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Abstract

Fluid shear stress (FSS) is able to generate phenotypic changes in the cells in direct contact
with the strain force. In order to detect and transduce FSS into intracellular pathways,
biological systems use a specific set of sensors, called mechanosensors. The process
involves the conversion of the mechanical force into a chemical or electrical signal. Pri-
mary cilium is a non-motile organelle that emanates from the cell surface of most mam-
malian cell types that act as a mechanosensor. Increasing evidence suggests that primary
cilia are key coordinators of signaling pathways in tissue homeostasis and when defective
may cause human diseases and developmental disorders. Here, we will describe the
endothelial primary cilium as a mechanotransductory organelle sensing FSS. To fulfill this
function, primary cilium requires the localization of mechanoproteins, polycystin-1 and -
2, in their membrane and the structural gene product, polaris. Physiologically, deflection
of primary cilium increases the intracellular calcium concentration triggering a signaling
pathway that leads to nitric oxide (NO) formation and vasodilation. Additionally,
ciliopathies, such as polycystic kidney disease and atherosclerosis, will also be discussed.
We also analyze available information regarding a trio of membrane receptors involved in
FSS sensing and transducing such as vascular endothelial growth factor receptors
(VEGFRs) and its coreceptor neuropilin (NRP), as well as purinergic receptors (P2Y2).
Whether or not they modulate, the primary cilium role in sensing FSS is poorly under-
stood. This chapter highlights the main relevance of primary cilium in sensing blood flow,
although exact mechanisms are not fully known yet.

Keywords: shear stress, endothelial dysfunction, primary cilium, nitric oxide, reactive
oxygen species, neuropilin, purinergic receptors
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1. Introduction

Blood, urine and air are primary examples of biological fluids. Biophysically, fluids can be

classified into four basic types: ideal fluid, real fluid, Newtonian fluid and non-Newtonian

fluid. Among them, biological fluids are classified only as Newtonian and non-Newtonian.

Blood and urine belong to non-Newtonian biofluids since their viscosity is not a constant with

respect to the rate of shearing stress; moreover, the removal of the stress causes them to return

to their initial viscosity state [1].

In order to regulate blood flow, vascular smooth muscle cells (VSMC) induce changes in blood

vessel diameter by contraction and relaxation mechanism. Smooth muscle contraction is regu-

lated by central neuronal as well as by local control mechanisms. In particular, the local control,

also termed autoregulation, is an important mechanism of vascular tone regulation, maintaining

the immediate control of the amount of blood flow within a specific region. Vessel diameter

decreases by a sudden increase of transmural pressure and increases by faster flow or high shear

stress [2]. Flow shear stress (FSS) is one of the important blood flow-induced hemodynamic

forces (Table 1) acting on the blood vessel and is determined by the velocity of blood flow, fluid

viscosity and vessel geometry [2–5]. An important determinant of shear stress is the viscosity of

blood; shear stress is the energy transferred to the vessel wall due to interaction with a fluid in

motion [6]. Shear stress forces are imposed directly to the endothelium andmodulate endothelial

structure and function through local mechanotransduction mechanisms [5, 7]. FSS is crucial for

vascular homeostasis [5].

In a normal homeostatic mechanism and steady laminar shear stress, endothelial cells respond

promptly with an increase in the cytosolic calcium (Ca2+), activation of endothelial nitric oxide

synthase (eNOS) and nitric oxide (NO) production [4, 8] and with the ultimate gene modulation

[3, 5, 8]. However, besides laminar flow, oscillatory and turbulent flow patterns are also imposed

to the endothelium, which has then to continuously fine-tune its activities as a response [5].

Several structures and processes have been implicated in FSS mechanotransduction into spe-

cific biochemical signals, intracellular signaling pathways and gene modulation [5]. Among

those structures implicated, the primary cilium emerges as a key sensor of FSS under physio-

logical conditions [9]. Nevertheless, in vascular injury occurring as a result of hypertension for

example, normal homeostatic mechanisms are disturbed and vessel wall becomes dysfunc-

tional associated with impaired formation and/or function of primary cilium [5, 10]. Moreover,

Hemodynamic forces Generated by Force name

Distention force Surrounding muscle Stretch force

Contractile force Differential pressure along the vascular system Compression force

Pulsatile force Turbulent flow of blood Cyclic strain

Systolic force on intima surface (endothelial cells) Blood flow Pressure force

Drag force on intima surface (endothelial cells) Blood flow Shear stress

Table 1. Various types of hemodynamic forces acting on the blood vessel wall.
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ciliopathies or ciliary dysfunctions can lead to a series of disorders such as PKD, hypertension

and atherosclerotic lesions [9].

Physiologically, the primary cilium, a solitary non-motile microtubule-based organelle, pro-

trudes from the surface of mammalian cells [11] into the surrounding tube (vessel/tubule)

lumen. Primary cilia work as a chemo- and mechanosensors responding to diverse stimuli,

including FSS [12, 13].

