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Abstract

Accuracy and precision are the cornerstone for ballistic projectiles from the earliest days of
this discipline. In the beginnings, impact point precision in artillery devices deteriorated
when range were extended, particularly for non-propelled artillery rockets and shells.
Later, inertial navigation and guidance systems are introduced and precision was
unlinked from range increases. In the last 30 years, hybridization between inertial systems
and GNSS devices has improved precision enormously. Unfortunately, during the last
stages of flight, inertial and GNSS methods (hybridized or not) feature big errors on
attitude and position determination. Low cost devices, which are precise on terminal
guidance and do not feature accumulative error, such as quadrant photo-detector, seem
to be appropriate to be included on the guidance systems. Hybrid algorithms, which
combine GNSSs, IMUs and photodetectors, and a novel technic of attitude determination,
which avoids the use of gyroscopes, are presented in this chapter. Hybridized measure-
ments are implemented on modified proportional navigation law and a rotatory force
control method. A realistic non-linear flight dynamics model has been developed to
perform simulations to prove the accuracy of the presented algorithms.

Keywords: rockets, artillery, flight mechanics, navigation, guidance, control,
semi-active laser

1. Introduction

A precision-guided munition (PGM) is a guided munition intended to precisely hit a specific

target, and to minimize collateral damage. Considering that the damage effects of explosive

weapons decrease with distance, even modest improvements in accuracy enable a target to be

attacked with fewer or smaller bombs. The precision of these weapons is dependent both on

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



the precision of the measurement system used for location determination and the precision in

setting the coordinates of the target. The latter critically depends on intelligence information,

not all of which is accurate. If the targeting information is accurate, satellite-guided weapons

(including inertial navigation in the event of signal loss) are significantly more likely to achieve

a successful strike in any given weather conditions than any other type of precision-guided

munition [1].

Development of low-cost navigation, guidance and control technologies for unguided rockets

is a unique engineering challenge. Over the past several decades, numerous solutions have

been proposed, primarily for large artillery projectiles or for slowly rolling airframes [1, 2].

GNSS/IMU hybridizing systems provide accurate solutions for PGMs but in some occasions

these solutions might not be enough. For those systems, a circle error probable (CEP) is around

10–20 m in the best cases [3].

Development of algorithms for low-cost high-precision terminal guidance systems is a corner-

stone in research on PGMs. [4] propose a robust guidance law which is mainly suitable for

systems characterized by moderate glint levels such as electro-optical missiles [5] present a

new precision guidance law for three-dimensional intercepts. In contrast to previously

published guidance laws, it does not require knowledge of the range to the target. This makes

it appropriate for use on platforms which have an imaging device, such as a video camera, as a

primary sensor.

Whit the aim of reducing costs, many inertial navigation systems could be replaced with less

accurate devices if it were guaranteed that GNSS signal would be continuously available to

update the inertial system to limit its error growth.

However, given the uncertainty in most scenarios, an alternate way to reduce system cost and

collateral damage is to lower the cost by developing lower-cost inertial sensors while improv-

ing their accuracy using other sources of navigation information such as Semi Active laser kits.

The benefits of integrated data fusion have been demonstrated across the spectrum of

antisubmarine, tactical air, and land warfare [6].

In the research described in this chapter, two measured quantities are used to obtain attitude

information for high dynamic and spin rate vehicles: speed and gravity vectors. They are

obtained in two different reference frames using a GNSS sensor and a strap-down accelerom-

eter. After that, attitude determination algorithm is integrated in the global hybridized system

together with SAL and inertial measurements. Non-linear flight simulations are performed to

prove the applicability of the proposed approach for ballistic rocket navigation, guidance, and

control.

1.1. Semi-active laser photodetectors (SAL)

Semi-active laser photodetectors (SAL), and particularly quadrant detector devices, have been

developed to improve precision in guidedweapons. Quadrant photo-detectors have been applied

in many engineering ambits, such as measurement, control, laser collimation, target tracking, and

particularly in PGM terminal guidance [7]. One of the greatest advantages of quadrant detector
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equipment is the high performance provided in terms of guidance, typically in the last stages of

the trajectory, as compared to the low cost incurred. Coordination can be achieved without

requiring lengthy transfer of coordinates which is susceptible to errors. But, constant lines of sight

between the target, laser designator and the weapon must be maintained [3].

