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Abstract

The aim of this work was to develop the novel glass fiber–reinforced polyester hybrid
composites (PHCs) filled with micro-sized titania (TiO2) particles and investigate their
functional, mechanical and thermal behaviors. To equip PHCs of unsaturated polyester
resin (UPR) with multifunctional characteristics, TiO2 particles (1–5 wt.%) were dispersed
with high disperser homogenizer using hand lay-up process (HLUP), combined with
compression molding technique (CMT). The interactions (cross linking and hydrogen
bonding) between polymeric chains, styrene, silica contents of glass fiber and TiO2 parti-
cles in PHCs were confirmed by Fourier transform infrared spectroscopy (FTIR). The
mechanical and thermal properties increased brilliantly by potential utilization of TiO2

particles. The 3 wt.% of TiO2-imbedded PHCs showed remarkable progress in tensile
strength (46 MPa) as well as tensile modules (2.9 GPa) relative to unloaded PHCs. The
5 wt.% of TiO2-imbedded PHCs showed 61 and 64% increase in impact energy and
hardness, respectively. Thermo-gravimetric analysis (TGA) showed that controlled PHC-0
had the mass loss up to 50%, which was restricted to 17% by using TiO2 particles for PHC-5.
Hence, it was inferred that micro-sized TiO2was encouraging filler for incremental valuation
in functional, mechanical and thermal characteristics of PHCs. After finding the marvelous
mechanical and thermal properties of PHCs, it is endorsed that these polyester composites
can be tested for high strength and high temperature applications.

Keywords: hybrid composites, polyester, titania, functional, thermal, mechanical,
cross linking, hydrogen bonding

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



1. Introduction

Composite material is a blend of at least two components having distinguishable interfaces at

point of their junction, to make onemacroscopicmaterial. One component ismatrix (transmitter),

which transfers the loadwhile, other is reinforcement (carrier) that bears the same load.Wood is a

natural composite, where lignin (matrix) transmits the load and cellulose (reinforcement) bears

stress [1]. Polymer matrix composites (PMCs) are polymer based, where thermoplastic or ther-

mosetting polymers are responsible for matrices and continuous fibers, discontinuous fibers,

chopped fibers or fillers (organic/inorganic) are performing as reinforcements [2]. If there are at

least two different matrices and single reinforcement or vice versa, these composites are called

hybrid composites. Fiber reinforced polymer composites comprise continuous or discontinuous

fibers, woven or non-woven fiberics (carbon, glass or Kevlar fiber) as reinforcing phase in poly-

mer resin matrices, are the largest manufactured category of the PMCs [3].

The durability problems related with traditional materials, the needs of higher speeds of

construction and increasing functionality demands led to fiber reinforced polyester composites

(FRPCs) with higher specific strength, light weight, environmental and corrosion resistant and

requiring less maintenance during their service life. FRPCs are basically comprised by a

fibrous reinforcement (usually glass, carbon or aramid fibers) embedded in a polyester matrix.

These materials have applications in construction, marine, aerospace, automotive and sports

industries [4, 5]. Owing to their high in-plane tensile properties, superior receptiveness to

impact damage, poor interlaminar properties and compression molding are of foremost issues

[6]. To solve these impediments, further research work is required. Particulate-imbedded

FRPCs also called polyester hybrid composites (PHCs), with better properties by inclusion of

inorganic filler in polyester matrix, is an imperative method to dig out material issues [7], even

though several metal oxides are discussed in literature like zirconium oxide, zinc oxide,

aluminum oxide, silicon oxide and cerium oxide [8]. However in recent era, titanium oxide/

titania (TiO2) has gained much attraction as inorganic phase for the preparation of PHCs [9],

due to its specific properties like photocatalytic, high refractive index and UV radiation

absorption that can used to develop new functional organic-inorganic materials [10].

A broad spectrum of polymer matrices are available; polyester, polyimide, polysiloxane, vinyl

ester, epoxy, polydimethylsiloxane but unsaturated polyester resin (UPR) is more frequent due

to its superior mechanical properties, good process ability and low cost [11]. To dissolve

polyester, styrene is mostly used in industry. Styrene containing polyester has relatively low

viscosity and can wet the glass fibers properly. The properties of glass fiber like, high electrical

and corrosion resistance with good dimensional stability are responsible for its use as rein-

forcement in FRPCs [12]. Additionally, styrene can crosslink with –C=C– bond of different

polyester chains resulting in improved thermal and mechanical properties [13].