Since the importance of the primary cilium as a sensor of FSS has been described mainly in the

kidney and in the blood vessels, it is worth to describe in brief some aspects of the renal system.

During the process of urine formation, the flow of the ultrafiltrate through the proximal tubule

(PT) is pulsatile, with variable oscillations due to the heart rate and to tubuloglomerular

feedback mechanism mediated by the macula densa. This ultrafiltration mechanism exposes

kidney epithelial cells to a constant FSS in a similar way that mimics vascular endothelial cells

[14]. Changes in urinary flow through the nephron depend on short-term variations in glomer-

ular filtration rate, tubuloglomerular feedback and fluid absorption along the nephron as well

as on long-term factors such as high salt or high protein diet, hypertension and early stages of

diabetes [15]. Variations in luminal urinary flow alter the mechanical forces (shear stress,

stretch and pressure), which in turn affect epithelial cells in the nephron. Thus, kidney epithe-

lial cells exhibit a highly differentiated brush border composed by microvilli, glycocalyx and

primary cilium in order to sense apical shear stress [14]. Tubular flow acts as potent modulator

of epithelial kidney cell phenotype by affecting the organization of the cytoskeleton and the

brush border, changing cell polarity and modifying various cellular functions such as solute

reabsorption and extracellular matrix remodeling.

Recently, several reports showed that an alteration of primary cilia length and function is

associated with acute and chronic kidney disease [12, 13, 16–21]. However, the underlying

mechanisms behind these associations are still unclear. The main scope of this chapter focuses

on the role of primary cilium as one of the multiple mechanotransduction machineries in

sensing FSS in the endothelial vascular and epithelial renal system.

In the blood vessels, endothelial cells exhibit cilia that have been involved in blood vessel

autoregulation [9], as well as in the pathogenesis of hypertension [9] and atherosclerotic lesions

[22, 23].

In this chapter, we will present the physiological role of the endothelial primary cilium as a

sensor of FSS. We will make a short review about potential implication of reactive oxygen

species (ROS), vascular endothelial growth factor (VEGF) and purinergic signaling as modu-

lators of the function of primary cilium. Finally, implication of the primary cilium dysfunction

in the kidney and atherosclerotic lesions will be overviewed.

2. Structure of the primary cilium

Primary cilia differ from motile cilia in both structure and function and are usually classified

as non-motile organelles, which were first described in 1867 by Alexander Kowalesky in
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vertebrate cells [24]. Motile cilia contain microtubules (MT) arranged in a (9 + 2) manner

consisting of a nine doublets MT ring surrounding a central pair of MT and presenting protein

spokes and dynein inner and outer arms necessary for movement. In contrast the primary

cilium shows (9 + 0) organization with nine pairs of MT at the periphery lacking the central

pair of MTs, as well as the protein spoke and the dynein arms (Figure 1). In both cases, MT

extend from a basal body originating from “mother” centriole of the centrosome [25]. The

structure and maintenance of the primary cilium are regulated by intraflagellar transport (IFT)

particles [26].

In physiological conditions, nearly all quiescent differentiated mammalian cells exhibit a

primary cilium, which emanates from the surface as a single long hair-shaped projection [27].

Therefore, primary cilia are found in a large number of mammalian cells including stem cells,

epithelial and endothelial cells [19]. Their presence was demonstrated in adult vascular system

(reviewed in [2]), developing chicken endocardium [4], embryonic mouse aortic endothelium

[9], cultured human umbilical vein endothelial cells (HUVECs) [28, 29] and epithelial cells

including macula densa [30] or tubular epithelial cells [20]. Nevertheless, alteration in the

number, length and structural features has been implicated in pathological conditions such as

polycystic kidney disease, atherosclerosis and hypertension, among others [18, 23, 31].

Depending on structural and functional features, five distinct domains were described in the

primary cilium [2] (Figure 1):

1. The ciliary membrane housing many sensory receptors and channels supporting sensory

function of cilia.

2. The soluble compartment or cilioplasm constituting the fluid between the ciliary mem-

brane and the axoneme and where IFT machinery is located to assemble and maintain the

cilia.

3. The axoneme composed of tubulin that supports ciliary transport. It is composed of nine

pairs of MTs.

4. The ciliary tip is the distal part of the axoneme where specialized proteins localize whose

function is still unclear.

5. The basal body, the network foundation from which the primary cilium emanates.

3. Primary cilium sensing fluid-shear depends on mechanoproteins

polycystins and structural polaris

3.1. Intraflagellar transport

IFT is required for assembly and maintenance of cilia. Briefly, ciliogenesis is initiated in the apical

cytoplasm at the basal body. Proteins involved in cilium formation concentrate and assemble into

complexes that migrate along the cilia axonemal microtubules through a process called IFT. The

anterograde movement of particles from the cell body to the tip of the flagella/cilia is driven by
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kinesin II [26], whereas the retrograde movement from the tip back to the cell body is driven by

cytoplasmic dynein [32]. The protein polaris is the gene product of the IFT particle 88 (ift88) that

in mammalis is homologous to the gene Tg737. This protein is localized to the basal body [26, 33]

and is required for ciliogenesis.

