥ instead of the error function. Neural networks do not; they study the error function

E tð Þ instead. And they start with an implicit “ideal wish”: What could or should we wish for E?

The Eight Epochs of Math as Regards Past and Future Matrix Computations
http://dx.doi.org/10.5772/intechopen.73329

35

Time-varying computations would be near ideal if their error functions E tð Þ were decaying

exponentially fast as functions of t. This is impossible to achieve (or even ask for) with our best

static equations and problem solvers of the twenty-first century. For static numerical matrix

methods, backward stability is considered most desirable.

In Zhang NNmethods stipulating that the error function E tð Þ decreases exponentially fast over

time to the zero function means that

_E tð Þ ¼ �λE tð Þ for some chosen number λ≫ 0, the decay constant:

Note that for the time-varying linear equation problem, we have

_E tð Þ ¼ _A tð Þx tð Þ þ A tð Þ _x tð Þ � _b tð Þ:

This leads to the following differential equation for the time-varying solution x tð Þ:

A tð Þ _x tð Þ ¼ � _A tð Þx tð Þ þ _b tð Þ � λ A tð Þx tð Þ � b tð Þð Þ: (2)

And thus, we have transformed the time-varying linear equations problem into an initial value

differential equation problem that needs to be solved for t > 0. This is where the different

dynamical system methods split their ways. In Zhang neural networks, the continuous time

differential equation (2) is then discretized for 0 < tj < tend and the ensuing derivatives are

approximated by high-order difference quotients, with the one for the unknown _x tj
� �

being

1-step ahead and proven convergent, while the others such as for _A tj
� �

and _b tj
� �

in equation

(2) above can be backward difference formulas. This process would then yield a way to

generate x tjþ1

� �

from earlier known data such as x tkð Þ, A tkð Þ, _A tkð Þ and b tkð Þ and _b tkð Þ for

indices k ≤ j. How to proceed in this problem from equation (2) with solving A tð Þx tð Þ ¼ b tð Þ via

ZNN methods is still an open problem, especially for large-scale sparse or structured time-

varying linear equations since the matrix A tj
� �

encumbers the unknown _x tj
� �

on the left-hand

side of equation (2) and there is no known 1-step ahead differentiation formula that can be

used here.

The general idea that underlies ZNNmethods for time-varying problems is to replace repeated

matrix computations by solving linear differential equations and associated initial value prob-

lems for discrete instances 0 < tj < tend instead.

3.2. A Zhang neural network approach to find time-varying generalized matrix inverses

Y tð Þ for time-varying full rank matrices B tð Þ so that B tð Þm,nY tð Þn,m ¼ Im

This section is based on joint work with Jian Li et al. [30].

3.2.1. Continuous problem formulation

For an m by n real time-varying matrix B tð Þ of full rank m with m ≤n, we form the matrix-

valued error function:

Recent Trends in Computational Science and Engineering36

E tð Þ ¼ B tð Þ � Y
þ
tð Þ∈Rm�n (3)

where the upper + sign always means “generalized inverse.” Then, we use the Zhang design

formula:

_E tð Þ ¼ �λE tð Þ (4)

with design parameter λ > 0. Based on [31, Lemma 3], we have

_Y
þ
tð Þ ¼ �Y

þ
tð Þ _Y tð ÞYþ

tð Þ: (5)

And from equations (3) and (5), we obtain

_E tð Þ ¼ _B tð Þ � _Y
þ
tð Þ ¼ _B tð Þ þ Y

þ
tð Þ _Y tð ÞYþ

tð Þ: (6)

Combining equations (4) and (6), we then get

_B tð Þ þ Y
þ
tð Þ _Y tð ÞYþ

tð Þ ¼ �λ B tð Þ � Y
þ
tð Þ

� �

(7)

And, by right multiplying equation (7) with Y tð Þ, we have

_B tð Þ þ Y
þ
tð Þ _Y tð ÞYþ

tð Þ
� �

Y tð Þ ¼ �λ B tð Þ � Y
þ
tð Þ

� �

Y tð Þ: (8)