The association of inorganic fillers in FRPCs contributes to reduce the void contents by lowering

polymerization shrinkage resulting higher mechanical and thermal properties and fillers also

increase the viscosity of thematrices leading good handling during fabrication processes. Ferreira

et al. studied thermal stability of an aluminized E-glass fiber/unsaturated polyester composites

compared to un-metallized E-glass/polyester composites and unreinforced polyester. The residue
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content of the aluminized E-glass fiber reinforced composites was greater than that of un-

metallized E-glass fiber composites by nearly 26 and 658% than the unreinforced polyester [14].

The main focuses of this chapter, were the fabrication of polyester hybrid composites (PHCs)

using unsaturated polyester resin (UPR) with woven E-glass fiber sheets and micro-sized TiO2

particles by hand lay-up process (HLUP) and compression molding technique (CMT), and

investigating their functional, mechanical and thermal properties for high strength and high

temperature applications.

2. Fabrication of polyester hybrid composites

The unsaturated polyester resin (pre-polymer of maleic anhydride and propandiol) with

average molecular weight (Mw = 1500 g/mol) having of 40 � 2% styrene content and inhibitor

hydroquinone (150–200 ppm) was obtained from local commercial market. Cobalt-

naphthenate (CN) as an accelerator and methyl-ethyl-ketone-peroxide (MEKP) as curing agent

was acquired from Fluka Co. E-glass fiber roving strand mat used was acquired from Toray,

Japan. Micro-TiO2 particles (melting point ~1843�C and 4.23 g/cm3 density) were purchased

from Sigma Aldrich. Then micro-sized TiO2 in predetermined weight concentrations (1–5 wt.%)

were taken and dispersed in the UPR by a high speed mixer, run with 2000 rpm at 40�C for 2 h.

The dispersions were cooled to room temperature following by the addition of catalyst MEKP

(2 wt.%) and accelerator CN (1.5 wt.%) and then mechanical stirring for 2 min for uniform

mixing of curing agent and accelerator. Unidirectional (1D) PHCs laminates were fabricated by

a layer-by-layer impregnation using HLUP. Four individual sheets of cross plied woven roving

E-glass fiber mat with dimensions (180 � 180 mm2) were immersed in UPR dispersion for

complete impregnation of TiO2-imbedded UPR matrix including catalyst and accelerator, then

stacked on one another by HLUP in compressed die of stainless steel (SS).

Thewhole assembly of PHCs laminates (along SS die) was kept in a High TemperatureMelt Press

(HTMP) under 5000 pounds (2.27 metric ton) at 75�C for 2 h for getting complete curing and

uniform thickness and this technique called compression molding technique (CMT). Preparation

of PHCs laminates was tricky practice so a plain geometry of SS was implemented for sampling.

After molding in HTMP, the whole assembly of PHCs (along SS die) was cooled to room

temperature at same pressure for avoiding thermal residual stresses. All PHCs were prepared

with same number of fiber sheets with changing TiO2 content from 1 to 5 wt.% and cut for

different specimens using respective ASTM standards.Table 1 shows the codes and compositions

of PHCs and one thing should be noted here that we loaded TiO2 content, MEKP content and CN

content in matrix content to make total 100 percent weight of specimens. Schematic illustration of

experimental set-up for fabrication of composites using hand lay-up process (HLUP) and com-

pression molding technique (CMT) has shown in Figure 1.

2.1. Proposed scheme reaction for the fabrication of TiO2-imbedded hybrid composites

During the synthesis of PHCs, H-bonding of TiO2 and SiO2 contents of glass fiber and cross

linking of UPR is revealed with scheme reaction in Figure 2 Polyester chains were cross-linked

A Case Study: Particulate-Filled Polyester Hybrid Laminated Composites
http://dx.doi.org/10.5772/intechopen.73476

57



with –C=C– bonds of styrene in the presence of cobalt naphthenate accelerator and MEKP

catalyst. The three dimensional network of PHCs were fabricated resulting from cross linking

(physical and chemical) between polyester chains, styrene, TiO2 and SiO2 content of glass fiber.

3. Investigation of functional, mechanical and thermal properties of PHCs

3.1. Functional testing

Spectra of PHCs were noted by Fourier transform infrared spectroscopy (FTIR) (IR Prestige-21

Shimadzu), using the attenuated total reflectance (ATR) accessary. The air background was

taken before each test sample. The wavenumber range was used from 4000 to 500 cm�1 at

resolution of 4 cm�1 and 100 scans per spectrum.

