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Abstract

In recent years, there has been growing interest in computer modeling of the evolution of
gene and cell regulatory networks, in general, and in computational studies of the classic
ideas of Baldwin, Schmalhausen, Waddington, and followers, in particular. Two related
aspects of Waddington’s evolutionary theories are the concepts of canalization and of
genetic assimilation. Canalization is associated with the robust development of an indi-
vidual to diverse perturbations and noise, though, when fluctuations in developmental
factors exceed a particular limit, the normal developmental trajectory can be “thrown out”
of the robust canal, resulting in an altered phenotype. If selective pressure favors the new
phenotype, an initial individual loss of canalization can lead to phenotypic changes in the
population (with canalization then becoming established for the new phenotype). Genetic
assimilation is the subsequent genetic fixing of the new trait in the population. Recent
experimental and theoretical works have established a quantitative basis for these classic
concepts of Waddington; this chapter will review these new developments in systems
evolutionary biology.

Keywords: canalization, genetic assimilation, gene networks, computer modeling,
systems evolutionary biology

1. Canalization and genetic assimilation

Computational studies of the classic concepts of Ivan Schmalhausen [1], Conrad Waddington

[2], and their contemporaries (Rendel [3]) have become a major area in evolutionary theory in

recent years. A number of these concepts from the 1950s have had a major impact on the

evolutionary theory of development, and computation allows for quantitative testing and
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characterization of the ideas. Here, we review recent work on canalization, whereby species

show low phenotypic variation, despite ample genetic and environmental variation (also

termed “robustness”), and on genetic assimilation, in which a phenotypic change induced by

an environmental perturbation becomes stabilized in the genotype.

Canalization captures the observation that most developmental phenotypes display a certain

degree of stability, despite environmental or genetic perturbations (Figure 1). However, for

new phenotypes to arise, there must be a limit to this robustness, such that a large enough

perturbation will knock the developmental trajectory out of the robust canal, resulting in a

new phenotype. If this new phenotype represents higher fitness, it can be reinforced by genetic

assimilation (Figure 2).

Waddington did a number of perturbation experiments in Drosophila (fruit fly) development to

characterize such canalization (robustness) and show its underlying genetic basis. In those

times Waddington preferred to use simple perturbations of environmental parameters and

conditions, such as exposing flies to diethyl ether [5], high sodium chloride concentrations [6],

or heat shock (40�C) [7]. Later, other authors have used mutations in key developmental genes

as the perturbations [8, 9]. More recent approaches include genetically engineered organisms

with loss-of-function [10] or gain-of-function [11, 12] mutations and varying dosages of small

interfering RNAs (siRNAs) to quantitatively deplete targeted gene products [13]. Perturbation

experiments remain the main approach to study the mechanisms of robustness. Whatever the

technique, relative robustness is calculated as the change in variation of one or more specific

traits when the experimental perturbation is applied.

In parallel with the new experimental approaches for perturbation and observations from field

biology, a large branch of systems biology is now concerned with computer modeling of

Figure 1. (A–B) Waddington’s canalization and epigenetic landscape: Diverse and inevitable environmental disturbances

and internal developmental noise systematically disturb developmental trajectory on the epigenetic landscape. However,

the developmental process usually returns to the basin of normal development (creod), that is, the development is

canalized and the canal walls keep the process in the basin prescribed by the genetic program (after http://www.gen.

cam.ac.uk/research-groups/martinez-arias).
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evolution, in order to test and verify hypotheses for evolutionary mechanisms (e.g., especially

in studying evolution over numerous generations and with strictly controlled evolutionary

rules). This review focuses on such work which has tested and extended the classic concepts of

canalization and genetic assimilation.