With m ≤ n, we have Yþ
m�n tð ÞYn�m tð Þ ¼ Im�m, and thus

_B tð ÞY tð Þ þ Y
þ
tð Þ _Y tð Þ ¼ �λ B tð ÞY tð Þ � Ið Þ: (9)

The solution of a generalized matrix inverse problem is not unique when m < n, and we only

need to find a solution that satisfies equation (9). Consequently, the continuous model can be

represented as

_Y tð Þ ¼ �λ Y tð ÞB tð ÞY tð Þ � Y tð Þð Þ � Y tð Þ _B tð ÞY tð Þ (10)

which agrees completely with [28, formula (15), p. 317]. Substituting equation. (10) into equa-

tion. (9), we have

_B tð ÞY tð Þ þ Y
þ
tð Þ �λ Y tð ÞB tð ÞY tð Þ � Y tð Þð Þ � Y tð Þ _B tð ÞY tð Þ
� �

¼ �λ B tð ÞY tð Þ � Ið Þ, (11)

which we rewrite as

_B tð ÞY tð Þ þ �λ Y
þ
tð ÞY tð ÞB tð ÞY tð Þ � Y

þ
tð ÞY tð Þ

� �

� Y
þ
tð ÞY tð Þ _B tð ÞY tð Þ

� �

¼ �λ B tð ÞY tð Þ � Ið Þ:

(12)

With Y
þ
m�n tð ÞYn�m tð Þ ¼ Im�m, we have

The Eight Epochs of Math as Regards Past and Future Matrix Computations
http://dx.doi.org/10.5772/intechopen.73329

37

_B tð ÞY tð Þ þ �λ B tð ÞY tð Þ � Ið Þ � _B tð ÞY tð Þ
� �

¼ �λ B tð ÞY tð Þ � Ið Þ: (13)

Thus model (10) satisfies model (9), and its solution solves the time-varying generalized matrix

inverse problem.

3.2.2. Zhang neural network discretization

Given a sequence of rectangular matrices Bj at time instances tj ≤ tk, we want to find the discrete

time-varying generalized matrix inverse Ykþ1 of Bkþ1 on each computational time interval

kτ; kþ 1ð Þτ½ Þ⊆ 0; tf
� �

so that

Bkþ1 � Yþ
kþ1 ¼ 0: (14)

Here Bkþ1 ¼ B tkþ1ð Þ ¼ B kþ 1ð Þτð Þ∈Rm�n is a time-varying full rank equidistant matrix sequ-

ence, m ≤n, and Ykþ1 ∈R
n�m is unknown. Ykþ1 needs to be computed in real time for each time

interval kτ; kþ 1ð Þτ½ Þ ⊆ 0; tend½ �. Here the matrix operator þ denotes the generalized inverse of a

matrix and 0∈Rm�n is the zero matrix. Besides, k ¼ 0, 1,⋯ denotes the updating index, tend
denotes the task duration, and τ denotes the constant sampling gap of the time-varying matrix

sequence Bkþ1. For m > n, the procedure is similar.

Note that we must obtain each Ykþ1 at or before time tkþ1 for real-time calculations, while the

actual value of Bkþ1 is unknown before tkþ1. Thus we cannot obtain the solution by calculating

Ykþ1 ¼ Bþ
kþ1. To obtain Ykþ1 in real time, we must develop a model based on the available

information before tkþ1 such as that in Bj, Yj, and Yj�1 for j ≤ k instead of unknown information

such as Bkþ1.