Figure 1. Schematic diagram of experimental set-up for fabrication of composites using hand lay-up process (HLUP) and

compression molding technique (CMT).

Code names for HCs Matrix content imbedded with TiO2

(wt.%)

Fiber content

(wt.%)

TiO2 content in matrix

(wt.%)

PHC-0 50 50 0

PHC-1 50 50 1

PHC-2 50 50 2

PHC-3 50 50 3

PHC-4 50 50 4

PHC-5 50 50 5

Table 1. Code names for PHCs specimens along with their matrix, fiber and titania compositions.
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Figure 2. Proposed scheme reaction for the fabrication of TiO2-imbedded hybrid composites in which green dotted lines

( ) show hydrogen bonding between TiO2 particles, unsaturated polyester resin, styrene content of UPR, silica content

of glass fiber and red solid lines ( ) show cross linking of unsaturated polyester resin.
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FTIR analysis (Figure 3) was based about confirmation of the functional groups of UPR,

styrene, silica and titania with the shifting of peaks during H-bonding and crosslinking of

UPR with styrene in the fabrication of PHCs. It was determined that the characteristics peaks

of UPR: both unsaturated (–C=H) stretching vibrations at 2957 cm�1 and saturated aliphatic

hydrocarbon (–C–H) stretching between 2957 and 2918 cm�1 and unsaturated aromatic out of

plane bending deformation at 741 cm�1. In UPR, there can be two or more different sources of

aromatic moieties: usually from styrene and Phthalic anhydride. Most characteristics of FTIR

spectra of UPR is the strong carbonyl (–C=O–) stretching band between at 1715–1723 cm�1

and the two other strong asymmetric bands characteristics for oxygen containing groups

(–C–O–C– ester linkages) at 1260.29 and 1122 cm�1. A weak stretching band at 1635 cm�1

and out of the plane bending at 978 cm�1 were ascribed to –C=C– group of polyester. The band

at 698 cm�1 (–C–H– out of plane bending in benzene ring) and 909 cm�1 (–C=C– group) were

typical of styrene. The –Si–O band in PHC-0 was at 1076 cm�1 which was shifted to 1072 cm�1

in PHC-5 due to hydrogen bonding with –CH group of polyester chain (as in scheme Figure 2).

Ti–O–Ti stretching vibrations bands were observed at 1447 cm�1 in titania-imbedded PHC-1 to

PHC-5 (no observed in UPR and PHC-0). The shift in the carbonyl group (–C=O–) from 1715 to

1723 cm�1 (from UPR to PHC-5) was due to the cross linking, which increased cross linking

density in cured PHC-5 and lead to more brittle behavior during tensile testing. The consump-

tion of styrene during curing process was followed by the disappearance of the peak at

909 cm�1 in cured PHC-1 to PHC-5. The consumption of C=C bond in UPR was followed by

Figure 3. FTIR spectra comparison of cured UPR, controlled PHC-0 without TiO2 particles and TiO2-imbedded cured

hybrid composites with their relative composition of TiO2 particles; PHC-1 (1 wt.%), PHC-2 (2 wt.%), PHC-3 (3 wt.%),

PHC-4 (4 wt.%) and PHC-5 (5 wt.%).
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the change in the peak area at 978 cm�1 in PHC-0 to PHC-3 and vanished up to PHC-5. The

–CH stretching band at 2957 cm�1 became stronger as observed in cured PHC-0 (2956 cm�1)

which was shifted to 2918 cm�1 in TiO2-imbedded PHCs, i.e., PHC-1 to PHC-5 and the shifting

of –CH band to lower wavenumber due to H-bonding with the inclusion of silica and titania

loading. The stretching band at 1635 cm�1 (UPR) was noted at 1645 cm�1 in cured PHC-0 and

almost vanished in PHCs having concentration of TiO2 from 1 to 5 wt.% (PHC-1 to PHC-5).

This confirms the transformation of this group to alkane through cross-linking which is

credited to the contribution of –HC=CH– functional group during curing method. The all

spectrum of PHCs were differed from UPR especially in the region 3700–3200 cm�1 (most

evidently at 3550 cm�1), which were the frequencies associated with –OH stretching and had

been almost continuous absorption of moisture from open air [15–17].

