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1. Introduction 

The purpose of a classification learning algorithm is to accurately and efficiently map an 
input instance to an output class label, according to a set of labeled instances. Decision tree 
is such a method that most widely used and practical for inductive inference in the data 
mining and machine learning discipline (Han & Kamber, 2000). However, many decision 
tree learning algorithms degrade their learning performance due to irrelevant, unreliable or 
uncertain data are introduced; or some focus on univariate only, without taking the 
interdependent relationship among others into consideration; while some are limited in 

handling the attributes1 with discrete values. All these cases may be caused by improper 

pre-processing methods, where feature selection (FS) and continuous feature discretization 
(CFD) are treated as the dominant issues. Even if a learning algorithm is able to deal with 
various cases, it is still better to carry out the pre-processing prior the learning algorithm, so 
as to minimize the information lost and increase the classification accuracy accordingly. FS 
and CFD have been the active and fruitful fields of research for decades in statistics, pattern 
recognition, machine learning and data mining (Yu & Liu, 2004). While FS may drastically 
reduce the computational cost, decrease the complexity and uncertainty (Liu & Motoda, 
2000); and CFD may decrease the dimensionality of a specific attribute and thus increase the 
efficiency and accuracy of the learning algorithm.  
As we believe that, among an attributes space, each attribute may have certain relevance 
with another attribute, therefore to take the attributes relevant correlation into consideration 
in data pre-processing is a vital factor for the ideal pre-processing methods. Nevertheless, 
many FS and CFD methods focus on univariate only by processing individual attribute 
independently, not considering the interaction between attributes; this may sometimes loose 
the significant useful hidden information for final classification. Especially in medical 
domain, a single symptom seems useless regarding diagnostic, may be potentially 
important when combined with other symptoms. An attribute that is completely useless by 
itself can provide a significant performance improvement when taken with others. Two 
attributes that are useless by themselves can be useful together (Guyon & Elisseeff, 2003; 
Caruana & Sa, 2003). For instance, when learning the medical data for disease diagnostic, if 

                                                 
1 In this paper, attribute has the same meaning as feature, they are used exchangeable within 
the paper.  O

pe
n 

A
cc

es
s 

D
at

ab
as

e 
w

w
w

.in
te

ch
w

eb
.o

rg

Source: Data Mining in Medical and Biological Research, Book edited by: Eugenia G. Giannopoulou,  
ISBN 978-953-7619-30-5, pp. 320, December 2008, I-Tech, Vienna, Austria

www.intechopen.com



 Data Mining in Medical and Biological Research 

 

2 

a dataset contains attributes like patient age, gender, height, weight, blood pressure, pulse, ECG 
result and chest pain, etc., during FS pre-processing, it is probably that attribute age or height 
alone will be treated as the least important attribute and discarded accordingly. However, in 
fact attribute age and height together with weight may express potential significant 
information: whether a patient is overweight? On the other hand, although attribute blood 
pressure may be treated as important regarding classifying a cardiovascular disease, while 
together with a useless attribute age, they may present more specific meaning: whether a 
patient is hypertension? Obviously, the compound features overweight and/or hypertension 
have more discriminative power regarding to disease diagnostic than the individual 
attributes stated above. It is also proven that a person is overweight or hypertension may have 
more probabilities to obtain a cardiovascular disease (Jia & Xu, 2001).  
Moreover, when processing CFD, the discretized intervals should make sense to human 
expert (Bay, 2000; Bay, 2001). We know that a person’s blood pressure is increasing as one’s 
age increasing. Therefore it is improper to generate a cutting point such as 140mmHg and 
90mmHg for systolic pressure and diastolic pressure, respectively. Since the standard for 
diagnosing hypertension is a little bit different from young people (orthoarteriotony is 120-
130mmHg/80mmHg) to the old people (orthoarteriotony is 140mmHg/90mmHg) (Gu, 
2006). If the blood pressure of a person aged 20 is 139mmHg/89mmHg, one might be 
considered as a potential hypertensive. In contrast, if a person aged 65 has the same blood 
pressure measurement, one is definitely considered as normotensive. Obviously, to 
discretize the continuous-valued attribute blood pressure, it must take at least the attribute age 
into consideration. While discretizing other continuous-valued attribute may not take age 
into consideration. This demonstrates again that a useless attribute age is likely to be a 
potentially useful attribute once combined with attribute blood pressure. The only solution to 
address the mentioned problem is to use multivariate interdependent discretization in place 
of univariate discretization. 
In the next section, we show the importance of attributes interdependence by describing in 
detail the multivatiate interdependent discretization method – MIDCA. Then in section 3, 
we demonstrate the significance of attributes relevance by specifying the latent utility of 
irrelevant feature selection – LUIFS in detail. The evaluations of our proposed algorithms to 
some real-life datasets are performed in section 4. In final section, we summarize our paper 
and present the future directions of our research. 