To obtain a discrete time model that solves the original discrete time-varying generalized

matrix inverse problem (14), we need to discretize the continuous model (10). First, we use

the conventional 1-step forward Euler formula:

_x tkð Þ ≈
x tkþ1ð Þ � x tkð Þ

τ
(15)

with truncation error of order O τð Þ. Based on formula (15), we approximate

_Y tkð Þ ¼
Y tkþ1ð Þ � Y tkð Þ

τ
(16)

and use this equation to discretize the continuous model (10) as follows:

Ykþ1 ¼ �h YkBkYk � Ykð Þ � τYk
_BkYk þ Yk: (17)

Here h ¼ τλ. In most real-world applications, information of the first-order time derivatives,

i.e., the value of _Bk, may not be explicitly known for the discrete time-varying generalized

matrix inverse problem (14). If this is so, the value of _Bk can be approximated by a backward

finite difference formula. To assure the accuracy and simplicity of the discretized model, the

Recent Trends in Computational Science and Engineering38

truncation error of the backward finite difference formula for _Bk should be near equal to that of

the 1-step ahead finite difference formula that approximates _Yk. Thus, _Bk in equation (17)

should best be approximated by Euler’s backward finite difference formula:

_bk ≈
bk � bk�1

τ

, (18)

because the truncation error order O τð Þ of formula (18) equals that of formula (15). Thus, we

approximately have

_Bk ¼
Bk � Bk�1

τ

: (19)

Then we combine equation (17) with equation (19) and the Euler discrete model becomes

Ykþ1 ¼ �h YkBkYk � Ykð Þ � Yk Bk � Bk�1ð ÞYk þ Yk: (20)

Note that the truncation error of the discrete model (20) is of order O τ
2

� �

where the symbol

O τ
2

� �

denotes a matrix in which each entry is of order O τ
2

� �

. This model uses only present or

past information of Bk, Bk�1, and Yk and solves for Ykþ1. Thus Ykþ1 can be calculated during the

time interval tk; tkþ1½ Þ and if Ykþ1 can be computed quickly enough in real time it will be ready

when time instant tkþ1 arrives.

Higher-accuracy 1-step ahead formulas exist for discrete models, namely,

_x tkð Þ ≈
2x tkþ1ð Þ � 3x tkð Þ þ 2x tk�1ð Þ � x tk�2ð Þ

2τ
(21)

and

_x tkð Þ ≈
6x tkþ1ð Þ � 3x tkð Þ � 2x tk�1ð Þ � x tk�2ð Þ

10τ
: (22)

Both have truncation errors of order O τ
2

� �

. For simplicity we only consider formula (21) and

call it the 4-IFD formula because four instances in time are used to approximate the first-order

derivative of x tkð Þ. When we employ the 4-IFD formula (21) inside our continuous model (10),

we obtain

Ykþ1 ¼ �h YkBkYk � Ykð Þ � τYk
_BkYk þ

3

2
Yk � Yk�1 þ

1

2
Yk�2: (23)

Next, we use the three-instant backward finite difference formula:

_bk ≈
3bk � 4bk�1 þ bk�2

2τ
(24)

with error order O τ
2

� �

to approximate the value of _Bk in equation (23). Then the 4-IFD-type

discretized model becomes

The Eight Epochs of Math as Regards Past and Future Matrix Computations
http://dx.doi.org/10.5772/intechopen.73329

39

Ykþ1 ¼ �h YkBkYk � Ykð Þ � Yk
3

2
Bk � 2Bk�1 þ

1

2
Bk�2

� 	

Yk þ
3

2
Yk � Yk�1 þ

1

2
Yk�2: (25)

Its truncation error is of order O τ
3

� �

. Similar to the Euler based discrete model (20), the 4-IFD-

type discrete model uses only present and past information such as Bk, Bk�1, Bk�2, Yk, Yk�1, and

Yk�2 to solve for Ykþ1. Thus it also satisfies the requirements for real-time computation.

3.2.3. A five-instant finite difference formula

Any usable finite difference formula for discretizing the continuous model (10) must satisfy

several restrictions. It must be one step ahead for _x, i.e., approximate _x tkð Þ by using only

x tkþ1ð Þ, x tkð Þ, x tk�1ð Þ and possibly earlier x data, and it must be 0-stable and convergent.