3.2. Polycystin-1, polycystin-2 and polaris

Among sensory molecules housing into the primary cilium, both polycystin-1 (PKD1) and

polycystin-2 (PKD2) have been described. These are membrane integral proteins. Experimental

data show that they are highly expressed in human endothelial and epithelial cells and are

required for normal physiological cilia function (reviewed in [2]). The importance of these

proteins has been highlighted due to the finding that mutations in pkd1 or pkd2 genes result in

polycystic kidney disease, hence their name [9].

PKD1 is a 3327 amino acids long transmembrane protein with 11 membrane-spanning domains.

Its long extracellular N-terminus has a mechanosensory function, while its short intracellular

Figure 1. Scheme of the primary cilium. Longitudinal section showing the axoneme with the nine doublets of microtu-

bules originating from the basal body. The right part of the figure shows transversal sections of motile and non-motile

primary cilia. Note the absence of the central pair of microtubules and dynein arms in the primary cilium. Figure adapted

with permission of [90].
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C-terminus is involved in intracellular signaling and interaction with PKD2 [34, 35]. PKD1 has

been shown to mediate fluid-shear sensing in epithelial and endothelial cells [9, 36].

PKD2, a 968 amino acids long protein, is a non-selective Ca2+ permeable transient receptor

potential (TRP) channel consisting of six membrane-spanning domains and intracellular C-

and N-terminal domains [37]. The sensory function of PKD2 depends on PKD1 and has to be

localized to endothelial primary cilia [38]. Accordingly, PKD2 functioning as a Ca2+ channel

[29] allows extracellular Ca2+ influx into the cilioplasm in response to FSS [39]. Thus, mecha-

nistically, PKD1 and PKD2 interact through their C-terminus [29, 34, 35] and localized to the

ciliary membrane; they are able to detect extracellular FSS and to increase cytosolic Ca2+. This

turns on a signaling cascade leading to the production of NO [9, 38, 40].

A series of mutation and deletion experiments demonstrated that besides PKD1 and PKD2, the

protein polaris also orchestrates FSS sensing. The physiological Ca2+ and NO increase in

response to FSS is abolished when the pkd1, pkd2 and polaris genes are mutated or knocked

out [29]. Interestingly, mutations or deletion of polaris seem to affect the structural integrity of

cilia through the PKD1 and PKD2 mislocalization, which remain concentrated at the basal

body [9, 29, 32, 41]. Together these findings evidence that polaris mediates the PKD1 and

PKD2 primary cilium localization, implying a polaris cilium sensory function regulation. In

order to achieve a proper fluid-shear sensing by endothelial cells and an adequate response, all

three components, PKD1, PKD2 and polaris, are thus indispensable.

3.3. Molecular cascade involved in shear stress-induced calcium and NO signaling

FSS leads to cilia bending leading to PKD2-mediated increase of intracellular Ca2+ that leads to

activation of ryanodine receptors (RyR) and inositol 1,4,5-triphosphate receptor (InsP3R) pre-

sent in the endoplasmic reticulum, which then releases its stores of Ca2+ enhancing the intra-

cellular levels of Ca2+ [42, 43]. Subsequently, Ca2+ activates several intracellular signaling

pathways, including the activation of the eNOS-bound calmodulin, thus increasing the pro-

duction of NO that diffuses from endothelial cells to neighboring VSMC inducing vasodilata-

tion [2, 29]. This particular pathway is summarized in Figure 2.

The works of AbouAlaiwi et al. [29] have helped to elucidate this last mechanism. In order to

prove that FSS-dependent primary cilia bending induces extracellular Ca2+ influx, they used

Ca2+ chelator EGTA (ethylene glycol-bis (β-aminoethyl ether)-N,N,N0,N0-tetraacetic acid). In

these experiments, EGTA abolished both Ca2+ and NO increases. In addition, the inhibitor of

the eNOS, NG-nitro-L-arginine methyl ester (L-NAME) blocked the FSS-induced NO release

without affecting Ca2+ increase. The same effect was shown after blocking calcium-dependent

mechanisms of NO production using calphostin C as an inhibitor of protein kinase C (PKC) or

W7 as antagonist of calmodulin. Similarly, inhibiting protein kinase B (PKB)/Akt abolished NO

release without altering Ca2+ increase. Inhibiting IP3 kinase using LY-294002 did not alter

neither Ca2+ nor NO increase. These findings indicate that calmodulin, PKC and Akt/PKB are

downstream of the calcium pathway and that they are necessary for NO release during

primary cilium-mediated FSS signaling [29] (Figure 2).
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4. The regulation of ciliary function

Changes in fluid patterns generate differential biomechanical forces, which lead to alteration of

cilia function or structure [2]. Indeed, almost all blood vessels possess cilia [4, 23]. Particularly,

arteries with low FSS or high fluid turbulence have cilia [2]. A prolonged exposure of endo-

thelial cells to high FSS induces the disassembly of cilia [28] and inactivation of PKD1 by

proteolytic cleavage [9], suggesting that primary cilia may not be required only to sense high

shear stress [2].