2. Multivariate discretization 

Many discretization algorithms developed in data mining field focus on univariate only, 
which discretize each attribute with continuous values independently, without considering 
the interdependent relationship among other attributes, at most taking the interdependent 
relationship with class attribute into account, more detail can be found in(Dougherty et al., 
1995; Fayyad & Irani, 1993; Liu & Setiono, 1997; Liu et al., 2002). This is unsatisfactory in 
handling the critical characteristics possessed by medical area. There are few literatures 
discussed about the multivariate interdependent discreitzation methods. The method 
developed in (Monti & Gooper, 1998) concentrates on learning Bayesian network structure; 
hence the discretization is relied on the Bayesian network structure being evaluated only, 
which is unable to be applied in other structures, such as decision tree learning structure. 
Multivariate interdependent discretization concerns the correlation between the attribute 
being discretized and the other potential interdependent attributes. Our MIDCA – 
Multivariate Interdependent Discretization for Continuous Attribute is based on the 
normalized relief (Kira & Rendell, 1992a; Kira & Rendell, 1992b) and information 
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theory(Fayyed & Irani, 1993; Mitchell, 1997; Zhu, 2000), to look for the best correlated 
attribute for the continuous-valued attribute being discretized as the interdependent 
attribute to carry out the multivariate discretization. In order to obtain the good quality for a 
multivariate discretization, discovery of a best interdependent attribute against the 
continuous-valued attribute is considered as the primary essential task.  

2.1 MIDCA method 
MIDCA is interested mainly in discovering the best interdependent attribute relative to the 
continuous-valued attribute being discretized. As we believe that a good multivariate 
discretization scheme should highly rely on the corresponding perfect correlated attributes. 
If assume that a dataset S = {s1, s2, …, sN} contains N instances, each instance s ∈ S is defined 
over a set of M attributes (features) A = {a1, a2, …, aM} and a class attribute c ∈ C. For each 
continuous-valued attribute ai ∈ A, there exists at least one aj ∈ A, such that aj is the most 
correlated with ai, or vice versa, since the correlation is measured symmetrically. For the 
purpose of finding out such a best interdependent attribute aj for each continuous-valued 
attribute ai, both gain information in equation (2) that derived from entropy information in 
equation (1) and relief measures in equation (3) depicted below are taken into account to 
capture the interaction among the attributes space. 

 ( ) ( ) ( ( ))
i i

i C

Entropy S p S log p S
∈

=−∑  (1) 

where p(Si) is the proportion of instances S belonging to class i; based on this measure, the 
most informative attribute A relative to a collection of instances S can be defined as: 
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where Values(A) is the set of all distinct values of attribute A; Sv is the subset of S for which 

attribute A has value v, that is  Sv = {s ∈ S | A(s) = v}. While the reformulated relief measure 
can be defined as to estimate the quality of an attribute over all training instances: 
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where C is the class attribute and Gini’ is a variance of another attribute quality measure 
algorithm Gini-index (Breiman, 1996). 
Then we use the symmetric relief and entropy information algorithms to calculate the 
interdependent weight for each attribute pair {ai, aj} where i ≠ j. However, the measures 
output from two symmetric measures are in different standards, the only way to balance 
them is to normalize the output values by using proportions in place of real values. Finally 
averaging the two normalized proportions as in equation (4) and chooses the best 
interdependent weight amongst all potential interdependent attributes as our target. 

 

2 2

( , )

( , ) ( , )
/ 2

( , ) ( , )

i j

i j i j

A A

i M i M
M i M i

InterdependentWeight a a

SymGain a a SymRelief a a

SymGain a a SymRelief a a
≠ ≠

=

⎡ ⎤
⎢ ⎥
⎢ ⎥

+⎢ ⎥
⎢ ⎥
∑ ∑⎢ ⎥

⎢ ⎥⎣ ⎦

 (4) 

www.intechopen.com



 Data Mining in Medical and Biological Research 

 