However, 1-step ahead finite difference formulas do not necessarily generate stable and con-

vergent discrete models (see, e.g., [32, 33]).

Here is a new 1-step ahead finite difference formula with higher accuracy than the Euler and 4-

IFD formulas. It will be used to generate a stable and convergent discrete model that finds

time-varying generalized matrix inverses more accurately in real time.

Theorem 1 The 5-IFD formula

_x tkð Þ ≈
8x tkþ1ð Þ þ x tkð Þ � 6x tk�1ð Þ � 5x tk�2ð Þ þ 2x tk�3ð Þ

18τ
(26)

has truncation error order O τ
3

� �

.

The proof relies on four Taylor expansions that use x tkþ1ð Þ and x tk�1ð Þ through x tk�3ð Þ around

x tkð Þ and clever linear combinations thereof.

The new 1-step ahead discretization formula (26) then leads to the five-instant discrete model:

Ykþ1 ¼ �
9

4
h YkBkYk � Ykð Þ �

9

4
Yk

11

6
Bk � 3Bk�1 þ

3

2
Bk�2 �

1

3
Bk�3

� 	

Yk

�
1

8
Yk þ

3

4
Yk�1 þ

5

8
Yk�2 �

1

4
Yk�3:

(27)

which has a truncation error of order O τ
4

� �

.

Theorem 2 The five-instant discrete model (27) is 0-stable.

The multistep formula of the five-instant discrete model time-varying generalized matrix

inverses has the characteristic polynomial:

P4 θð Þ ¼ θ
4 þ

1

8
θ
3 �

3

4
θ
2 �

5

8
θþ

1

4
(28)

with four distinct roots θ1,2 ¼ �0:7160� 0:5495i, θ3 ¼ 0:3069, and θ4 ¼ 1 inside the complex

unit circle, making this model 0-stable (Figures 1 and 2).

Recent Trends in Computational Science and Engineering40

3.2.4. Numerical examples

Example 1 Consider the discrete time-varying generalized matrix inverse problem:

Bkþ1 � Yþ
kþ1 ¼ 0,with Bk ¼

sin 0:5tkð Þ cos 0:1tkð Þ � sin 0:1tkð Þ

� cos 0:1tkð Þ sin 0:1tkð Þ cos 0:1tkð Þ

 �

: (29)

Example 2 Here we consider the discrete time-varying matrix inversion problem:

Akþ1Xkþ1 ¼ I with Ak ¼
sin 0:5tkð Þ þ 2 cos 0:5tkð Þ

cos 0:5tkð Þ sin 0:5tkð Þ þ 2

 �

: (30)

Figure 1. Typical residual errors generated by the five-instant, the four-instant, and the Euler formulas with different

sampling gaps τwhen solving the discrete time-varying generalized matrix inverse problem (29) for tend ¼ 30 s and h ¼ 0:1.

Figure 2. Profiles of the four entries of the solution Xwhen solving the discrete time-varying matrix inverse problem (30)

with τ ¼ 0:1 s. Here the solid curves show the solution entries generated by the five-instant discrete model obtained from

random starting values, and the dash-dotted curves depict the theoretical solutions.

The Eight Epochs of Math as Regards Past and Future Matrix Computations
http://dx.doi.org/10.5772/intechopen.73329

41

3.3. A Zhang neural network approach for solving nonlinear convex optimization

problems under time-varying linear constraints

This section is based on joint work with Jian Li et al. [34].