Quadrant photo-detector is a uniform disk made of silicon containing two gaps across the

diameters. There are four independent and equal photo-detectors on the sensing surface, one

on each quadrant. The centre of the detector is known very accurately since it is the mechanical

intersection of the two gap lines and is not pretended to change with time or temperature. A

symmetrical laser or other optical beam centered on the detector generates equal currents from

each of the four sectors. If the beam moves from the centre of the detector, the currents from

the four sectors change, and a processing method may give the coordinate displacements

relative to the centre [8]. Precision on determining the coordinates of intersection of the beam

with the photo-detector will determine the key points on the Navigation and Guidance algo-

rithms for the terminal phase on a PGM. A wide dissertation on improving precision in this

photodetector is presented in [3].

Modern laser guided ballistic rockets are integrating IMU, GPS and laser guidance capability,

offering high precision, all-weather attack capability. For example, [9] design a missile target

tracker using a filter/correlator based on forward-looking infrared sensor measurements. In

this chapter, improvements on existing methods for terminal guidance are presented, which

apply an effective hybridization algorithm in order to obtain an accurate vector between rocket

and target from a combination of sensors previously mentioned, namely IMU, GPS and SAL.

1.2. Attitude determination technics and integration on the global guidance

Obtaining precise attitude information is essential for navigation and control. Its effectiveness

is determined by the degree of precision of navigation and control systems, including inertial

measurement units [10]. There is an extensive body of literature regarding attitude estimation

using various sensor inputs [11].

Traditionally, in order to obtain accurate values for determining attitude, expensive and/or

weighty units, such as laser or fiber optic gyroscopes and accelerometers, or their MEMS

equivalents, must be employed. Moreover, when high-demanding maneuvers are performed

this equipment may become extremely expensive.

It is well-known that the attitude of an aero-vehicle may be determined, starting from an initial

condition, integrating the angular rates (pitch, roll, and yaw rates) of the vehicle and propa-

gating them forward in time. Nevertheless, accuracy requirements usually cannot be satisfied

by using inexpensive sensors [10]. This problem becomes even more important when the

vehicle cannot be reused: low-cost attitude determination systems are of key importance for

these applications.

For example, [12] describe an attitude determination system that is based on two measure-

ments of non-zero, non-co-linear vectors. Using the Earth’s magnetic field and gravity as the

two measured quantities, a low-cost attitude determination system is proposed.

Adaptive Navigation, Guidance and Control Techniques Applied to Ballistic Projectiles and Rockets
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[13] develop an inexpensive Attitude Heading Reference System for general aviation applica-

tions by fusing low cost automotive grade inertial sensors with GPS. The inertial sensor suit

consists of three orthogonally mounted solid-state rate gyros.

[14] describe an attitude estimation algorithm derived by post-processing data from a small

low cost Inertial Navigation System recorded during the flight of a sub-scale commercial off

the shelf UAV. Estimates of the UAV attitude are based on MEMS gyro, magnetometer,

accelerometer, and pitot tube inputs.

[15] state that low-cost GNSS receivers and antennas can provide a precise attitude and drift-

free position information, but accuracy is not continuous. Inertial sensors are robust to GNSS

signal interruption and very precise over short time frames, which enables a reliable cycle slip

correction. But low-cost inertial sensors suffer from a substantial drift. The authors propose a

tightly coupled position and attitude determination method for two low-cost GNSS receivers,

a gyroscope and an accelerometer and obtain a heading with an accuracy of 0.25� and an

absolute position with an accuracy of 1 m.

Similar developments may be found within space vehicles, for example in [16]. In [17] the use

of an inertial navigation system (INS) and a multiple GPS antenna system for attitude deter-

mination of an off-road vehicle is developed. And in [18], attitude determination using GPS

carrier phase is successfully applied to aircraft in experiments.

Also, improved algorithms for estimating attitude in case of failures have been proposed in the

literature. For example, [19] introduce algorithms with filter gain correction for the case of

measurement malfunctions. Two different algorithms are proposed and applied for the atti-

tude estimation process of a pico-satellite. The results of these algorithms are compared for

different types of measurement faults in different estimation scenarios and recommendations

about their applications are given.

However, as stated in [20], many of the presented methods, such as the ones employing local

magnetic field vectors, are only valid for estimating the orientation of a slow-rotation body: for

high spin rate bodies, electromagnetic interactions degrade magnetic measurements.