4 

where 
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The advantage of incorporating the measures of entropy information and relief in MIDCA 
algorithm is to minimize the uncertainty between the interdependent attribute and the 
continuous-valued attribute being discretized and at the same time to maximize their 
correlation by discovering the perfect interdependencies between them. However, if an 
interdependent attribute is a continuous-valued attribute too, it is first discretized with 
entropy-based discretization method (Dougherty et al., 1995; Fayyad & Irani, 1993). This is 
important and may reduce the bias of in favor of the attribute with more values. 
Furthermore, our method creates an interdependent attribute for each continuous-valued 
attribute in a dataset rather than using one for all continuous-valued attributes, this is also 
the main factor for improving the final classification accuracy. 
MIDCA ensures at least binary discreatizaiton, which is different from other methods that 
sometimes the boundary of a continuous-valued attribute is [-∞, +∞]. We realized that if a 
continuous-valued attribute generates null cutting point means that the attribute is useless, 
hence increase the classification uncertainty. This may finally cause the higher error rate in 
the learning process. We believe that most continuous-valued attributes in medical domain 
have their special meanings, even though it alone seems unimportant, while it becomes 
useful when combining with other attributes. The before-mentioned examples are some 
typical ones. Furthermore, most figures express the degrees and seriousness of the specific 
illness, such as blood pressure may indicate the level of hypertension; higher heart rate may 
represent the existence of cardiovascular disease; while plasma glucose is an index for 
diabetes and so on, hence their discretization cannot be ignored. 
The only drawback of MIDCA is its slightly heavy complexity. In the worst case, all N 
attributes in a dataset are numeric, but the interdependent weighting is calculated 
symmetrically, so there are N/2 attributes involved into calculations. For the first attribute 
taking into calculation, (N-1) times of executions are necessary; while for the second 
attribute taking into calculation, (N-3) times of executions should be carried out, and so on. 
Since such calculation is decreased gradually, so the total execution times are at most (N-

1) ∗N/2, i.e., O(N2/2). However, such case is only a minority. Most real life datasets have low 
percentage of numeric attributes, then the execution time of the algorithm becomes less 
influential compared with classification accuracy. 

2.2 MIDCA algorithm 

Different from other discretization algorithms, MIDCA is carried out with respect to the best 
interdependent attribute that discovered from equation (4) in addition to the class attribute. 
Moreover, we assume that the interdependent attribute INT has T discrete values; as such 
each of its distinct value identifies a subset in the original data set S, the probability should 
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be generated relative to the subset in place of the original data set. Therefore, the 

combinational probability distribution over the attribute space {C} ∪ A can be redefined 
based on equation (2) as well as the information gain algorithm as following: 

 

( )|

( , ; , )
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T
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T v
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MIDCAInfoGain A P INT S

S
Entropy S INT Entropy S

S∈

=

− ∑
 (5) 

where P is a collection of candidate cutting points for attribute A under the projection of 
value T for the interdependent attribute INT, the algorithm defines the class information 
entropy of the partition induced by P. In order to emphasize the importance of the 
interaction respect to the interdependent attribute INT, Entropy(S) is replaced by the 

conditional entropy Entropy(S|INTT). Consequently, v ∈ Values(A)|INTT becomes the set of 
all distinct values of attribute A of the cluster induced by T of interdependent attribute INT; 
and Sv is the subset of S for which attribute A has value v and under the projection of T for 

INT, i.e., Sv = {s ∈ S | A(s) = v ∧ INT(s) = T}. 
Now we compendiously present our MIDCA algorithm as below and the evaluation for 
such algorithm is illustrated in section 4: 
1. Sort the continuous-valued attributes for the data set in ascending order; 
2. Discovery the best interdependent attributes pair by algorithm INTDDiscovery; 
3. Calculate the MIDCAInfoGain measure and select the best cutting point; 
4. Evaluate whether stopping the calculation according to MDLP; 
5. Repeat step 3 if the test failed. Else, order the best cutting points to generate the 

discretized data set. 
INTDDiscovery algorithm 

If the interdependent attribute is a continuous-valued attribute 
Discretize using entropy-based method and select the best cutting point; 
Test to stop using MDLP; 

Calculate the symmetric entropy information measure for the pair of attributes; 
Calculate the symmetric relief measure for the pair of attribute; 
Normalize the symmetric entropy information and relief measure; 
Average the two normalized measures; 
Select the one with the highest average measure; 

End algorithm; 