Figure 2. Mechanotransduction of FSS at the endothelial primary cilium. Extracellular FSS leads to cilia bending and

activation of polycycstin-1/-2 complex, conducing to extracellular calcium influx. Calcium binds to ryanodine receptors

and an efflux of intracellular organelle calcium. This is followed by activation of calmodulin (CaM), protein kinase C

(PKC), protein kinase B (PKB/Akt), eNOs and NO production. Figure reproduced with permission [38].
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The process of disassembly observed here involves the termination of IFT and the inability of

the oldest centriole to maintain or initiate the assembly of primary cilia under laminar shear

stress [28]. The disassembly of cilia parallels a major rearrangement of the cytoskeleton and an

increase of acetylation of MT [18, 44].

In the renal system, tubular flow and ROS act as potent modulators of epithelial kidney cell

phenotype also by affecting the organization of the cytoskeleton and the brush border, chang-

ing cell polarity and modifying various cellular functions such as solute reabsorption and

extracellular matrix remodeling [17]. Under oxidative stress, ROS directly induce the break-

down of the cell cytoskeleton, activate various cell death-associated signals and regulate

elongation, shortening and release of cilia [45]. The mechanism and implications of this regu-

lation are still unclear.

5. Reactive oxygen species, shear stress and cilia function

ROS and NO have been implicated in sensing FSS in both vascular homeostasis and diseases

[46]. ROS include collective oxygen (O2) radicals such as superoxide, O2
˙� and hydroxyl

radical, OH, and non-radical derivatives of O2, including hydrogen peroxide (H2O2) and ozone

(O3). Several sources of ROS have been extensively described in the literature, in which the

nicotidamine adenine dinucleotide phosphate (NADP) oxidase (Nox) has been described as

one of the main cellular sources of ROS generation in endothelial cells under FSS [47].

Flow patterns and the magnitude of shear determine the amount of ROS produced by

endothelial cells, usually an irregular flow pattern (disturbed or oscillatory) producing

higher levels of ROS than a regular flow pattern (steady laminar or pulsatile) [48]. In

addition to flow pattern, endothelial cells exposed to a prolonged laminar shear stress for

more than 24 h display a reduced O2
˙� formation and ROS levels [49]. ROS production is

closely linked to NO generation: elevated levels of ROS lead to low NO bioavailability, as is

often observed in endothelial cells exposed to irregular flow patterns [48]. The low NO

bioavailability is partially provoked by ROS reaction with NO to form peroxynitrite

(ONOO�), a key molecule that is implicated in oxidative and nitrosative damage [50]. NO

can also take part in redox signaling by modifying proteins and lipids via cysteine S-

nitrosation and fatty acid nitration, respectively [51], in this respect affecting the regulation

of the vascular system [52].

5.1. Free radical signaling and primary cilia

Information related to primary cilium and free radical signaling emerges mainly from kidney

research area. However, how ROS can regulate this mechanosensory organelle is not well

described in the literature [17, 30, 53]. It is known that renal primary cilia protrude from the

epithelial cell surface into the lumen detecting fluid flow and responding to diverse stimuli

[12]. Indeed, several reports show that an alteration of primary cilia length is associated with

acute and chronic kidney disease [16].
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Information about primary cilia acting as an upstream regulator of ROS comes primarily from

in vitro experiments, in which immortalized macula densa cell line (MMDD1) exposed to an

increment in shear stress shows augmented NO production, this effect was blunted by silenc-

ing polaris protein in primary cilia using si-RNA methodology [54]. In addition, in isolated

perfused juxtaglomerular apparatus preparations incubated with the diuretic furosemide (an

inhibitor of Na-K-Cl cotransporter), an increase in tubular flow-induced NO production was

observed. This suggests that the NO stimulatory effect is independent of Na+ concentration in

the tubular fluid, as well as volume changes, suggesting a direct FSS-dependent regulation

[30]. Also, the results elucidate that FSS can stimulate NO production independently of NaCl

delivery to the macula densa. Therefore, these results indicate that the primary cilium acts as a

mechanosensory organelle for FSS inside the nephron tubule via NO.