2. Non-linear flight dynamics model

This segment portrays the nonlinear flight dynamic model utilized as a part of this tests,

including actuations, and navigation and control performances.

2.1. Rocket

The guidance and control detailing proposed in this investigation applies to a 140-mm axisym-

metric turning rocket with wrap around balancing out blades. It highlights supersonic dispatch

speed and a turn rate of roughly 150 Hz. The control system features a roll-decoupled fuse set at

the nose of the rocket. This fuse is composed of four canard surfaces, decoupled 2 by 2. keeping

in mind the end goal to produce control regulated in modulus and argument, situated in an

orthogonal plane in respect to rocket, and its related moment as it is exposed in Figure 1.

Ballistics4



The non-controlled solid propellant thrust, mass, inertia moments (Ix and Iy) and centre of

gravity coordinate from nose (XCG) versus time are shown in Table 1.

Numerical simulations were employed to determine aerodynamic coefficients for the rocket

under examination, which are showed in Figure 2.

2.2. Coordinate systems definition

Two axis systems are defined along this paper: north east down axes (NED) and body axes (B).

NED axes are defined by sub index NED. xNED pointing north, yNED perpendicular to xNED and

pointing East, and zNED forming a clockwise trihedron. Body axes are defined by sub index B.

Figure 1. The 140-mm axisymmetric rocket with wrap around fins and a roll-decoupled fuse.

Time (s) 0.00 0.02 0.10 0.20 0.70 1.20 1.70 1.75 1.95 2.00 2.15 2.30 2.70 3.20 100.00

Thrust (kN) 0.00 25.00 22.50 23.00 24.00 25.50 28.50 29.16 15.00 10.00 5.00 2.50 0.00 0.00 0.00

Mass (kg) 62.40 62.30 61.52 60.58 55.76 50.67 45.13 44.54 42.72 42.47 42.00 41.77 41.57 41.57 41.57

Ix m � s2
� �

0.19 0.19 0.19 0.19 0.18 0.17 0.16 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15

Iy m � s2
� �

18.85 18.83 18.71 18.57 17.80 16.96 16.02 15.91 15.59 15.54 15.46 15.42 15.38 15.38 15.38

XCG mð Þ 1.13 1.13 1.13 1.13 1.11 1.10 1.07 1.07 1.06 1.06 1.06 1.06 1.06 1.06 1.06

Table 1. 140 mm axisymmetric rocket main parameters versus time.

Figure 2. Aerodynamic coefficients vs. Mach number.

Adaptive Navigation, Guidance and Control Techniques Applied to Ballistic Projectiles and Rockets
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xB pointing forward and contained in the plane of symmetry of the rocket, zB perpendicular to

xB, pointing down and contained in the plane of symmetry of the rocket, and yB forming a

clockwise trihedral. The origin of body axes is located at the centre of mass of the rocket and

they are severely coupled to the roll-decoupled fuse. This concept is shown on Figure 3.

2.3. Mathematical equations

Total forces and moments on the rocket are given (expressed in body axes) by (1) and (2),

respectively:

FB
!

¼DB

!

þ LB
!

þ MB

!

þ PB

!

þ TB

!

þ WB

!

þ CB

!

þ CFB
!

, (1)

MB

!

¼OB

!

þ PMB

!

þ MMB

!

þ SB
!

þ CMB

!

(2)

where DB

!

is the drag force, LB

!

is the lift force, MB

!

is the Magnus force, PB

!

is the pitch damping

force, TB

!

is the thrust force, WB

!

is the weight force and CB

!

is the Coriolis force, CFB
!

is the control

force executed by the airfoils, OB

!

is the overturn moment, PMB

!

is the pitch damping moment,

MMB

!

is the Magnus moment and SB
!

is the spin damping moment and CMB

!

is the control

moment executed by the airfoils. Rocket forces in body axes include contributions from drag,

Figure 3. Reference systems.
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lift, Magnus, pitch damping, thrust, weight and Coriolis forces, which are described by the

following expressions:

DB

!
¼ �

π

8
d2ρ CD0

þ CDα2
α2

� �

vB
!

�

�

�

�

�

� vB
!

, (3)

LB
!
¼ �

π

8
d2ρ CLα � αþ CL

α3
α2

� �

vB
!