Problem formulation:

find min f x tð Þ; tð Þ

such that A tð Þx tð Þ ¼ b tð Þ with x tð Þ∈Rn, b tð Þ∈Rm and A tð Þ∈Rm,n
:

Building a continuous time model for the problem:

The Zhang neural network approach can be built on the Lagrange function:

L x tð Þ; l tð Þ; tð Þ ¼ f x tð Þ; tð Þ þ lT tð Þ A tð Þx tð Þ � b tð Þð Þ,

where l tð Þ ¼ l1 tð Þ;⋯; lm tð Þ½ �T ∈Rm is the Lagrange multiplier vector and ::

T denotes the trans-

pose. Note that there will be no need to solve for the Lagrange functions l tð Þ here. Set

y tð Þ ¼ xT tð Þ; lT tð Þ
� �T

¼ y1 tð Þ;⋯; yn tð Þ; ynþ1 tð Þ;⋯; ynþm tð Þ
� �T

∈R
nþm

and

h y tð Þ; tð Þ ¼

∂f x tð Þ; tð Þ

∂x
þ AT tð Þl tð Þ

A tð Þx tð Þ � b tð Þ

2

4

3

5 ¼

h1 y tð Þ; tð Þ

⋮

hn y tð Þ; tð Þ

hnþ1 y tð Þ; tð Þ

⋮

hnþm y tð Þ; tð Þ

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

∈R
nþm

:

We transform the multiplier problem into an initial value DE problem instead. By stipulating

exponential decay for h tð Þ, we obtain the model equation

_y tð Þ ¼ �H�1 y tð Þ; tð Þ λhy tð Þ; tð Þ þ _ht y tð Þ; tð ÞÞ

for the Jacobian matrix

H y tð Þ; tð Þ ¼
∂f 2 x tð Þ; tð Þ

∂x ∂
Tx

AT tð Þ

A tð Þ 0

2

4

3

5and _ht y tð Þ; tð Þ ¼
∂h y tð Þ; tð Þ

∂t
:

3.3.1. Discretizing the model and choosing suitable high-order finite difference formulas

To discretize the continuous model

_y tð Þ ¼ �H�1 y tð Þ; tð Þ λhy tð Þ; tÞ þ _htðy tð Þ; tÞ
� �

Recent Trends in Computational Science and Engineering42

we can use the forward Euler difference formula with truncation error order O τð Þ:

_x tkð Þ ¼
x tkþ1ð Þ � x tkð Þ

τ

or the four-instant forward difference formula (4-IFD):

_x tkð Þ ¼
5x tkþ1ð Þ � 3x tkð Þ � x tk�1ð Þ � x tk�2ð Þ

8τ

with truncation error order O τ
2

� �

. The Euler formula yields the discretized model:

ykþ1 ¼ �H�1 yk; tk
� �

κh yk; tk
� �

þ τ _ht yk; tk
� �

� �

þ yk with κ ¼ τλ

while the 4-IFD formula results in

ykþ1 ¼ �
8

5
H�1 yk; tk

� �

κh yk; tk
� �

þ τ _ht yk; tk
� �

� �

þ
3

5
yk þ

1

5
yk�1 þ

1

5
yk�2 þO τ

3
� �

:

Both discretization formulas are consistent and convergent. This can be proven via the roots of

the associated characteristic polynomial. Its roots must lie in the complex unit circle and cannot

be repeated on its boundary.

Since the value of _ht yk; tk
� �

may not be known explicitly, we may replace it by

_ht yk; tk
� �

¼
3h yk; tk
� �

� 4h yk; tk�1

� �

þ h yk; tk�2

� �

2τ

which uses the three-point backward finite difference formula:

_x tkð Þ ¼
3x tkð Þ � 4x tk�1ð Þ þ x tk�2ð Þ

2τ

of order O τ
2

� �

.

Then the discretized 4-IFD formula becomes more complicated but easier to implement:

ykþ1 ¼ �
8

5
H�1 yk; tk

� �

κþ
3

2

� 	

h yk; tk
� �

� 2hðyk; tk�1Þ þ
1

2
hðyk; tk�2Þ

� 	

þ
3

5
yk þ

1

5
yk�1 þ

1

5
yk�2 of order O τ

3
� �

:

To implement this formula, the inverse of the Jacobian matrix H can be computed at each time

tk in a fraction of the available real-time interval tk; tkþ1½ Þ by using the real-time inverse finding

ZNN method from the previous subsection (Section 3.2).