The opposite mechanism in which free radical species can regulate primary cilia function is

showed mainly in renal ischemia/reperfusion (I/R) experiments. I/R setting is characterized by

an increase in free radical species production [55]. Acute tubular necrosis induced by I/R on mice

model resulted in changes in primary cilium length. Thus, primary cilium was shortened after

4 h and 1 day of ischemia versus non-ischemic control cells, an effect that was blunted after

16 days [16]. The oxidative stress from I/R derived injury is able to break down cell cytoskeleton

and activate various cell death-associated signals, like cell autophagy [45]. As presented by Kim

et al. [53], the treatment with the antioxidant molecule Mn(III) tetrakis (1-methyl-4-pyridyl)

porphyrin (MnTMPyP) during the reperfusion (i.e., recovery) period of damaged kidneys accel-

erated the normalization of cilia length in experiments of I/R. Concomitantly, they also showed

that MnTMPyP decrease oxidative stress and recover nephron tubule morphology, indicating

that the ROS signals are an integral part of cilium length regulation. In addition, cultured kidney

cells treated with H2O2 released a ciliary fragment into the extracellular medium. MnTMPyP

treatment inhibited this deciliation process [17, 53]. Moreover, the extracellular signal-regulated

kinase (ERK) inhibitor U0126 blocked the cilium elongation of normal and H2O2-treated cells

[53]. Taken together, these observations show that primary cilia length can be regulated, at least

in part, by H2O2 through an ERK-dependent pathway. Similar results were found related in

acute kidney injury after hepatic I/R from liver transplantation or resection experiments in the

kidney [56]. In particular, transient hepatic ischemia caused functional and histological kidney

damage, including brush border loss of tubular epithelial cells and tubule atrophy. This cellular

damage also induces a shortening and deciliation of kidney primary cilia via ROS/oxidative

stress, suggesting that the presence of ciliary proteins in the urine could be a potential indication

of kidney injury [17]. Therefore, remote organ injury model can increase the content of O2
�, and

H2O2 subsequently shortening the primary cilium length in several nephron sections [56]. These

data confirm that free radical species can modulate the primary cilium length, at least in the

kidney, but the mechanism and functional implications of such modulation remain unclear.

6. Vascular endothelial growth factor and shear stress

VEGFs are a complex family of glycoproteins that are structurally related to platelet-derived

growth factor (PDGF) [57]. Through alternative RNA splicing, VEGF family is constituted by
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several isoforms, including VEGF165, which has been named VEGF-A or VEGF, the isoform

involved in many of the functions attributed to the VEGF family. All members of the VEGF

family activate tyrosine kinase receptors known as VEGF receptors (VEGFRs), which include

VEGFR-1 (also known as fms-like tyrosine kinase 1 or Flt-1), VEGFR-2 (or kinase insert-

domain containing receptor, KDR) and VEGFR-3 [58, 59]. Activation of VEGFRs has been

implicated in several vascular functions, including angiogenesis, vascular tone regulation and

endothelial cell survival, among others [59–61].

Importantly, VEGF and VEGFRs have also been associated with sensing FSS. High expression

of VEGF [62] and the activation of VEGFR2 [63, 64] have been linked to the FSS sensing.

Moreover, the activation of VEGFRs generally leads to NO synthesis in many kinds of cells,

including endothelial cells [58]. Therefore, it is not surprising that VEGFR2 triggers NO-

dependent flow regulation. Jin et al. [63] showed that FSS leads to VEGFR2 activation in a

ligand-independent manner and leads to eNOS activation in cultured endothelial cells. Intra-

cellular downstream pathway associated with NO synthesis due to FSS-stimulated VEGFR2

activation included phosphoinositide 3-kinase (PI3K) and PKB/Akt. Interestingly, contrary to

PKB/Akt, the PI3K pathway has not been associated to endothelial primary cilium FSS sensory

function [29]. Also, in vivo experiments confirmed that VEGFR2 is a key mechanotransducer

that activates eNOS in response to blood flow [63]. Despite these evidences, as far as we

known there is no information related to VEGFRs present in the primary cilium as potential

regulator of FSS sensing.

7. Neuropilins and the primary cilium

VEGF can also bind to neuropilins (NRP), a family of transmembrane glycoproteins that play key

role in axonal guidance, angiogenesis, tumorigenesis and immunological response [65]. NRPs

have been characterized as co-receptors for VEGFRs and plexins, the receptors of the extracellular

secreted ligands, belonging to class III semaphorins [60]. In turn, semaphorins are a class of

secreted and membrane proteins that were originally identified as axonal growth cone guidance

molecules. At least two neuropilin genes, NRP1 and NRP2, have been identified [66]. Genetic

studies in mice have confirmed that NRPs are key components of vasculogenesis, angiogenesis

and lymphangiogenesis [65, 66]. Nevertheless, NRPs can bind to growth factors such as VEGF,

placental growth factor (PlGF), hepatocyte growth factor (HGF) and fibroblast growth factor

(FGF), among others. And due to VEGF binding, NRPs can also modulate blood flow [65].