2. Simulation of gene network evolution

Andreas Wagner laid out an approach to computational modeling of gene network evolution

in two pioneering publications [14, 15]. In his models, an evolving population comprised

individuals, each characterized by a genotype and a phenotype. Individuals have a develop-

mental phase of their lifetimes, in which an initial phenotype develops to reach a new stable

phenotype. Development is specified by the genotype, which is modeled as a gene regulatory

network (GRN). Once an individual has reached its stable adult phenotype, it can reproduce to

create the next generation. Reproduction occurs sexually, implying a random mixing of paren-

tal genomes in the offspring’s genome. Mutations can also occur, modifying gene-gene inter-

actions which may then disrupt the viability of the individual. Stabilization of the adult

phenotype is one of the core hypotheses of the Wagner model and its subsequent variants

and further developments. Some models have been proposed which constrain selection to be

for a particular predetermined phenotype, rather than any stable phenotype. Or fitness func-

tions have been studied in which fitness decreases as the Hamming distance increases between

the individual’s phenotype and the predetermined one [14–20]. The ways to extend and

develop further the approach were reviewed recently [21].

Figure 2. (A–B) Waddington’s genetic assimilation: The environmental stress causes a series of the Drosophila’s divergent

phenotypes. The untypical, high environmental disturbances deform, change the epigenetic landscape. By doing so, it

causes the appearance of new phenotypes in the population under stress. If some of the phenotypes are beneficial, it can

be stabilized in the genotype by further selection (after [4]).
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3. How canalization evolves

Computational modeling has shown a number of different aspects of how canalization

operates in evolution [21].

3.1. Phenotypic robustness to diverse perturbations

Computation allows for the separate consideration of a number of types of genetic perturba-

tions (such as point mutations, small deletions/insertions, crossover, or gene duplications) and

non-genetic perturbations (such as fluctuations in a gene circuit’s cellular or nuclear microen-

vironment [22–24] or changes in an organism’s macroenvironment).

Three major reasons for phenotypic robustness to a particular type of natural perturbation

have been proposed [25, 26]. First, robustness to a perturbation might have evolved as an

adaptation to reduce phenotypic variation in response to a specific perturbation. Second,

robustness to the specific perturbation could be a congruent byproduct of evolved robustness

to a different perturbation. Lastly, we can hypothesize that robustness is an intrinsic property

of biological systems selected for their primary functions. Computational simulations of GRNs

suggest both that intrinsic robustness could be widespread and that natural selection can

increase robustness under diverse and reasonable sets of parameter values and assumptions

[15, 16, 27–31]. Whichever of these options applies, robustness to mutation results in the

accumulation of phenotypically cryptic genetic variation (CGV), that is, it allows for changes

in genotype which do not affect phenotype (until a strong enough perturbation is made).

Partial robustness can lead to preadaptation, and thereby might contribute to evolvability [25]

(i.e., accumulated genetic variation may allow for rapid evolution under new selective pres-

sures).

A number of studies have shown that genetic canalization would evolve under stabilizing

selection [16, 32–35].

3.2. More realistic models of GRN evolution

Discrete (Boolean, “on/off”) GRN models are simplified representations of gene interactions

but allow for rapid analysis of some aspects of network evolution. Earlier evolutionary studies

were generally with discrete models; more recent developments include continuous treat-

ments of gene states, which are more biologically realistic but more computationally intensive

to solve.

Draghi and Whitlock [36] developed a GRN model with continuous gene expression levels,

affected by environmental cues, forming the phenotype. They showed by computational

experiments that the evolution of phenotypic plasticity can produce populations with larger

mutational variance and larger standing genetic variance. They found also that plastic

populations do not respond much more quickly to selection pressure than do populations

that are more static. Furthermore, if the optimal phenotypes of two traits vary together, then

larger mutational and genetic correlations were observed. According to their findings, the
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quantitative genetic descriptions of traits created by explicit developmental network models

are evolutionarily labile, with genetic correlations that change rapidly with shifts in the

selection regime [36].