3. Feature selection 

More features no longer mean more discriminative power; contrarily, they may increase the 
complexity and uncertainty of an algorithm, thus burden with heavy computational cost. 
Therefore various feature selection algorithms have been introduced in (Liu & Motoda, 
2000) as well as their evaluations and comparisons in (Hall & Holmes, 2003; Molina et al., 
2002; Dash & Liu, 1997). Feature selection can be defined as a process of finding an optimal 
subset of features from the original set of features, according to some defined feature 
selection criterion (Cios et al., 1998). 
Suppose a dataset D contains a set of M original attributes OriginalA = {a1, a2, …, aM} and a 

class attribute c ∈ C, i.e., D = OriginalA ∪ C. The task of feature selection is to find such a 
subset of N attributes among M that OptimalA = {a1, a2, …, aN}, where N ≤ M and OptimalD = 
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OptimalA ∪ C, hence the ClassificationErrorRate(OptimalD)≤ClassificationErrorRate(D). 
Features can be defined as relevant, irrelevant or redundant. A relevant feature is neither 
irrelevant nor redundant to the target concept; an irrelevant feature does not affect the target 
concept in any way, and a redundant feature does not add anything new to the target 
concept (John et al., 1994). 
Many feature selection algorithms generate the optimal subset of relevant features by 

ranking the individual attribute or subset of attributes. Each time the best single attribute or 

attributes subset will be selected, the iteration will be stopped when some pre-defined 

filtering criteria has been matched. For instance, a forward selection method recursively 

adds a feature xi to the current optimal feature subset OptimalA, among those have not been 

selected yet in OriginalA, until a stopping criterion is conformed to. In each step, the feature 

xi that makes evaluation measure W be greater is added to the optimal set OptimalA. Starting 

with OptimalA = {}, the forward step consists of: 

 
: { \ |

( { })  }

= ∪
∪ i

OptimalA OptimalA OriginalA OptimalA

W OptimalA x is maximum
 (6) 

Nevertheless, this method does not have in consideration certain basic interactions among 

features, i.e., if x1 and x2 are such interacted attributes, that W({x1, x2}) >> W({x1}), W({x2}), 

neither x1 nor x2 could be selected, in spite of being very useful (Molina et al., 2002). Since 

most feature selection methods assume that the attributes are independent rather than 

interactive, hence their hidden correlations have been ignored during feature generation like 

the one above. As before-mentioned, in medical domain, sometimes a useless symptom by 

itself may become indispensable when combined with other symptom. To overcome such 

problem, our LUIFS (latent utility of irrelevant feature selection) method takes 

interdependence among attributes into account instead of considering them alone.  

3.1 LUIFS 

LUIFS mainly focuses on discovering the potential usefulness of supportive irrelevant 
features. It takes the inter-correlation between irrelevant attributes and other attributes into 
consideration to measure the latent importance of those irrelevant attributes. As we believe 
that in medical field an irrelevant attribute is the one that providing neither explicit 
information nor supportive or implicit information. In (Pazzani, 1996), Pazzani proposed a 
similar method to improve the Bayesian classifier by searching for dependencies among 
attributes. However, his method has several aspects that are different from ours: (1) it is 
restricted under the domains on which the naïve Bayesian classifier is significantly less 
accurate than a decision tree learner; while our method aims to be a preprocessing tool for 
most learning algorithms, no restrictions on the learner. (2) It used wrapper model to 
construct and evaluate a classifier at each step; while a simpler filter model is used in our 
method, which minimized computational complexity and cost. (3) His method created a 
new compound attribute replacing the original two attributes in the classifier after joining 
attributes. This may result in a less accurate classifier, because joined attributes have more 
values and hence there are fewer examples for each value, as a consequence, joined 
attributes are less reliable than the individual attributes. Contrarily, our method adds the 
potential useful irrelevant attributes to assist increasing the importance of the valuable 
attributes, instead of dynamically joining the attributes. Our experimental evidence in the 
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corresponding section will show that there are additional benefits by including the latent 
useful irrelevant attributes. 
LUIFS generates an optimal feature subset in two phases: (1) Attribute sorting: a general 
feature ranking process by sorting the attributes according to the relevance regarding the 

target class, and filters the ones whose weight is below a pre-defined threshold σ; (2) Latent 
utility attribute searching: for each filtered irrelevant and unselected attribute, determine its 
supportive importance by performing a multivariate interdependence measure that 
combined with another attribute. There are two cases that an irrelevant attribute in the 
second phase becomes a potentially supportive relevant attribute and will be selected into 
the optimal feature subset: (1) if a combined attribute is a relevant attribute and already be 
selected, then the combinatorial measure should be greater than the measure of such 
combined attribute; (2) if a combined attribute is an irrelevant attribute too and filtered out 
in the first phase, then the combinatorial measure should be greater than the pre-defined 

threshold σ, such that both attributes become relevant and will be selected. Two hypotheses 
have been conducted from our method LUIFS as below: 
Hypothesis1. If a combined attribute helps in increasing the importance of a yet important 
attribute; including such combined attribute into the optimal feature subset may most 
probably improve the final class discrimination.  
Hypothesis2. If a combined attribute helps an ignored attribute in reaching the importance 
threshold; including both attributes into the optimal feature subset may most probably 
improve the class discrimination 