�

�

�

�

�

�

2

xB
!

� xB
!

� vB
!

� �

vB
!

� �

, (4)

MB

!
¼ �

π

8
d3ρ

Cmf

Ix
LB
!

� xB
!

� �

xB
!

� vB
!

� �

, (5)

PB

!
¼

π

8
d3ρ

CNq

Iy
vB
!

�

�

�

�

�

�

2

LB
!

� xB
!

� �

, (6)

TB

!
¼ T tð Þ xB

!
, (7)

WB

!
¼ m gB

!
, (8)

CB

!
¼ �2m Ω

!
� vB

!
, (9)

where d is the rocket caliber, ρ is the air density, CD0
is the drag force linear coefficient, CDα2

is

the drag force square coefficient, α is the total angle of attack, CLα
is the lift force linear

coefficient, CL
α3

is the lift force cubic coefficient, Cmf is the Magnus force coefficient, LB
!

is the

rocket angular momentum expressed in body axes, Ix and Iy are the rocket inertia moments in

body axes, CNq is the pitch damping force coefficient, xB
!

is the rocket nose pointing vector

expressed in body axes, gB
!

is the gravity vector in body axes, Ω
!

is the earth angular speed

vector, and vB
!

is the rocket velocity expressed in body axes.

Keeping in mind the end goal to demonstrate the control forces and moments in body refer-

ence frame for each of the four fins, it must be viewed as first the effective incidence aerody-

namic speed on each of the four control surfaces. The expressions for control force on each of

the four control surfaces are characterized in the accompanying equations:

CFB
!

¼
X

4

i¼1

1

8

αEf i

αEf i

�

�

�

�

�

�

d2ρπ vxEf i
!

�

�

�

�

�

�

2

CNαw cosαEf i
þ

2

d2π
S exp sin

2αEf i

	 


uFNi

!
cos δi� xB

!
sin δi

� �

2

6

4

3

7

5
, (10)

where CNαw is the aerodynamic coefficient of the normal force for a fin, S exp is the reference

surface of the fin, δi responds to fin deflection angle, uFNi

!
depends on fin orientation, concretely in

body axes, uFN1

!
¼ 0 1 0½ �, uFN3

!
¼ 0� 1 0½ �, uFN2

!
¼ 0 0 1½ �, uFN4

!
¼ 0 0� 1½ �, and, αEf i

and vxEf i
!

are the

effective angle of attack and the effective aerodynamic speed on each of the four fins, respectively.

These last two magnitudes are modeled as it is expressed in the following equations:

vxEf i
!

¼vB
!

� vB
!

� ubi
!

h i

ubi
!

, (11)

Adaptive Navigation, Guidance and Control Techniques Applied to Ballistic Projectiles and Rockets
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αEf i
¼ acos

vB
!

� vB
!

� ubi
!

h i

ubi
!

vB
!

� vB
!

� ubi
!

h i

ubi
!

�

�

�

�

�

�

� xB
!

2

6

4

3

7

5
þ δi, (12)

where ubi
!

depends again on fin orientation, concretely in body axes, ub2
!
¼ 0 1 0½ �, ub4

!
¼ 0� 1 0½ �,

ub3
!
¼ 0 0 1½ �, ub1

!
¼ 0 0� 1½ �.

Likewise, rocket moments in body axes include contributions from overturning, pitch

damping, Magnus, and spin damping moments, which are described by the following:

OB

!
¼

π

8
d3ρ CMα

þ CM
α3
α2

� �

vB
!
�

�

�

�

�

�

2

vB
!

� xB
!

� �

(13)

PMB

!
¼

π

8

d3ρ

Iy
CMq

vB
!
�

�

�

�

�

� LB
!

� LB
!

� xB
!

� �

xB
!

� �

(14)

MMB

!
¼ �

π

8

d4ρ

Ix
Cmm LB

!
� xB

!
� �

vB
!

� xB
!

� �

xB
!

� �

� vB
!

� �

(15)

SB
!
¼

π

8

d4ρ

Ix
Cspin vB

!
�

�

�

�

�

� LB
!

� xB
!

� �

xB
!

(16)

where CMα
is the overturning moment linear coefficient, CM

α
3
is the overturning moment cubic

coefficient, CMq
is the pitch damping moment coefficient, Cmm is the Magnus moment coeffi-

cient and Cspin is the spin damping moment coefficient.