In endothelial cells, NRPs are thought to increase signaling through the VEGFRs acting as a co-

receptor of VEGF and by stabilizing the VEGF/VEGFR complexes and therefore enhancing

VEGF activity. Thus, the interaction of VEGF-A165 with NRP1 is required for stable binding of

VEGF-A165 to VEGFR-2, full activation of VEGFR-2 and downstream signaling and biological

responses [65, 67].

Limited information about the localization of NRP in primary cilium is available. Before

presenting those evidences, we should give some information about hedgehog (HH) signaling.

Briefly, HH signaling is essential for tissue patterning and organ formation during embryonic
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and postnatal development, as well as in cancer development and tissue homeostasis renewal

and repair in adult animals [68]. The HH pathway acts via activation of transcriptional effec-

tors, such as the glioblastoma (Gli) proteins, a family of transcription factors whose target

genes remain enigmatic. The Gli protein family includes Gli1, Gli2 and Gli3 [69].

Referring to the primary cilium, studies conducted by Pinskey et al. [68] found that NRP1 and

NRP2 promote the activation of Gli transcription factor. Interestingly, the authors found that a

conserved 12 amino acid region of the NRP1 cytoplasmic domain between amino acids 890 and

902 is responsible for the HH-signal promotion. Considering that an intact primary cilium is a

main component of the HH signaling, they also looked for the localization of NRP1 in this

subcellular compartment and showed the unique evidence until now about the localization of

NRP1, but not NRP2, in the primary cilium [68]. Despite the fact that the localization of NRP1 in

the primary cilium was not required for HH signaling promotion, it is intriguing why NRP1 is

present in primary cilium and what would be its physiological relevance there. This observation

is important considering that NRP1, as indicated previously, may interact with growth factors,

such as VEGF, PlGF, HGF and FGF, among others, regulating their action. Still more questions

than answers emerge and more investigation is required to lighten these intriguing possibilities.

8. Purinergic receptors and the primary cilium

Since early 1970s [70], adenosine triphosphate (ATP) has been recognized as an extracellular

signaling molecule activating a pathway defined as “purinergic signaling” where ATP, ADP

and adenosine are involved. The signaling pathway starts with the activation of a family of

membrane receptors. At this moment, separate families for adenosine purinergic (P1) and ATP

and ADP purinergic (P2) receptors have been characterized. Briefly, adenosine receptor or P1

family includes at least four members of G-protein-coupled receptor subtypes identified as A1,

A2A, A2B and A3. In contrast, the P2 family encompasses seven members of purinergic receptor

type X (P2X), a family of ion channels receptor subtypes (P2X1–7) and at least eight members

of P2Y G-protein-coupled receptor subtypes (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13 and

P2Y14) [71]. P2Y1, P2Y2, P2Y4 and P2Y6 are associated with the intracellular calcium (iCa2+)

signaling pathway, whereas P2Y2, P2Y13 and P2Y14 are associated with cyclic adenosine

monophosphate (cAMP) signaling. In contrast, P2Y11 has been shown to be associated with

both iCa2+ and cAMP signaling [71].

ATP is released by almost all cell types after gentle mechanical stimulation and acts in an

autocrine or paracrine manner [72]. Living cells under stressful conditions (i.e., hypoxia) or

dying cells release ATP [72]. Interestingly, purinergic signaling parallel to flow sensor activity

of the primary cilium [73]. Purinergic signaling associated with flow sensing was detected in

several structures such as kidney tubules [20], intrahepatic bile ducts [74, 75], endothelial cells

[31], among other lining cells. Therefore, deflection of the primary cilium has been related with

ATP release leading to autocrine or paracrine activation of purinergic receptors.

The relationship between ATP, purinergic signaling and primary cilium has been studied in

the kidney tubular system [73]. The main physiological area that established a relationship
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between these three elements is related to urinary flow sensor, where a flow-stimulated

increase of iCa2+ has been characterized. Initial investigation suggested that deflecting the

cilium releases a paracrine factor, such as ATP that can activate a G-protein-coupled receptor

and generate inositol triphosphate (IP3) leading to iCa2+ increase throughout the cytosol due to

the release of Ca2+ from the intracellular stores. Also, increasing the tubular flow triggered an

increase in iCa2+. The same experiments were also performed in renal tubules from mice

lacking P2Y2 receptors or cells lacking the primary cilium. In those experiments, the response

to tubular flow was markedly reduced only in those cells lacking the P2Y2 [76]. These results

strongly suggested that tubular flow triggers ATP release, followed by auto- and paracrine

activation of epithelial P2 receptors. However, a direct link to the primary cilium could not be

established in these experiments. Despite that, information regarding how purinergic signal-

ing can be associated or not to function of primary cilia is missing.