3.2. Tensile testing

Testometric universal testing machine (UTM), Model FS100 CT UK, with load cell (100 KN)

was employed to evaluate the tensile properties under static force. PHCs specimens with end

tabs for the evaluation of tensile behavior were prepared following the ASTM:D 3518-0 with

dimensions (200� 25� 2.5 mm). The UTMwas controlled at room temperature conditions at a

speed of 2.0 mm/min. Figure 4(a) exhibited tensile stress–strain profiles which showed

nonlinear strains with stress on applying force. That non-linearity and asymmetrical behavior

was responsible for asymmetric fiber breaking during applied stress. Figure 4(b) and (c)

showed that tensile strength (TS) and tensile modulus (TM) of PHCs increased with increasing

TiO2 contents up to maximum of 3 wt.% TiO2, which were 46 MPa (TS) and 2.94 GPa (TM)

followed decreasing trend beyond that limit. It noted that 3 wt.% TiO2 was the optimal

composition for better tensile properties of TiO2-imbedded PHCs. The improvement in the

tensile properties was the outcome of creation of chemical bonds at the interface between the

PHCs and TiO2 particles [18] and optimized compositions of polyester matrix, & TiO2 particles

were key parameter of marvelous interfacial interaction [19]. When TiO2 particles and polyes-

ter matrix are well bonded, the applied stress can be significantly shifted from the polyester

matrix to TiO2 particles and particles bear the load resulting in high tensile strength. Reduction

in tensile properties beyond 3 wt.% TiO2 was due to crack growth propagation with stress

concentrations which triggered by voids in PHC-4 & PHC-5 [20].

3.3. Izod impact test and hardness

Pendulum impact tester (Model CSI-137) of Custom Scientific Instruments, was employed to

evaluate the impact strength of developed composite samples in izod mode. Five individual

specimens having dimension (63.5 � 12.7 � 2.5 mm) were primed for izod impact testing

and notched as per ASTM: D256-10. Hardness of PHCs specimens with dimensions (25.4 �

25.4 � 2.5 mm) was investigated by Bench Rockwell hardness tester (Model NR3-DR) using

ASTM:D785-08. A carbide ball indenter having spherical base of 2.5 mm diameter was infil-

trate into the sample under applied force F. Applied load was 62.5 kilo pound (kp) while

preload was 1000 kp while with ratio HB10. Brinell hardness value was recorded at 10

different positions on each sample. Figure 5, demonstrates that the resistance to impact
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loading of PHCs increased with the addition of TiO2 particles. The impact strength of PHCs

was considerably depended on the particle stiffness, reinforcement strength, matrix fracture,

particle-matrix interface adhesion and fiber pullout. The changing in concentration, orientation

and distribution of particles in composites were also responsible for changing in physical and

mechanical characteristics of resultant PHCs [21]. The level of maximum impact energy, of the

order 4.73 KJ/m of PHC-5, was significantly higher with respect to unfilled PHC-0 (0.64 KJ/m).

The enhancement of impact energy of PHCs was due to the strong crosslinking and hydrogen

bonding (H-bonding) among TiO2, polyester and SiO2 content of E-glass fiber and confirmed

by Ritesh Kaundal and co-workers [22]. It was noted that both tensile and flexural properties

Figure 4. (a) Tensile stress-strain profiles of controlled PHC-0 and PHC-1, PHC-2, PHC-3, PHC-4, & PHC-5. (b) Show

tensile strength values in mega Pascal (MPa) of PHC-0, PHC-1, PHC-2, PHC-3, PHC-4, & PHC-5 calculated from stress-

strain curves. (c) Tensile modulus values in giga Pascal (GPa) of PHC-0, PHC-1, PHC-2, PHC-3, PHC-4, & PHC-5

calculated from stress-strain curves.
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decreased beyond 3 and 4 wt.% TiO2 loading respectively, but impact energy values increased

continuously up to 5 wt.%. It was proposed that higher concentration of TiO2 particles pro-

duced more voids which were responsible of dissipation of impact energy more efficiently in

PHC-5 [23].

Figure 5 also demonstrated that the hardness of PHCs augmented linearly with imbedding of

TiO2 particles. The PHC-5 showed 64% increase in hardness compared to PHC-0.

Improved hardness or high resistance to penetration values was due to the fact that when load

was exerted on the specimens; fiber, matrix and TiO2 particles had pressed at once and

adhered with each other more effectively and interfaces transmitted pressure more efficiently.