The control moment provided by the control surfaces may be expressed as follows:

CMB

!
¼
X

4

i¼1

dax xB
!

þdlat ubi
!

h i

� CFBi

!h i

, (17)

where dax is the longitudinal distance, parallel to xB
!
, of fin centre of pressure (CP) to rocket

centre of mass (CG), which depends on Mach number; dlat is the lateral distance, which is

orthogonal to xB
!

and parallel to ubi
!

for each fin, from fin centre of pressure to rocket centre of

mass, which is supposed to be constant in this model.

To solve themotion of the rocket a body reference frame, which is coupled to the fuse, is used. Note

that, because the fuse is uncoupled from the back part, which turns at high rates, Magnus force and

moment and gyroscopic effects coming from the rear part must be modeled and included in the

equations of motion. The turn rate of the back piece of the rocket is modeled as follows:

pr ¼ �

ð

Ksδ t0ð Þ �
π
8 d

4ρ

Ix
Cspin vB

!
�

�

�

�

�

� LB
!

� xB
!

� �

xB
!

�

�

�

�

�

�

 !

dt, (18)

where δ t0ð Þ is a Dirac’s delta and Ks an experimental constant. Note that initial spin speed

is modeled as an impulse which correlates to experimental data. It is accepted that the fuse
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mass is unimportant, which infers that non-apparent responses are included amongst fuse

and aft part. Then, considering the aft impact is communicated as additional forces and

moments to the Newton-Euler equations expressed in the B reference framework, the equa-

tions of motion may be expressed as follows: FB
!

¼
dmvB

!

dt þ ω0

B

!

� mvB
!

and MB

!

¼
dL0B
!

dt þ ω0

B

!

� L0B
!

,

where ω0

B

!

¼

pr þ p

q

r

0

B

B

@

1

C

C

A

and L0B
!

¼

Ix 0 0

0 Iy 0

0 0 Iy

2

6

4

3

7

5
ω0

B

!

¼ I� ω0

B

!

are the angular speed and momen-

tum, respectively, of the joint body, namely rocket and fuse. The aerodynamic and gyroscopic

contributions of the aft part are computed separately and moved to the left part of Newton-

Euler equations as follows:

M
!

r ¼ �
π

8
d3ρ

Cmf

Ix
ω

0

B

!

I� xb
!

	 


xb
!

� vb
!

� �

, (19)

M
!

Mr ¼ �

π

8 d
4
ρ

Ix
Cmm ω

0

B

!

I� xb
!

	 


vB
!

� xB
!

� �

xB
!

� �

� vB
!

� �

, (20)

Gr

!

¼ �I
d

dt
ω

0

B

!

þ ωB
!

� L0B
!

, (21)

Fext
!

þM
!

r ¼
d mvB

!

dt
þ ωB

!
� mvB,

!
(22)

Mext

!

þ MMr

!

þ Gr

!

¼
d LB

!

dt
þ ωB

!
� LB

!

, (23)

where M
!

r is the Magnus force of the rotating part of the rocket, MMr

!

is the Magnus moment of

the rotating part of the rocket, Gr

!

is the gyroscopic moment of the rotating part of the rocket,

p, q and r are the angular speed components of the fuse, ωB
!
.

The conditions of movement given by Eq. (22) and Eq. (23) are integrated forward in time

employing a fixed time step Runge-Kutta of fourth order to acquire a single flight trajectory.

3. Semi-active laser quadrant photodetector model

Semi-active laser kit consists of a quadrant photo detector that may be modeled as it is

shown in Figure 4, where the external circle models the locator and the inward one the laser

spot.

In order to estimate laser footprint spot centre coordinates, electric intensities given by each of

the photo-diodes (I1; I2; I3 and I4), which depend on area lit up by the laser spot, might be

utilized. The following conditions characterize the most reasonable calculation, where xquad, yquad

are the calculated laser footprint spot centre coordinates.

