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1. Introduction

Cement-based materials have been used to support human civilizations many decades ago.

With the increasing advancement of human activities, these materials were modified to main-

tain their roles in our lives. The main function of cement is to act as hydraulic binder, which

increases the bond between fragmented particles, so it can enable their use in different fields.

The resulted material will have different physical and mechanical properties from the initial

materials. These changed properties are attributed to the exothermic hydration reactions that

are initiated upon mixing the binder with water. The liberated localized heat will lead irrevers-

ible rearrangement of water molecules within the framework microstructure [1–3]. Ordinary

Portland Cement (OPC) is the most widely used cement. It is prepared by crushing, milling,

and mixing calcium, iron, silica, alumina, and sulfate sources with certain amounts. Then,

hydraulic cement is passed to the kiln to produce clinker, which is subsequently cooled and

pulverized. Portland cement is categorized into eight subgroups according to the ASTM C150,

namely normal (type I), moderate sulfate resistance (type II), high early strength (type III), low

heat of hydration (type IV), high sulfate resistance (type V), normal, moderate sulfate resis-

tance, and high early resistance with air entraining (types IA, IIA, IIIA), respectively [4]. There

are four principal unhydrated phases present in all OPC types, namely tricalcium silicate

(Ca3SiO5), dicalcium silicate (Ca2SiO4), tricalcium aluminate (Ca3Al2O5), and calcium alumino-

ferrite (Ca4AlnFe2-nO7). The formula of each of these minerals can be broken down into the

basic calcium, silicon, aluminum, and iron oxides (Table 1). Cement chemists use abbreviated

nomenclature based on oxides of various elements to indicate chemical formulae of relevant

species, that is, C = CaO, S = SiO2, A = Al2O3, and F = Fe2O3. Hence, traditional cement

nomenclature abbreviates each oxide as shown in Table 1 [1].
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The composition of cement is varied depending on the application. A typical example of

cement contains 50–70% C3S, 15–30% C2S, 5–10% C3A, 5–15% C4AF, and 3–8% other addi-

tives or minerals (such as oxides of calcium and magnesium). It is the hydration of the calcium

silicate, aluminate, and aluminoferrite minerals that cause the hardening, or setting, of cement.

The ratio of C3S to C2S helps to determine how fast the cement will set, with faster setting

occurring with higher C3S contents. Lower C3A content promotes resistance to sulfates.

Higher amounts of ferrite lead to slower hydration. The ferrite phase causes the brownish gray

color in cements, so that “white cements” (i.e., those that are low in C4AF) are often used for

esthetic purposes. The calcium aluminoferrite (C4AF) forms a continuous phase around the

other mineral crystallites, as the iron containing species act as a fluxing agent in the rotary kiln

during cement production and are the last to solidify around the others. Figure 1 shows a

typical cement grain.

It is worth noting that a given cement grain will not have the same size or even necessarily

contain all the same minerals as the next grain. The heterogeneity exists not only within a

given particle, but extends from grain to grain, batch to batch, and plant to plant.

Modifications of cement-based materials are usually carried out by testing the effect of differ-

ent additives and/or admixtures on certain physicochemical properties that can affect the

overall performance of the material [1, 3]. Additives might be classified based on their [3]:

1. Origin—natural igneous, natural sedimentary, industrial waste, or modified soil

2. Particle size—coarse or fine

3. Density—light or heavy

4. Activity—inert, chemically active, physically active, and physically and chemically active

5. Specific surface—low, average, high, ultra, and nano dispersion.

Depending on the amount of used additive to cement ration, cement-based material could be

divided into blended cement or modified cement. Blended cement is a class of additive-

cement system that contains more than 15% additive. ASTM identified five classes of

blended hydraulic cement as follows: Ordinary Portland Cement (OPC)-blast furnace slag

(IS type), OPC-Pozzolan (IP and P types), Pozzolan-modified-OPC (I(PM) type), Slag cement

(S type), and Slag-modified OPC (SM type) [4]. Modified cement contains less than 15%

mineral additives. On the other hand, there are different classifications for the tested/used

admixture as follows [2, 3]:

Mineral Chemical formula Oxide composition Abbreviation

Tricalcium silicate (alite) Ca3SiO5 3CaO.SiO2 C3S

Dicalcium silicate (belite) Ca2SiO4 2CaO.SiO2 C2S

Tricalcium aluminate Ca3Al2O4 3CaO.Al2O3 C3A

Tetracalcium aluminoferrite Ca4AlnFe2-nO7 4CaO.AlnFe2-nO3 C4AF

Table 1. Chemical formula and cement nomenclature for major unhydrated OPC phases.
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1. Their effects on setting time and water requirements: ASTM C494, BS 5075, and CAN

3A2662M78 classify admixture according to their role in reducing the amount of water

only or reduce the waste and act as retarders or accelerator.