During applied compression load, the inter-particle distance got less and hardness became

high. It was also considerable that matrix contents lessened on increasing the loading of TiO2

particles in system and particles induced their intrinsic hardness to PHCs [24].

3.4. Thermal testing

Simultaneous differential scanning calorimetry/thermogravimetric analyzer (SDT) Model

(Q600 of TA), was employed to conduct thermos-gravimetric analysis (TGA) of prepared

PHCs. Thermal stability of each test specimen (~10 mg) was assessed at a stable temperature

ramp of 10�C/min from 40 to 800�C in inert atmosphere with flow rate of 100 mL/min.

Thermal degradation pattern of controlled PHC-0 and TiO2-imbedded PHCs depicted the

weight loss in multiple steps (Figure 6). The weight loss from ambient to 100�C was ascribed

Figure 5. Izod impact strength and hardness results of PHC-0, PHC-1, PHC-2, PHC-3, PHC-4, & PHC-5.
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to the removal of dampness and after that step dehydration took place in temperature range

of 100–250�C. The onset of degradation of PHCs was started at 250�C and high degradat-

ion was linked with breaking of weak bonds. The scissoring of highly cross-linked poly-

ester chains were observed above 350�C and transformed in un–cross-linked linear chains

[25]. All straight polymer chains went to scission into tiny parts at 400�C near offset

temperature [26].

The residual amount at 800�C was accredited to the left behind quantity of glass fiber and TiO2

particles. It was observed from this result that the control PHC-0 showed the mass loss up to

50%, which was restricted to 17% for PHC-5. The PHC-5 showed 65% increase in residue

contents as compared to unfilled PHC-0.

The thermal degradation data of PHCs at different steps of mass losses is given in Table 2. This

showed that 10 and 15 wt.% loss of PHC-0 was at 352 and 365�C which improved up to 367

and 391�C in PHC-5, respectively. This data also explained that the degradation temperature

was improved; overall weight loss of composite samples declined and residual amount were

augmented with increasing the loading of TiO2. The higher thermal stability was attributed to

the improved interactions of polyester chains with TiO2 and SiO2 content of E-glass fiber and

interactions decreased upon heating due to segmental movement of polyester chains [27]. As

temperature slowly rose, the interface between particles and matrix started weakening which

Figure 6. Thermograms of PHC-0, PHC-1, PHC-2, PHC-3, PHC-4, & PHC-5 with their relative residue contents.
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caused the motion of polymer chains radically, eventually specimens decomposed at elevated

temperatures [28].

4. Conclusions

The TiO2 embedded glass fiber reinforced polyester hybrid composites (PHCs) had fabricated

by hand lay-up process (HLUP) and compression molding technique (CMT) in the presence of

methyl-ethyl-ketone-peroxide (MEKP) as cross linker and cobalt naphthenate (CN) as an

accelerator. It was evident that functional, mechanical and thermal characteristics of PHCs

were enhanced by imbedding TiO2 particles in unsaturated polyester resin (UPR) with E-

glass fiber sheet. The formation of crosslinking of UPR with styrene molecules and hydrogen

bonding between O=Ti=O particles and –Si–O content of glass fiber with UPR in PHCs were

confirmed by Fourier transform infrared spectroscopy (FTIR). Tensile strength (TS) and Tensile

modulus (TM)) of PHCs were improved by loading TiO2 particles up to 3 wt.%. Impact

strength and hardness improved continuously with increasing the TiO2 loading up to 5 wt.%.

TGA showed that 10 and 15 wt.% loss of PHC-0 was at 352 and 365�C, which improved up to

367 and 391�C in PHC-5, respectively. Therefore, it was concluded that TiO2 particles are good

choice as a third reinforcing material in fiber reinforced polyester hybrid composites (PHCs) as

they induced the incremental variations in functional, mechanical and thermal trends. From

the above conclusions of functional, mechanical and thermal behaviors, it is endorsed that

these hybrid composites can be exercised for high strength and high temperature applications.
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PHCs T10%
a

�C

T15%
�C

Residueb

%

PHC-0 352 365 50

PHC-1 341 372 58

PHC-2 344 374 63

PHC-3 348 377 67

PHC-4 363 385 73

PHC-5 367 391 83

aT10% and T15% are the temperatures at 10% and 15% mass losses.
bResidue at 800�C.

Table 2. Thermal decomposition data of controlled PHC-O and TiO2-imbedded PHCs at various percentage mass losses.
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