Adaptive Navigation, Guidance and Control Techniques Applied to Ballistic Projectiles and Rockets
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xquad

yquad

" #

¼

ln
I2
I4

ln
I1
I3

2

6

6

4

3

7

7

5

(24)

The following mathematical relationship is always kept:
yc
xc
¼

yquad
xquad

, i.e., the transformation is

conformal as showed in (25), where xc and yc are the genuine spot focus positions, not

positions gotten by (24). Radial measurements may be interpolated introducing desired radius

using the equivalences showed by the accompanying Table 2, where genuine and measured

radial distances, rc and rquad, respectively, are given by Eqs. (26) and (27):

θc ¼ θquad ¼ atan
yquad

xquad
(25)

rquad ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2quad þ y2quad

q

(26)

rc ¼ f rquad
� �

(27)

Then, the measurement output of the quadrant detector sensor may be expressed as it is

indicated in (28), where Rquad is the physical radius of the quadrant detector:

xc

yc

	 


¼ Rquad

rc cosθc

rc sinθc

	 


(28)

Figure 4. Quadrant photo-detector configuration used.
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4. Trajectory control algorithms

This section describes in detail the proposed navigation, guidance, and control algorithms.

Navigation for this vehicle alludes to the assurance, amid the totality of flight, of the rocket

position and attitude, and target position. So as to decide rocket position integration of acceler-

ometers’ data and GNSS sensor measurements might be hybridized and utilized as a part of the

routing procedure. The elements of these estimations are not objective of this section.

As expressed before, one way for calculating attitude might be the estimation of various

vectors in two reference frameworks.

On the off chance that a GNSS sensor gadget is prepared on the flying machine, velocity vector

can be specifically calculated from sensor data in the NED axis. Another estimation of the

velocity vector in body triad can be acquired from an arrangement of accelerometers prepared

on the ship, one on each of the axis. These gadgets can quantify variations in speed. After

integrating along time, from an initial condition given, velocity vector can be obtained.

A vector which might be utilized to characterize the rotation of the vehicle is the gravity vector.

It is extremely easy to be resolved in NED ternion as it is constantly parallel to zNED. Note that

accuracy might be expanded utilizing more entangled models, i.e., it can be demonstrated

relying upon latitude and longitude.

The cornerstone of the displayed attitude calculation technique is estimating gravity vector in

body axis. For instance, by deciding the constant component of the measured acceleration

employing a low pass filter, where Jerk in body axes is calculated by derivation of acceleration;

at that point, it is integrated so as to get the non-steady part of increasing speed, and, by

subtracting this non-steady segment from the measured acceleration, gravity vector is evaluated.

Be that as it may, this technique is not legitimate when the air ship pivots. Another technique to

acquire gravity vector is integrating the mechanization equations; at that point, control thusly

the subsequent conditions. Once more, gyros are required to implement this method. Basically, it

consists on subtracting the contribution of the specific aerodynamic and inertial forces, which

can be obtained from expressions (3) to (10) and dividing them by the vehicle mass, from the

acceleration measurements of the accelerometers. The Eq. (29) aims to express this fact:

gB
!
¼AB

!

�
1

m
DB

!

þ LB
!

þ MB

!

þ PB

!

þ TB

!

þ CB

!

þ CFB
!

� �

, (29)

where gB
!

is the gravity vector expressed in body axes and AB

!

is the acceleration measured by

accelerometers.

rquad 0.48 0.99 1.50 2.01 2.67 3.68 5.88

rc 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Table 2. Interpolation between measured radial distance, rquad and real radial distance, rc.
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Another vector that may be expressed in both reference systems is the line of sight vector, which

is especially useful during terminal phase, is the line of sight vector. It can be expressed in NED

axes by subtracting target position from vehicle position obtained by GNSS measurements, and

in body reference frame from SAL measurements as it is expressed in (30), where dp is the

distance from the quadrant detector to the centre of mass of the rocket.

gLOSB ¼
dp xc yc
� 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2p þ x2c þ y2c

q (30)

Attitude can be determined operating with these pairs of vectors with matrixial algorithms as

it is stated on [21].

The guidance consists of a modified proportional law, governed by the following equations:

Eq. (31) gives the yaw error; Eq. (32) determines the pitch error; and Eq. (33) estimates time to

impact (tgo).