3.3.2. Numerical example and results:

As an example we solve the following convex nonlinear optimization problem with known

theoretical solution numerically by using our ZNN method; for further details and applica-

tions see [34]:

The Eight Epochs of Math as Regards Past and Future Matrix Computations
http://dx.doi.org/10.5772/intechopen.73329

43

Find min cos 0:1tkþ1ð Þ þ 2ð Þx21 þ cos 0:1tkþ1ð Þ þ 2ð Þx22 þ 2 sin tkþ1ð Þx1x2 þ sin tkþ1ð Þx1 þ cos tkþ1ð Þx2

so that sin 0:2tkþ1ð Þx1 þ cos 0:2tkþ1ð Þx2 ¼ cos tkþ1ð Þ:

The 4-IFD formula is a four-instant formula, while the Euler formula needs only two. Both

discretization models work in real time, and both typically create the optimal solution in a

fraction of a second with differing degrees of accuracy according to their orders.

The example below runs for 10 sec. The time-varyingvalues for f x tð Þ; tð Þ,A tð Þ, and b tð Þ are given as

functions and evaluated from their function formulations. In real-world applications, these values

might be supplied by sensors during each time interval ti ≤ tiþ1, and the empirical values would be

inserted into the difference formulas as they are evaluated by sensors in real time (Figure 3).

4. On quantum and multistate computing: eight epoch (yet to start and

come)

Quantum computing and multistate memory and computers with multistate processors will

change the way we compute once they become available. They will require new operating

Figure 3. Solution states with τ ¼ 0:1 sec and solution errors generated by the 4-IFD based discretization model (of order

O τ
3

� �

) and the Euler based model (of order O τ
2

� �

) with τ ¼ 0:1, 0:01, and 0:001 sec and λ ¼ 10: (a) solution states with

τ ¼ 0:1 sec, (b) solution errors with τ ¼ 0:1 sec, (c) solution errors with τ ¼ 0:01 sec, (d) solution errors with τ ¼ 0:001 sec.

Recent Trends in Computational Science and Engineering44

systems and new software with new and yet-to-be-discovered algorithms. What will this new

era entail? Nobody knows or can reliably predict.

I asked an “expert” on quantum computing 3 years ago as to when he expected to have a

quantum computer at his disposal or on his desk. The answer was “Not in my lifetime, not in

20 years.”

Currently, about a dozen or more research centers in Europe and South-East Asia are trying

to build quantum computers based on the quantum superposition principle and quantum

entanglement of elementary particles. They do so in a multitude of different ways. The

envisioned benefit of these efforts would be to be able to compute superfast in parallel and

in simulations to solve huge data problems quicker than ever before and to solve problems

that are unassailable now with our current best supercomputer networks. All of the pro-

posed quantum science techniques make use of superconducting circuits and particles. The

aim is to build quantum computers in one or two decades with around 100 entangled

quantum bits. Such a quantum computer would be bulky; it would need much supplemen-

tary equipment for cooling and so forth and could easily take up a whole floor of a building,

just as the first German and British valve computers did in the 1940s. But it would surpass

the computing capacity of all current supercomputers and desk and laptops on Earth

combined. Currently, the largest working entangled quantum array contains fewer than 10

quantum bits. Access of a 100 bit quantum computer would probably be via the cloud and

there would be no quantum computer laptops. Quantum computers may take another 10,

20, or 30 years to materialize.

How will they come about? Which yet unknown algorithms will they use? Who will invent them? Who

code them?

If history can be a guide, John Francis and Vera Kublanovskaya were both working indepen-

dently on circuit diagrams and logic gate designs for valve computers in England and in

Russia at the time when they discovered QR (or LQ) in the late 1950s.