Iwasaki, Tsuda, and Kawata developed an individual-based approach to the GRN modeling

[37, 38]. The GRN of each individual had both phenotypic and regulatory genes, each gene

was composed of a cis-regulatory region and a coding region, and a cis-regulatory region was

composed of cis-sites for specific transcription factors. They showed by the approach that

simple GRNs tend to evolve under conditions where genetic canalization is expected, while

more complex GRNs tend to evolve in conditions favoring decanalization. Iwasaki and co-

authors study showed that complex GRNs display a high mutational robustness (i.e., muta-

tions against core genes have only a small phenotypic effect) and evolvability (i.e., a larger

mutational target size and mutation are likely to change the phenotype). In contrast, simple

GRNs have mutational robustness only because of their small mutational target size. Iwasaki

and co-authors found that the level of CGVs in a population was mainly determined by the

order (weighted size) of GRNs and concluded that the outgrowth of GRNs and adaptation to

new environments are mutually facilitating, resulting in sustainable evolvability [37].

3.2.1. Evolution of genotype-phenotype mapping

Crombach and Hogeweg [34] did a computational study with an individual-oriented model

with population on a lattice subjected to an environment that changes over time. They

showed that long-term evolution of complex GRNs in a changing environment can increase

the generation of beneficial mutations. The population evolves toward genotype-phenotype

mappings that allow for an orchestrated network-wide change in the gene expression pat-

tern, requiring only a few specific gene indels (small insertions and deletions), and the genes

involved are hubs of the networks or directly influencing the hubs. In addition, the GRNs

maintain their mutational robustness throughout the evolutionary trajectory: evolution in a

changing environment leads to a network that is sensitive to a small class of beneficial

mutations, while the majority of mutations remain neutral—an example of the evolution of

evolvability. These evolutionary dynamics showed a number of similarities with experimen-

tal studies in yeast (S. cerevisiae) [39, 40] and E. coli. [41].

4. Genetic assimilation

The understanding of genetic assimilation, similarly, has been extended through computa-

tional investigations in recent years.

4.1. Waddington’s canalization and genetic assimilation

A heat shock perturbation done by Waddington in 1953 is used as a classic example of genetic

assimilation: cross-veinless flies resulted from an initial heat shock and, selected over multiple

generations, eventually produced the phenotype without the perturbation [7]. Alternatively,
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the cross-veinless phenotype could be due to contributions from multiple genes, which could

have a lower heat shock threshold. This Falconer & Mackay threshold model [42] predicts that

if selection for the assimilating cross-veinless phenotype was relaxed, genetic assimilation

would not occur. Masel tested this prediction with a Wagner-type GRNmodel [43]. Her results

indicated that genetic assimilation can occur in the absence of selection for the trait, supporting

Waddington’s mechanism.

4.2. Phenotypic plasticity and CGV

Closer consideration of genetic assimilation shows that it must involve some degree of pheno-

typic plasticity—the capacity for a genotype to produce multiple phenotypes in response to

non-genetic perturbations. This plasticity may also be considered from the stand-point of

release of CGV (which Masel and Trotter [44] defined as standing genetic variation that does

not ordinarily contribute to the phenotype), which increases during neutral drift but may only

become visible with a large enough perturbation. CGV accumulation can cause a diversifica-

tion of genetic backgrounds on which new mutations may arise. It is biologically reasonable to

expect that the effect of any new mutation should be background dependent: a given mutation

would have a given effect at a particular background and a different or no effects at other

backgrounds. The diversity of genetic backgrounds would give the population access to more

novel phenotypes than if it were isogenic [45–47], as reviewed in [48]. As Siegal and Leu [48]

summarized, this conceptual argument for evolvability correlating positively with mutational

robustness has been formalized in mathematical models of so-called neutral networks in

genotype space (more recently termed “genotype networks”) and has some empirical support

[49–51].

Iwasaki with co-authors [38] focused on GRN as an important mechanism for producing CGV

and examined how interactions between GRNs and the environment influence the number of

CGVs by using individual-based simulations. The authors conclude that interactions with

variable environments may promote the accumulation of CGVs by facilitating the evolution

of larger GRNs. In turn, the expansion of GRNs could facilitate evolutionary adaptation to

novel environments and niche construction [38].

4.3. Phenotypic plasticity and genetic assimilation

Lande defines genetic assimilation in an altered environment as the reduction in plasticity and

its replacement by genetic evolution, while maintaining the phenotype initially produced by

plasticity in the altered environment [52]. According to Lande, reduction in plasticity during

genetic assimilation is often attributed to fitness costs of plasticity.