ψerr ¼
LOSNED

!
� vNED

!
tgo

t2go
� 0 0 1½ � (31)

θerr ¼
LOSNED

!
� vNED

!
tgo

t2go
� �1 0 0½ � (32)

tgo ¼
1

g
vNED

!
� 0 1 0½ � þ

1

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vNED

!
� 0 1 0½ �

� �2
þ 2g LOSNED

!
� 0 1 0½ �

r
(33)

Next, the utilized control law is presented, which gets as result two control parameters to be

employed by the actuation system. Control is handled by a double loop feedback system,

which uses accelerations and angular speed in body axes. The inner loop is only used as a

system of stability augmentation. The two control parameters are the control angle for the

rotating force (fc) and the module of the control force (τcÞ. The control angle for the rotating

force is defined in Eq. (34), taking pitch (θerr) and yaw (ψerr) errors as inputs. The module of the

control force produced is also controlled. It is calculated in Eq. (35); note that this is done by

processing the quadratic average of pitch and yaw errors. In these expressions L1 and L2 are

experimental gains, Ki, Kd and Kp are the integral, derivative, and proportional constants of the

controller, and Kmod is a constant to adjust the control force module.

fc ¼ Kp atan
θerr � L1θ

L2ðψerr � L1ψÞ
� atan

acczb
accyb

	 


þKi

Ð
atan

θerr � L1θ

L2ðψerr � L1ψÞ
� atan

acczb
accyb

	 

dt

þKd
d

dt
atan

θerr � L1θ

L2ðψerr � L1ψÞ
� atan

acczb
accyb

	 

þ atan

θerr � L1θ

L2ðψerr � L1ψÞ

(34)

τc ¼ Kmod

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θerr � L1θð Þ2 þ L2 ψerr � L1ψ

� �� �2q
(35)
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Figure 5 shows the logic of the controller. It has three fundamental sources of info: the

acceleration of the rocket in body axis, communicated by its three components [accxb; accyb;

acczb], the pitch and yaw errors and the measurements from gyros on each axis, [f,θ,ψ].

Generally, the controller ascertains the required pointing angle of the aerodynamic force

figuring the arc-tangent of the quotient of the pitch and yaw error. This gives an angle at which

the aerodynamic force, in the yb � zb plane, must point to reach the target. However, the

gyroscopic effect due to the spinning part of the rocket makes the response difficult to govern,

i.e., imposing a fc of 90� will not make the rocket to respond upwards. Subsequently, the

acceleration of the rocket must be likewise measured, without representing gravity, so as to

have the effect between the difference between the angle that forms the projection of the

aerodynamic force in the yb � zb plane with yb and fc.

In order to translate these control parameters into fin deflections, i.e., δ1, δ2, δ3 and δ4 managed

by two actuators, the relationships in (36) are applied.

δ1 ¼ δ3 ¼ τc sinfc; δ2 ¼ δ4 ¼ τc cosfc (36)

5. Simulation results

MATLAB/Simulink R2016a on a desktop computer with a processor of 2.8 Ghz and 8 GB RAM

was used. The rest of this section is divided in three different subsections. The first one pre-

sents the ballistic flights of the nominal trajectories to which the navigation, guidance and

control algorithms developed will be applied. The second one describes the Monte Carlo

Figure 5. Control system scheme.
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simulations to be performed. And the last one compares the results of ballistic flights, con-

trolled flights with GNSS/Accelerometer guided trajectory and controlled flights with GNSS/

Accelerometer/Photo-detector guidance.

5.1. Ballistic trajectories

To test the developed algorithms, three nominal trajectories will be employed, which differ in

their launch or initial pitch angle: 20�, 30� and 45�. Table 3 shows the characteristic parameters

for these shots: initial pitch angle in the first column, initial lateral correction in the second one,

and impact point in the last one. Initial lateral correction is performed in order to compensate

Coriolis force and gyroscopic effects.

The results for the ballistic trajectories for the three proposed initial pitch angles are shown in

Figure 6. It shows impact point dispersion patterns for each of the ballistic cases. Also, the

circular error probable (CEP) may be observed for each of the initial shot pitch angle.

5.2. Monte Carlo simulations

Monte Carlo analysis is conducted to determine closed-loop performance across a full spec-

trum of uncertainty in initial conditions, sensor data acquisition, atmospheric conditions,

and thrust properties. For atmospheric conditions variations in turbulence are considered

using the specification MIL-F-8785C and the Dryden Wind turbulence model. Monte Carlo

simulation distribution parameters are listed in the next Table 4. A set of 2000 shots is

performed for each of the following combinations: ballistic shots, GNSS/Accelerometer

assisted shots and GNSS/Accelerometer/Photo-Detector assisted shots. Initial shot angles of

Initial pitch angle (
�

) Initial lateral correction (
�

) Impact point (m)

20 0.1524 18790.38

30 0.1989 23007.26

45 0.3082 26979.00

Table 3. Nominal trajectories’ parameters.