So, we possibly are looking for quantum computer hardware and software designers who

know numerical analysis and algorithm development in or about the year 2040. In a similar

fashion, Leibnitz and Seki formalized our now ubiquitous matrix concept independently but

simultaneously in 1683, in Germany and in Japan.

Maybe it will take two again?

The references given below only go back to the year 1799.

Author details

Frank Uhlig

Address all correspondence to: uhligfd@auburn.edu

Department of Mathematics and Statistics, Auburn University, Alabama, United States

The Eight Epochs of Math as Regards Past and Future Matrix Computations
http://dx.doi.org/10.5772/intechopen.73329

45

References

[1] Horner W. G. A new method of solving numerical equations of all orders, by continuous
approximation. Philosophical Transactions. Royal Society of London. July 1819:308-335

[2] Gauß C. F. Private letter to Gerling. December 26, 1823. Available at: http://gdz.sub.uni-
goettingen.de/en/dms/loader/img/?PID=PPN23601515X|LOG_0112physid=PHYS_0286.
pp. 278-281

[3] Taussky O. Note on the condition of matrices. Mathematical Tables and Other Aids to
Computation. 1950;4:111-112

[4] Cauchy A. L. Sur l’équation à l’aide de laquelle on determine les inégalités séculaires des
mouvements des planètes. Exerc. de Math. 1829;4. also Oeuvres (2) 9, pp. 174-195

[5] Cauchy A. L. Mémoire sur l’intégration des équations linéaires. Comptes Rendus. 1839;8:
827-830, 845-865, 889-907, 931-937

[6] Gauß C. F. Demonstratio nova theorematis omnem functionem algebraicam rationalem
integram unius variabilis in factores reales primi vel secundi gradus resolvi posse. PhD
thesis: Universität Helmstedt; 1799, Werke III. pp. 1-30

[7] Abel N. H. Mémoire sur les équations algébriques où on démontre l’impossibilité de la
résolution de l’équation générale du cinquième degré. Christiana (Kopenhagen): Groendahl;
1824. 7 p

[8] Galois É. Analyse d’un mémoire sur la résolution algébraique des équations. Bulletin des
Sciences mathématiques, physiques et chimiques. 1830;XIII:271-272

[9] Galois É. Note sur la résolution des équations numériques. Bulletin des Sciences
mathématiques, physiques et chimiques. 1830;XIII:413-414

[10] Galois É. Mémoire sur les conditions de résolubilité des équations par radicaux. Journal
de mathématiques pures et appliquées, (published by Joseph Liouville). 1846;XI:417-433

[11] Jacobi C. G. Canon Arithmeticus. Berlin: Typis Academicis Berolini; 1839

[12] Jacobi C. G. Über eine neue Auflösungsart der bei der Methode der kleinsten Quadrate
vorkommenden linearen Gleichungen. Astronomische Nachrichten. 1845;22:297-306.
Reprinted in Gesammelte Werke, vol. III, pp. 469-478

[13] Ludwig von Seidel, Über ein Verfahren, die Gleichungen, auf welche die Methode der
kleinsten Quadrate führt, sowie lineäre Gleichungen überhaupt, durch successive
Annäherung aufzulösen, Lecture at the Bavarian Academy on February 7, 1874,
Abhandlungen der Bayerischen Akademie der Wissenschaften II. Mathematisch-
Physikalische Klasse. Cl. XI, Bd. III Abth, München. 1874. 28 pp

[14] Benzi M. The early history of matrix iterations: With focus on the Italian contribution.
SIAM Conference lecture. October 2009. 36 pp. https://www.siam.org/meetings/la09/
talks/benzi.pdf

Recent Trends in Computational Science and Engineering46

[15] Krylov A. N. On the Numerical Solution of Equation by Which are Determined in

Technical Problems the Frequencies of Small Vibrations of Material Systems. News of

Academy of Sciences of the USSR), Otdel. mat. i estest. nauk. 1931;VII(4):491-539 (in

Russian)

[16] Hestenes M. R., Stiefel E. Methods of conjugate gradients for solving linear systems.