3.2 Attribute sorting 

In this phase, we first sort all N features according to the importance respect to the target 
class. Information gain theory in equation (2) is used as the measurement, which may find 
out the most informative (important) attribute A relative to a collection of examples S. 
Attributes are sorted in descending order, from the most important one (with the highest 

information gain) to the least useful one. In LUIFS, we introduced a threshold ϖ to 
distinguish the weightiness of an attribute. The value of a threshold either too high or too 
low may cause the attributes insufficient or surplus. Therefore it is defined as a mean value 
excluding the ones with maximum and minimum weights, in order to eliminate as much 
bias as possible. Equation (7) illustrates the threshold. 

 1

( ( , ) max( )

min( ))

ϖ
=

= −∑

−

N

i
i

mean InfoGain S A InfoGain

InfoGain

 (7) 

Then, an attribute A will be selected into the optimal feature subset if Gain(S, A) > ϖ. In 
addition, if an attribute A is a numeric type, it is discretized first by using the method of 
(Fayyad & Irani, 1993). This phase requires only linear time in the number of given features 
N, i.e. O(N). 

3.3 Latent utility attribute searching 

This phase is the key spirit in LUIFS, since our objective is to uncover the usefulness of the 
latent or supportive relevant attributes, particularly those specifically owned in medical 
domain. It is targeted at the irrelevant attributes that filtered out from the Attribute sorting 
phase, to look for their latent utilities in supporting other relevant attributes. To determine 
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whether an irrelevant attribute is potentially important or not, we measure the 
interdependence weight between it and another attribute regarding the class attribute. We 
use Relief theory (Kira & Rendell, 1992a; Kira & Rendell, 1992b), which is a feature 
weighting algorithm for estimating the quality of attributes such that it is able to discover 
the interdependencies between attributes. It randomly picks a sample, for each sample it 
finds near hit and near miss sample based on distance measure. Relief works for noisy and 
correlated features, and requires only linear time in the number of features and the number 
of samples (Dash & Liu, 1997). Our method adopts the combinatorial relief in equation (8), 
which measures the interdependence between a pair of attributes and the class attribute 
rather than a single attribute. It approximates the following probability difference: 

 

[ ] = (different value of |

nearest instances from different class )

- (different value of |

nearest instances from same class )

i j i j

i j

W a +a P a +a

C

P a +a

C

 (8) 

 

where ai is an irrelevant attribute, whose information gain measure in equation (2) is less 

than the mean threshold ϖ in equation (7) and is filtered out in Attribute sorting phase; aj is 
a combined attribute either relevant or irrelevant. W[ai+aj] is the combinatorial weighting 
between attributes ai and aj regarding the class attribute C, and P is a probability function. 
Equation (8) measures the level of hidden supportive importance for an irrelevant attribute 
to another attribute, hence the higher the weighting, the more information it will provide, 
such that the better the diagnostic results. According to our hypotheses, an irrelevant 
attribute ai may become latent relevant if there exists another attribute aj, where ai ≠ aj, so 
that the combinatorial measure W[ai+aj] > W[aj] if aj is an explicit relevant attribute and 

already be selected into the optimal feature subset; or W[ai+aj] > ϖ (a pre-defined threshold) 
if aj is an irrelevant attribute also. 
Unlike the Attribute sorting phase, the complexity of this searching phase is no longer 
simple linear in time. In the worst case, if there is only one important attribute was selected 
after Attribute sorting phase, that is, there are (N-1) irrelevant attributes were ignored and 

unselected. For each irrelevant attribute ai ∈ UnselectedAttributes, calculate its 
interdependent weight with another attribute. Again in the worst case, if ai could not 
encounter an attribute that makes it becoming useful, then the searching algorithm should 
be repeated for (N-1) times. Whereas the algorithm is symmetric, i.e. W[ai+aj] = W[aj+ai], so 
the total times of searching should be in half respect to the number of UnselectedAttributes, 
which equals to (N-1)/2. Therefore, the complexity of such Latent utility attribute searching 

for irrelevant attributes is (N-1) ∗(N-1)/2 for the worst case, i.e. O((N-1)2/2). Nevertheless the 
feature selection is typically done in an off-line manner (Jain & Zongker, 1997), in the 
meantime, the capacity of the hardware components increase while the price of them 
decrease. Hence, the execution time of an algorithm becomes less important compared with 
its final class discriminating performance. 