2. Their technological characteristics: used in France, Germany, and Russia where the admix-

ture effect on the setting time, rheology, air content, hardening, workability, cement prop-

erties and special properties are used to classify the admixture.

3. Classification is based on the chemical properties of the admixture themselves, that is,

soluble and insoluble in water. Under this classification, the admixture is categorized based

on their effects.

Aluminates Phosphate Sulfoaluminate

Components Calcium source Limestone

Alumina source bauxite,

high-alumina slags

Acid-base reactions in the presence of liquid

activators containing phosphate anions

Calcium source:

lime,

Alumina source:

bauxite, kaolin

Sulfate source:

gypsum

CO2

emission

Low — Low

Setting Fast Fast Fast

Strength High High adhesive, bending and compressive strength High early strength

Working condition resistance

Freeze–thaw High — High

Heat High High —

Chemical High High High in sulfate and

magnesium

Table 2. Comparison between different alternative cement and OPC properties.

Figure 1. A pictorial representation of a cross section of a cement grain. Adapted from Cement Microscopy, Halliburton

Services, Duncan, OK.

Introductory Chapter: Properties and Applications of Cement-Based Materials
http://dx.doi.org/10.5772/intechopen.73784

5



Almost all the historical applications of cement as hydraulic binders relied on the use of

pozzolanic materials with additives, and currently, alternative cements were developed to

substitute Ordinary Portland Cement in certain application or to overcome Portland cement

drawbacks. These materials include aluminate cements, phosphate cements, sulfoaluminate

cements, and alkali-activated cements [3]. The later represent a vast category of subsets of

materials that differ based on the alkaline activator of the aluminosilicate system. Table 2 lists

a comparison between the aluminate cements, phosphate cements, sulfoaluminate cements,

and OPC [3].

2. OPC hydration chemistry

The hydration reactions of cement-based materials are complex, especially when chemically

active additives/admixtures are used. However, it is generally accepted that the principal

products of hydration of OPC are calcium-silicate-hydrate gel (CSH), which composed of

mixture of tobermorite, jennite, and afwillite (60–70%); portlandite (CH) (20–25%); and other

minor phases (approximately 5–15%) [1]. The principal reactions involved may be represented

by the following two idealized equations:

2C3Sþ 6H ! C3S2H3 C-S-Hð Þ þ 3CH

aliteð Þ C-S-H gel
(1)

2C2Sþ 4H ! C3S2H3 C-S-Hð Þ þ CH

beliteð Þ C-S-H gel
(2)

The stoichiometry of these reactions clearly shows that the hydration of 1 mol of tricalcium

silicate yields 1.5 mol of Ca2+ ions (Reaction 1) and the hydration of 1 mol of di-calcium silicate

yields 0.5 mol of Ca2+ ions (Reaction 2); these ions are released into pore solution with the

formation of C-S-H phase. Cement hydration reaction progression occurs at three distinct

periods, which are dormant, setting, and hardening. In the first (within few minutes from the

reaction initialization) period, aluminate and ferrite phases react with gypsum to form an

amorphous gel at the cement grains surface and short ettringite rods. In the second period (hours

later), more portlandite and ettringite are formed and CdSdH formation begins. At the last

period, the reaction slows down and internal CdSdH continues to grow near alite surface. The

hydration rate is dependent on water and/or ion diffusion rate to anhydrous surface, so the

timescale for each period and the development of hydrated phases in each time period are

dependent on the hydration conditions, cement composition, and the presence of additives [1, 3].

3. Properties of cement-based materials

Cement-based materials are complex systems that have transient physical and mechanical

properties. This phenomenon is related to the slow aging process in colloidal hydration

Cement Based Materials6



products [2]. In this section, the properties of cement-based material and the factors that affect

them are overviewed.

3.1. Hydration heat

Heat is generated as a result of the exothermic hydration reaction, which will subsequently

depend on the chemical and physical properties of unhydrated cement system. One of the

important physical characteristics is the particle size distribution of the cement. The heat of

hydration increases if the ration of fine materials increases, where the average fineness is in the

range of 0.3–0.5 m2/g. This is related to the increased available surface for reaction which

subsequently leads to higher early strength [5].The heat of hydration plays a role in determin-

ing the setting time, as the release of this heat increases the rate of hardening. It should be

noted that aluminates and sulfoaluminate cements have higher heat of hydration than OPC.

3.2. Setting time

Hydration reactions of cement-based materials are characterized by having initial and final

setting times. The duration of setting is dependent on the chemical compositions and fineness

of the binder and additives and on the ambient temperature. In specific cases, retardates are used

to increase the setting time, so extended workability could be achieved. Retardation is applied in

hot weather, cementing oil wells, pumping the paste over long distances, and if special finishing

is required. It should be noted that in some cases, early strength development is reduced as a

result of retarder addition. Free lime, gypsum, and alkali sulfate are used to slow OPC setting

time. On the other hand, in some cases, accelerated hydration reaction with small setting time

and early age strength development is required. This could be achieved by lowering the water to

cement ration via using water reducer, curing at higher temperature or using accelerators [4].