9. Ciliopathies: an insight into some clinical consequences of impaired

ciliary function

9.1. Polycystic kidney disease

As indicated above, the relevance of the primary cilium function has been well established in the

kidney, as evidenced in polycystic kidney disease [37, 77, 78]. Also, previous reports suggest that

the outcome of I/R in kidneys is associated with the change of primary cilia length [17]. Physio-

logically, urinary flow through the nephron is a highly variable process. In the short term, flow

changes can be caused by variations in glomerular filtration rate [79], tubuloglomerular feedback

[80] and fluid absorption along the nephron [79]. In the long term, urinary flow fluctuations can

be caused by a high salt [81] or high protein diet [82], as well as due to hypertension [83] or early

stages of diabetes [84]. Variations in luminal urinary flow alter the mechanical forces (shear

stress, stretch and pressure) that affect epithelial cells in the nephron.

Polycystic kidney disease is a genetic disease characterized by bilateral enlarged cystic kidneys. It

is caused bymutations of genes encoding for PKD1 and PKD2 linked to polycystic kidney disease

type 1 (pkd1) and polycystic kidney disease type 2, respectively [37, 77, 78]. The frequencies of

cardiovascular complications are very high in polycystic kidney disease patients. Hypertension

occurs in 50–70% of patients even before any substantial kidney disorder [85]. Polycystic kidney

disease has been associated with abnormalities in FSS sensing due to primary cilia dysfunction

[36]. Mechanistically, polycystic kidney disease patients exhibit impairment of endothelium-

dependent relaxation and a decrease of eNOS activity, impaired release of NO and, therefore,

endothelial dysfunction [86]. Furthermore, polycystic kidney disease has been associated to the

inability of renal epithelia [87] or vascular endothelia [9] to induce Ca2+ influx in response to FSS.

Endothelial cells isolated from mice and humans with polycystic kidney disease lack PKD1 and/

or PKD2 in the primary cilium and fail to produce NO in response to FSS [2, 9, 29].

Abnormal PKD2 function or expression has been associated with hypertension [88]. Mutations

of pkd2 gene abolish Ca2+ and NO increases in endothelial cells showing that PKD2 mediates

FSS sensing in endothelial cells [29]. In addition, PKD2 sensory function as a Ca2+ channel
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depends on its localization at the primary cilium and on PKD1. Thus, impaired function and

expression of PKD2 are associated with endothelial dysfunction. Interestingly, prolonged

exposure of endothelial cells to high FSS induces the disassembly of cilia [28] and inactivation

of PKD1 by proteolytic cleavage [9], reducing the ability of endothelial cells to properly sense

alterations in blood pressure.

9.2. Atherosclerosis

Initial evidence showed that primary cilia were present in the vascular beds where flow is

disturbed, and related to atherosclerosis [89]. Particularly, the primary cilia were found in the

endothelial cells of human aortic fatty dots and streaks, but not in those of the normal intima

[89]. Moreover, recent evidences also found the primary cilium in cells exposed to laminar

blood flow [27]. Regarding atherosclerotic plaque, primary cilia have been shown to be located

at the atherosclerotic predilection sites, where flow is disturbed and around atherosclerotic

lesions in the aortic arch in wild-type mice and apolipoprotein E-deficient mice, respectively

[23]. In addition, experimentally induced pathologic turbulent flow in mice leads to induction

of primary cilia, and subsequently to atherogenesis, suggesting a role of primary cilia in

endothelial activation and dysfunction [23].

Contrary, another evidence found an inverse correlation between the presence of endothelial

primary cilia and vascular calcified areas, although the signaling mechanisms involved remain

unknown [22]. In order to analyze this phenomenon, Sanchez-Duffhues et al. [22] used the

Tg737 cilium-defective mouse model and they found that non-ciliated aortic endothelial cells

acquire the ability to trans-differentiate into mineralizing osteogenic cells. The mechanism for

this trans-differentiation requires the presence of bone morphogenetic proteins (BMP). There-

fore, these data emphasize the role of the endothelial cells in vascular calcification and gener-

ation of atherosclerosis. Whether these findings are associated or not to iCa2+, eNOS activation

and NO synthesis remains unclear.

Apparently, differences in blood flow patterns along the endothelium trigger abnormal vascular

responses that have been associated with pathophysiological consequences, such as atheroscle-

rosis. While endothelial cells exposed to laminar blood flow are protected from atherosclerosis

formation, turbulent blood flow, which occurs at bends and bifurcations of blood vessels, facili-

tates the process of atherosclerosis. Primary cilia presence and function have barely been studied

in both endothelial activation and dysfunction. Hence, more studies are required to better

understand these issues.

10. Concluding remarks

Phenotypic cell alterations resulting from flow-induced mechanical strains and their implica-

tion in diseases are a growing field of research in many cell types such as vascular endothelial,

smooth muscle, kidney epithelial cells and chondrocytes.