3.4 LUIFS algorithm 

In this section, the pseudo code of LUIFS algorithm is illustrated as following. First, several 
variables are defined, and then the program body are sketched subsequently. 

www.intechopen.com



Discovery of the Latent Supportive Relevance in Medical Data Mining 

 

9 

Mean – the threshold value for picking the relevant attributes  
selectedlist – list of attributes that are treated as important and used in final classification 
unselectedlist – list of attributes that are treated as useless and are ignored 
N – the total number of attributes in a dataset 
Ai – the ith attribute in a dataset 
M – the total number of attributes in unselectedlist 
Map – an array of boolean values indicating whether an attribute is processed 
multivariate interdependent attributes mapping or not 

 
MIFS algorithm 

  selectedlist := {}; 

 unselectedlist := {}; 

 -- phase one processing 

 for i := 1 to N do       

if InformGain(Ai) >= Mean then 

    selectedlist := selectedlist + {Ai};  

   else 

    unselectedlist := unselectedlist + {Ai}; 

   end if; 

  end for; 

  -- phase two processing 

  for i := 1 to M do 

   for j := 1 to N do 

    if {Aj} is in selectedlist and {Ai} <> {Aj} then 

      if Measure[Ai+Aj] > Measure[Aj] then 

       selectedlist := selectedlist + {Ai}; 

       unselectedlist:=unselectedlist-{Ai}; 

       Map[Ai] := true; 

      end if; 

    elseif {Aj} is in unselectedlist and  

    {Ai} <> {Aj} then 

      if Measure[Ai+Aj]>Mean and  

      Map[Aj] = false then 

       selectedlist := selectedlist + {Ai}; 

       selectedlist := selectedlist + {Aj}; 

       unselectedlist:=unselectedlist-{Ai}; 

       unselectedlist:=unselectedlist-{Aj}; 

       Map[Ai] := true; 

       Map[Aj] := true; 

      end if; 

    end if; 

   end for; 

  end for; 
end algorithm; 
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4. Experiments 

In this section, we have verified the superiority of our before-mentioned theories by 
evaluating the effectiveness of proposed pre-processing methods: MIDCA and LUIFS. The 
solid evidences demonstrate our belief: by uncovering potential attributes relevance during 
pre-processing step (either FS or CFD) and taking them into the data mining task, the 
learning performance can have significant improvement. The experiments are carried out 
individually with learning algorithms into two subsections, and are performed on several 
real life datasets from UCI repository (Blake & Merz, 1998). Both experiments adopt ID3 
(Quinlan, 1986) from (Blake & Merz, 1998) and C4.5 (Quinlan, 1993; Quinlan, 1996) as the 
learning algorithms for the comparisons to be performed. Table 1 depicts the detailed 
characteristics of various datasets, while the datasets beneath the double line separator are 
only involved in the experiment of LUIFS.  

4.1 Experiment of MIDCA 

The last four datasets in Table 1 are not considered in this experiment, since they do not 
have numeric attributes, so there are eight datasets to take performance in the experiment of 
MIDCA. In order to make comparisons between different discretization methods, we 
downloaded the discretization program – Discretize (a discretization program that 
downloaded from UCI repository, here it is used as a preprocessing tool for ID3 learning 
algorithm only). On the other hand, since C4.5 is embedded with the discretization function 
in the learning algorithm, Discretize is not applicable to this algorithm. Table 2 shows the 
results in classification error rate obtained by using ID3 learning algorithm with Discretize 
and MIDCA pre-processing methods respectively; while Table 3 shows the results in 
classification error rate obtained by using C4.5 learning algorithm without/with MIDCA 
pre-processing method respectively. 
 

Feature Type 
Dataset 

Numeric Nominal

Instance 
size 

Class

Cleve 6 7 303 2 

Hepatitis 6 13 155 2 

Hypothyroid 7 18 3163 2 

Heart 13 0 270 2 

Sick-
euthyroid 

7 18 3163 2 

Auto 15 11 205 7 

Breast 10 0 699 2 

Diabetes 8 0 768 2 

Mushroom 0 22 8124 2 

Parity5+5 0 10 1124 2 

Corral 0 6 64 2 

Led7 0 7 3200 10 

Table 1. Bench-mark datasets from UCI repository 
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Dataset Discretize (%) MIDCA (%) 