Figure 6. Ballistic shots for 20�, 30� and 45� initial pitch angles.
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20�, 30� and 45� are performed. Note that a total of 18,000 simulation shots are performed at

the end of simulation campaign.

5.3. Discussion

Values for navigation, guidance and control parameters defined on previous sections (C1, C2,

Ki, Kp, Kd, Kmod, L1 and L2) are expressed in Table 5. These parameters where selected

experimentally in the model in order to obtain stable flight conditions.

Figure 7 shows detailed information about comparisons between different approaches. On the

top, middle and bottom rows, shots with launch angles of 20, 30 and 45� are presented,

respectively. Furthermore, on the left column ballistic flights and GNSS/Accelerometer assisted

flights are compared, on the middle column GNSS/Accelerometer and GNSS/Accelerome-

ter/Photo-detector assisted flights, and finally on the right column ballistic flights and GNSS/

Accelerometer/Photo-detector assisted flights are compared for each of the three-initial pitch or

launch angles. Controlled flights exhibit tighter impact groupings, getting tighter for the

GNSS/Accelerometer/Photo-detector controller. Spread in the impact distribution does remain

in the guided flights with GNSS/Accelerometer controller due to the difficulties discussed

before, especially on sensors subsection, where it is explained the typical error of GNSS sensors

and its associated accuracy problems during terminal guidance phase.

The circular error probable (CEP) for each of the targets and for ballistic and controlled flights

is shown in Table 6. The first column shows the initial pitch angle, the second one the CEP for

the ballistic flight, the third one the CEP for the GNSS/Accelerometer Controlled Flight, and

the last column the CEP for the GNSS/Accelerometer/Photo-detector Controlled Flight. The

CEP for ballistic shots increases as initial pitch angle increases, while for controlled flights it

remains stable, obtaining much better results for GNSS/Accelerometer/Photo-detector control-

ler. Note that improvements or reductions on the CEP are above the 95%.

Parameter Mean Standard deviation

Initial w 0� 20
�

Initial pitch Nominal (20�, 30�, 45�) 0.01
�

Wind speed 10 m/s 5 m/s

Wind direction 0� 20�

Thrust at each time instant T(t) 10 N

Initial azimuth deviation Nominal lat. correction 0.01�

Table 4. Monte Carlo simulation parameters.

Parameter C1 C2 Ki Kp Kd Kmod L1 L2

Value �7.5
�

�19 deg 1 0.3 0.025 0.08 0.01 1

Table 5. Values for the constants.
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6. Conclusions

A novel approach for navigation, guidance and control of high-rate spinning ballistic rockets,

which is based on an innovative hybridization between GNSS/Accelerometer and semi-active

laser quadrant photo-detector, has been developed.

Figure 7. Detailed shots for different algorithms.

Initial pitch

angle (
�

)

Ballistic flight

(m)

GNSS/accelerometer controlled

flight (m)

GNSS/accelerometer/photo-detector

controlled flight (m)

20 169.34 78.27 1.75

30 239.37 73.80 1.39

45 281.59 78.84 0.97

Table 6. Circle error probable for the different cases.
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Because ballistic rockets cannot be reused and high precision is of key importance, expensive

equipment, e.g., sensors, has been traditionally employed. In this paper, however, it has been

demonstrated that high precision may be obtained while using commercial off the shelf

equipment, which is not usually highly precise.

Attitude determination is based on an algorithm which hybridizes data coming from multiple

sensors and on a gravity vector estimator, avoiding the use of gyros. This approach is embed-

ded in a two-phase guidance algorithm and a novel control technique for high-rate spinning

rockets. The guidance algorithm is based on a modified proportional law while the control

algorithm is based on a simple but effective and robust double-input double-output controller.

The proposed algorithms improve enormously accuracy by mixing those inaccurate signals in

the terminal trajectory, with the signals of a precise semi-active laser quadrant detector, which

is able to determine line of sight with high fidelity in body axes. Using the proposed hybrid-

ized algorithm during the last phases of flight, improves accuracy nearly to the ideal case as it

was proved in simulations.
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