In the chapter, we presented the role of the primary cilium as one of the multiple physiological

mechanosensors for FSS in endothelial and renal cells, where it regulates vascular homeostasis
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and epithelial function. To respond to FSS, a functional primary cilium requires the constitu-

tive proteins, PKD1, PKD2 and polaris. The primary cilium is functional under normal FSS and

activates the Ca2+ and NO signaling cascade; nevertheless, it becomes dysfunctional after

prolonged exposure to high FSS analogous to a hypertensive situation present in any kind of

biological fluid. Respectively, growing evidence implicates the primary cilium and the disrup-

tion of its function in many diseases such as hypertension, atherosclerotic lesions and acute

and chronic kidney disease.

In this regards, we have summarized evidences implicating that polycystic kidney disease, a

pathology characterized by lack of PKD1 and/or PKD2 expression, leads to impaired vascular

endothelial FSS sensing. Even when the primary organ affected by the disease is the kidney,

the endothelial dysfunction is a common extra renal symptom observed in polycystic kidney

disease. Those patients exhibit an impairment of endothelium-dependent relaxation and a

decrease of primary cilia-dependent NO production leading to hypertension.

Contrary to its physiological role in sensing FSS, it has also been described that primary cilium

is related to plaque formation, since this organelle was present in the endothelial cells of

human aortic fatty dots and streaks. Indeed, primary cilium has been shown to be located at

the atherosclerotic predilection sites, where flow is disturbed and around atherosclerotic

lesions in the aortic arch in wild-type mice and apolipoprotein E-deficient mice, respectively

[31]. In addition, primary cilia have been involved in endothelial activation and dysfunction

present in atherosclerosis. Despite relevance of these evidences, it is highlighted in this review

that more studies are required to better understand the role of endothelial primary cilium in

normal and pathological conditions, such as atherosclerosis.

We also presented examples of regulatory signals that control NO bioavailability or might

participate as modulators of primary cilium. For instance, ROS can modulate cilia length and

deciliation process in tubular kidney cells. Whether these effects could be extrapolated to

endothelial cells is worth of more investigation.

Finally, we presented the interconnected coreceptors VEGF and VEGFRs, neuropilins, ATP,

adenosine and purinergic receptors. All have been suggested to be involved in FSS sensing and/

or colocalization in the primary cilium. To this respect, we can provide more questions than

answers. NRP1, a VEGFR2 receptor, localizes to the primary cilium but its physiological rele-

vance is still unknown. On the other hand, ATP and adenosine are involved in sensing FSS, in a

primary cilium-independent manner. Moreover, information regarding whether or not

purinergic signaling can be associated to the primary cilia function is missing.

In conclusion, these data emphasize the role of the primary cilium present in endothelial cells

as a microsensory organelle transducing FSS. Impairment in the ciliogenesis, cilia length and

intracellular pathways can be involved in cardiovascular diseases. The participation of ROS,

VEGF and purinergic signaling pathways is being described, but more research is required to

elucidate their participation in the primary cilium-mediated sensing of FSS in normal and

pathological conditions, such as hypertension, atherosclerosis or polycystic kidney disease.
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eNOS Endothelial nitric oxide synthase

ERK Extracellular signal-regulated Kinase

FGF Fibroblast growth factor

FSS Fluid shear stress

Gli Glioblastoma transcription factors

HH Hedgehog signaling pathway

HGF Hepatocyte growth factor

HUVECs Human umbilical vein endothelial cells

MMDD1 Immortalized macula densa cell line
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InsP3R Inositol 1,4,5-triphosphate receptor

IP3 Inositol triphosphate

iCa2+ Intracellular calcium

ift88 or Tg737 Intraflagellar transport particle 88

IFT Intraflagellar transport particles

I/R Ischemia/reperfusion

MT Microtubules

MnTMPyP Mn(III) tetrakis (1-methyl-4-pyridyl) porphyrin

NRP Neuropilins

L-NAME NG-nitro-L-arginine methyl ester

Nox Nicotidamine adenine dinucleotide phosphate oxidase

NO Nitric Oxide

ONOO� peroxynitrite

PI3K Phosphoinositide 3-kinase

PlGF Placental growth factor

PDGF Platelet-derived growth factor

PKD Polycystic kidney disease

PKD1 Polycystin-1

PKD2 Polycystin-2

PKB Protein kinase B

PKC Protein kinase C

PT Proximal tubule

ROS Reactive oxygen species

RyR Ryanodine receptors

siRNA Small interference RNA

VEGF Vascular endothelial growth factor

VSMC Vascular smooth muscle cells

VEGFRs VEGF receptors

VEGFR-1 Also known as fms-like tyrosine kinase 1 or Flt-1

VEGFR-2 Or kinase insert-domain containing receptor, KDR
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