Cleve 26.733±4.426 17.822±3.827 

Hepatitis 19.231±5.519 9.615±4.128 

Hypothyroid 1.232±0.340 0.000±0.000 

Heart 15.556±3.842 17.778±4.053 

Sick-
euthyroid 

3.697±0.581 0.000±0.000 

Auto 26.087±5.325 25.373±5.356 

Breast 3.863±1.265 4.292±1.331 

Diabetes 25.781±2.739 32.031±2.922 

Average 15.27 13.36 

Table 2. Results in classification error rate of ID3 algorithm with various discretization 
methods 

The experiments reveal that our method MIDCA decreases the classification error rate for 
ID3 learning algorithm on all but three datasets among eight; similarly MIDCA decreases 
the classification error rate for C4.5 learning algorithm on all but two out of eight datasets. 
For the rest of the datasets, MIDCA provides a significant improvement in classification 
accuracy, especially on two data sets: Hypothyroid and Sick-euthyroid, which approached to 
zero error rates for both learning algorithms. As observed from Table 2 and Table 3, MIDCA 
slightly decreases the performance on two and three datasets out of eight for C4.5 and ID3 
algorithms respectively, and all these datasets contain only continuous attributes. This is 
 

Dataset C4.5 (%) MIDCA (%) 

Cleve 24.8 17.8 

Hepatitis 17.3 9.6 

Hypothyroid 0.9 0.0 

Heart 17.8 21.1 

Sick-euthyroid 3.1 0.0 

Auto 29.0 23.9 

Breast 5.6 3.9 

Diabetes 30.9 31.6 

Average 16.18 13.49 

Table 3. Results in classification error rate of C4.5 algorithm without/with MIDCA method 

due to the MIDCA algorithm needs to perform a univariate discretization once prior the 
multivariate discretization if an interdependent attribute is a continuous-valued attribute 
also. Such step increases the uncertainty of the attribute being discretized, hence increases 
the error rate accordingly. Although it is inevitable that a continuous-valued attribute to be 
selected as a best interdependent attribute regarding the attribute being discretized, our 
theories DO work in most cases. From the average error rate results described in Table 2 and 
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Table 3, obviously our method MIDCA indeed decreases the classification error rate from 
15.27% down to 13.36% for ID3 algorithm; and from 16.18% down to 13.49% for C4.5 
algorithm. The improvements relative to both algorithms reach to approximately 12.5% and 
16.6% respectively. The comparisons under various situations are clearly illustrated in 
Figure 1 and Figure 2 respectively. 

4.2 Experiment of LUIFS 

In this experiment, all twelve datasets in Table 1 are used. In order to make clear 
comparison, experiments on two learning algorithms without feature selection (NoFS) and 
with information gain attribute ranking method (ARFS) are performed, as well as LUIFS. 
Table 4 and Table 5 summarize the results in error rates of ID3 and C4.5 algorithms 
without/with feature selection respectively. The last column LRA in Table 4  indicates the 
number of irrelevant attributes becoming useful and is selected in LUIFS method, which 
further demonstrates the importance of supportive attributes. 
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Fig. 1. Comparisons in classification error rate of ID3 algorithm with different discretization 
methods 
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Fig. 2. Comparisons in classification error rate of C4.5 algorithm without/with MIDCA 
method 
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As observed from the results in Table 4 and Table 5, LUIFS slightly increases the 
classification error rate in compared with ARFS for both learning algorithms on only one 
dataset – Heart, amongst all twelve datasets; but its results are still better than the learning 
algorithms with NoFS. This is because the dataset Heart contains numeric attributes only, 
which needs prior discretized to the latent utility attribute searching being carried out. Such 
step increases the uncertainty to the attribute being correlated, hence increases the error rate 
accordingly. 
Nevertheless, LUIFS may still help in obtaining quite good classification accuracy, even for 
the simplest learning algorithm. The average results from Table 4 and Table 5 reveal that 
LUIFS does improve on the final classification accuracy significantly. Especially with ID3 
algorithm, which the accuracy growth rate relative to NoFS and ARFS are 10.79% and 
11.09% respectively; while with C4.5 method, the corresponding growth rates are not as 
good as with ID3, they are only 8.51% and 7.86% respectively. Even so, the classification 
accuracy with LUIFS in Table 5 is still the highest. The vast improvements made by LUIFS 
in ID3 learning algorithm is due to ID3 is a pure decision tree algorithm, without any built-
in pre-processing functions, such as FS or CFD, hence there is still certain rooms for 
improving; while C4.5 is embedded with its own feature selection and pruning functions 
already, it filters the useless features from its own point of view, no matter additional 
feature selection algorithm attached or not, hence limiting the great improvements. The 
comparisons under various situations are apparently portrayed in Figure 3 and Figure 4 
respectively. 
 