3.3. Strength strain

Strength-strain relationship differs depending on the composition of the cement-based mate-

rial, and for hardened cement pastes, the relationship is nearly linear, which reflects the

brittleness of the material. On the other hand, hardened concretes continue to deform plasti-

cally after exceeding maximum load. The development of the strength-strain relationship in

the complex heterogeneous system of cement-based material is affected by:

1. The porosity of hardened material, where the increase in porosity reduce the strength.

2. The chemical interaction and mechanical interlocking between the hydraulic binder and

the additives.

3. Effect of hydraulic binder composition, that is, calcium, alumina, sulfate, alkali, and silica

ration.

4. Effect of curing temperature, as it increases ultimate strength is reduced.

5. Production and testing conditions, including mixing composition, curing, and load humidity
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3.4. Soundness

It is the ability of the hardened cement paste to retain its original volume, and the presence of

free lime or magnesium oxide can reduce the soundness of the cement-based materials.

4. Cement composites

Different materials are used as additive to cement to improve the cement characterizations. The

mechanical properties of the newly formulated composites were improved. Cement-waste fiber

composite was produced due to the incorporation of waste fibers in cementitious materials and

used in radioactive waste immobilization [6–9]. Polymers also were impregnated with cement to

increase the durability and reduce the porosity of cement, producing favorable composite suit-

able for many applications and resistive to various aggressive conditions [10–15]. Natural addi-

tives such as clay were mixed progressively with cement to treat the retardation property of

organic solvent with cement [16, 17].

5. Applications of cement-based materials

5.1. Construction

The application of OPC and its blends is widely applied in construction engineering. Table 3

illustrates the use of different OPC and OPC blend types in constructions. Aluminate cement

concrete is applied in the construction of industrial floors and refractory castables, where the

floor must resist chemical, heat, and corrosion [4]. Moreover, decorative tiles, building bricks,

and light concrete were performed [18]. Sulfate cement is used in repairing pavement and

concrete structures and for places where aggressive chemicals exist.

Purpose OPC OPC blend Applications

General use I IS, IP, I(PM), I

(SP), S, P

For all uses including pavements, floors, reinforced concrete buildings, bridges,

pipe, precast concrete products

Resist sulfate

attack

II IS, IP, P, I(PM),

I(SM)

Where moderate sulfate concentration exists, that is, drainage structure, sea

structures, and soil structure should be used at low water to cement ration

V — High sulfate concentration media

Early

strength

III — Used in cold weather to shorten the curing period

Hydration

heat

IV p Low heat of hydration is required in massive concrete structures, such as large

gravity dams

II IS, IP, I(PM), I

(SM)

Moderate heat of hydration is required, in large structure in warm places, that is,

large piers, large foundations, and thick retaining walls

Table 3. OPC and OPC-blend applications in construction [1, 3, 4].
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5.2. Environmental aspects

The application of cement-based material in environmental protection and restoration is increas-

ing, and they are used in radiation shielding in nuclear industry, cutoff walls in remediation

activities, stabilization of contaminated soil, engineering barriers in disposal facilities, and waste

immobilization matrices [19–34]. This wide range of applications is supported by their technical

properties, where they have low diffusion coefficients and have available sorption sites; their

alkaline environments reduce the mobility of different contaminants and flexibility of modifica-

tion. In nuclear and radioactive waste industries, they are used as shield due to their good self-

shielding performance, and they are suitable to solidify different radioactive waste streams, that

is, sludge, emulsified organic liquid, fragmented solids, and exhausted ion exchangers, due to

their chemical, radiological, thermal, mechanical, and physical stability. The economic value of

these materials plays an important role in their widespread applications, as they are inexpensive

and readily available, and has reduced operational cost (which is related to the simplicity of

operation and operation at ambient temperature) [20–30]. To ensure the sustainability of these

materials for the intended use, they need to be tested to evaluate their strength, radiation,

biological and thermal stabilities, free water content, porosity, permeability, corrosion, leaching,

dissolution rates, and release mechanisms.

6. Conclusion

The continuous widespread applications of cement-based materials to support human civilization

is attributed to their simple modification ability. Different types of hydraulic binder weremodified

to address the needs to have functional constructions in different environments. With the contin-

uous need to protect the environment from the effect of contaminated sites, either water or soil,

cement-based materials were applied in different areas. There is still a need to enhance the

performance of these materials in different applications, and this could be achieved by:

1. Testing the effect of industrial wastes as additives on OPC and alternate cements to

increase the productive use of these wastes.

2. A quantitative assessment of the effect of additive on the microstructure of the produced

material.

3. Developing models that could be used to predict the long-term behavior of the materials,

either physical models or mathematical models.
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