Journal of Research of the National Bureau of Standards. 1952;49(6):409-436

[17] Arnoldi W. E. The principle of minimized iterations in the solution of the matrix eigen-

value problem. Quarterly of Applied Mathematics. 1951;9:17-29

[18] Lanczos C. An iteration method for the solution of the eigenvalue problem of linear

differential and integral operators. Journal of Research of the National Bureau of Stan-

dards. 1950;45:255-282

[19] Francis J. G. F. The QR transformation, I. The Computer Journal. 1961;4:265-271

[20] Francis J. G. F. The QR transformation, II. The Computer Journal. 1962;4:332-345

[21] Rutishauser H. Une methode pour la determination des valeurs propres d’une matrice.

Comptes Rendus de l'Académie des Sciences. 1955;240:34-36

[22] Rutishauser H. Solution of eigenvalue problems with the LR-transformation. National

Bureau of Standard: Applied Mathematics Series. 1958;49:47-81

[23] Golub G, Uhlig F. The QR algorithm: 50 years later; its genesis by John Francis and Vera

Kublanovskaya, and subsequent developments. IMA Journal of Numerical Analysis.

2009;29:467-485

[24] Kublanovskaya V. N. On some algorithms for the solution of the complete eigenvalue

problem. USSR Computational Mathematics and Mathematical Physics. 1963;1:pp. 637-

657 (1963, received Feb 1961). Also published in: Zhurnal Vychislitel’noi Matematiki i

Matematicheskoi Fiziki [Journal of Computational Mathematics and Mathematical Phys-

ics]. 1 (1961). pp. 555-570

[25] Gene Golub W. Kahan, calculating the singular values and pseudo-inverse of a matrix.

Journal of SIAM Numerical Analysis Series B. 1965;2:205-224

[26] Braman K, Byers R, Mathias R. The multishift QR algorithm. Part I: Maintaining well-

focused shifts and level 3 performance. SIAM Journal on Matrix Analysis & Applications.

2006;23:929-947

[27] Braman K, Byers R, Mathias R. The multishift QR algorithm. Part II: Aggressive early

deflation, SIAM Journal on Matrix Analysi & Application. 2006;23:948-973

[28] Getz N, Marsden J. E. Dynamical methods for polar decomposition and inversion of

matrices. Linear Algebra and its Applications. 1997;258:311-343

[29] Zhang Y, Jiang D, Wang J. A recurrent neural network for solving Sylvester equation with

time-varying coefficients. IEEE Transactions on Neural Networks. 2002;13:1053-1063

The Eight Epochs of Math as Regards Past and Future Matrix Computations
http://dx.doi.org/10.5772/intechopen.73329

47

[30] Jian L, Mingzhi M, Frank U, Yunong Z. A 5-Instant finite difference formula to find

discrete time-varying generalized matrix inverses, matrix inverses and scalar reciprocals,

17 pp, submitted

[31] Liao B, Zhang Y. From different ZFs to different ZNN models accelerated via li activa-

tion functions to finite-time convergence for time-varying matrix pseudoinversion.

Neurocomputing. 2014;133:512-522

[32] Zhang Y, Jin L, Guo D, Yin Y, Chou Y. Taylor-type 1-step-ahead numerical differentiation

rule for first-order derivative approximation and ZNN discretization. Journal of Compu-

tational and Applied Mathematics. 2014;273:29-40

[33] Zhang Y, Chou Y, Chen J, Zhang Z, Xiao L. Presentation, error analysis and numerical

experiments on a group of 1-step-ahead numerical differentiation formulas. Journal of

Computational and Applied Mathematics. 2013;239:406-414

[34] Li J, Mao M, Uhlig F, Zhang Y. Z-type neural-dynamics for time-varying nonlinear

optimization under a linear equality constraint with robot application. Journal of Com-

putational and Applied Mathematics. 2018;327:155-166

Recent Trends in Computational Science and Engineering48