Dataset NoFS ARFS LUIFS LRA 

Cleve 35.64 23.762 22.772 2 

Hepatitis 21.154 15.385 13.462 7 

Hypothyroid 0.948 0.190 0.190 8 

Heart 23.333 13.333 18.889 2 

Sick-euthyroid 3.791 0 0 7 

Auto 26.087 18.841 18.841 3 

Breast 5.579 6.438 5.579 2 

Diabetes Error2 35.156 32.131 3 

Mushroom 0 0 0 1 

Parity5+5 49.291 50 49.291 4 

Corral 0 12.5 0 2 

Led7 33.467 42.533 32.8 1 

Average 18.12 18.18 16.16 3.5 

Table 4. Results in classification error rate of ID3 algorithm without/with various feature 
selections 

                                                 
2 Error refers to the program error during execution, hence no result at all. Therefore, the 
corresponding average error rate with NoFS is only approximated without taking such 
result into calculation. 
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5. Conclusion and future research 

5.1. Conclusions 
In this paper, we have proposed a novel concept of improving the classification accuracy for 
common learning algorithms by uncovering the potential attributes relevance through 
multivariate interdependent attribute pre-processing methods. However, many common 
pre-processing methods ignored the latent inter-correlation between attributes, this 
sometimes may loose the potential hidden valuable information, thus limit the performance 
of the learning algorithms. Especially in medical domain, diagnostic accuracy is treated as 
the most important issue, in order to approach to the highest accuracy, qualities of the pre-
processing methods are quite essential, thereby finding out the most useful attributes 
relevance is a key factor for a successful method. 
 

Dataset NoFS ARFS LUIFS

Cleve 20 22.2 19.3 

Hepatitis 15.6 7.9 7.9 

Hypothyroid 1.1 0.4 0.4 

Heart 17.8 14.4 15.6 

Sick-euthyroid 2.5 2.5 2.4 

Auto 27.1 21.9 21.8 

Breast 5.7 5.6 5.4 

Diabetes 30.9 30.1 30.1 

Mushroom 0 0 0 

Parity5+5 50 50 50 

Corral 9.4 12.5 9.4 

Led7 32.6 43.7 32.3 

Average 17.72 17.6 16.21 

Table 5. Results in classification error rate of C4.5 algorithm without/with various feature 
selections 
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Fig. 3. Comparisons in classification error rate of ID3 algorithm without/with various 
feature selections  
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Two pre-processing methods MIDCA and LUIFS have been presented in detail, to verify the 

superiority of our theories. The empirical evaluation results from various experiments 

further demonstrated their effectiveness by applying two different classification algorithms 

on the datasets with and without MIA-Processing. The significant performance 

improvement by using MIDCA method indicates that it can accurately and meaningfully 

discretize a continuous-valued attribute by discovering its perfect matched interdependent 

attribute. In addition, the usage of LUIFS method on the other hand can minimize the 

classification error rate as well, even for the learning algorithm with built-in feature 

selection and discretization capabilities.  
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Fig. 4. Comparisons in classification error rate of C4.5 algorithm without/with various 
feature selections 

 Finally, the purpose of our methods to incorporate relief theory with information measure 

is to minimize the uncertainty and at the same time maximize the classification accuracy. 

Although the methods are designed for using in medical domain, they still can be applied to 

other domains, since the models do not rely on any background knowledge to be 

constructed. 

5.2 Future research 

The future work of our research can be substantially extended to include more factors into 
comparisons; they may be summarized into the following aspects: 
1. Involve more learning algorithms in data mining, such as Naïve-Bayes (Langley et al., 

1992), 1R (Holte, 1993), ANNs (Hand et al., 2001; Kasabov, 1998) or Gas (Melanie, 1999), 
etc. This may validate the practicability of our proposed MIA-Processing methods. 

2. Implement the existing pre-processing methods, such as ReliefF (Kononenko, 1994), 
Focus (Almualim & Dietterich, 1992) or MLDM (Sheinvald et al., 1990), etc. This may 
allow us to discover the weakness of our current methods, and then improve 
accordingly. 

3. Include different types of real-life or artificial datasets into the experiments, to enrich 
the usability of our MIA-Processing methods. 
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Furthermore, our next principal direction for the future research is focused on the 

optimization of both MIA-Processing methods. A feasible solution should be investigated to 

eliminate the uncertainties and to reduce the complexities as much as possible, in order to 

adapt to the future development trend in data mining. Besides, the existing weaknesses of 

our methods should be found out and reimplemented. They should not decrease the 

accuracy in learning on a dataset contains all numeric attributes; and should handle high 

dimensional or large datasets efficiently. 
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