Lande quantifies the relation between phenotypic plasticity dynamics and genetic assimila-

tion, wherein plasticity must increase to allow evolution to a perturbed environment but then

be reduced to maintain the new optimum. During the first generation in the novel environ-

ment, the average fitness substantially drops and the average phenotype jumps toward the

new optimum by expression of partially adaptive plasticity. Then, transient evolution of

increased plasticity accelerates phenotypic adaptation and allows the average phenotype to

Evolutionary Physiology and Biochemistry - Advances and Perspectives172



come toward the new optimum. Then, the novel phenotype undergoes a slow process of

genetic assimilation, with reduction in plasticity [52].

Temporary perturbations that reduce robustness could turn unitary phenotypes into plastic

ones. It then gives natural selection a substrate on which to select a particular novel phenotype

(i.e., genetic assimilation) [48, 53–55]. High levels of phenotypic variation could increase the

chance of population survival in new hostile environments, which in turn would give time for

the population to accumulate adaptive mutations [48, 56, 57]. As Siegal, Leu concluded, the

connection between robustness and plasticity could be especially important to evolution [48].

Janna Fierst asked herself to what degree can a history of phenotypic plasticity affect the rate of

adaptation to a new environment, that is, is plasticity merely a condition for genetic assimila-

tion, or do environmental fluctuations cause phenotypic plasticity, generating genotypic

evolvability? She showed that a history of phenotypic plasticity may determine the evolution

of genetic architecture and shorten the waiting time for the generation of phenotypic variance

from new mutations and recombination. Hence, rather than acting as a short-term alternative,

phenotypic plasticity may facilitate future adaptation and genetic evolution [58].

4.3.1. Phenotypic plasticity and evolvability

Non-genetic perturbations, such as environmental change or developmental noise, can induce

novel phenotypes. If an induced phenotype appears recurrently and confers a fitness advan-

tage, selection may promote its genetic stabilization. Non-genetic perturbations can thus initi-

ate evolutionary innovation. CGV may play an important role in this process [20]. Populations

under stabilizing selection on a phenotype that is robust to mutations can accumulate such

variation. After non-genetic perturbations, this variation can produce new phenotypes.

Espinosa-Soto with co-authors find that phenotypic robustness promotes phenotypic variabil-

ity in response to non-genetic perturbations but not in response to mutation. It suggests that

non-genetic perturbations may initiate innovation more frequently in mutationally robust gene

expression traits [20].

Phenotypic plasticity can facilitate the origin of genotypes that produces a new phenotype in

response to non-genetic perturbations. Espinosa-Soto with co-authors find that phenotypic

plasticity frequently facilitates the evolution of novel beneficial gene activity patterns in gene

regulatory circuits [59]. The fundamental reason is that genotypes that produce occasionally a

beneficial phenotype (and thus have a selective advantage) give more easily rise to genotypes

where that same phenotype is more strongly genetically determined [59].

The characterization of plasticity, robustness, and evolvability can be studied in terms of

phenotypic fluctuations. By numerically evolving GRNs, the proportionality between the

phenotypic variances of epigenetic and genetic origins is confirmed by Kaneko [60]. The

relationship suggests a link between robustness to noise and to mutation. The proportionality

between the variances is demonstrated to also hold over expressions of different genes (phe-

notypic traits) when the system acquires robustness through the evolution. It was found by

Kaneko that both the population’s adaptability to a new environment and the population’s

robustness becomes compatible when a certain degree of phenotypic fluctuations is produced
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by the developmental variability and noise [60]. The Kaneko’s conclusion is that the highest

adaptability is achieved at near-the-threshold noise level at which the gene expression dynam-

ics are near the critical point to lose the robust evolutionary process.

5. Canalization and assimilation in population biology

Current advances in evolutionary systems biology were caused not only by working out of

new computational approaches but also by new biological observations performed to verify

the computational conclusions.

5.1. CGV in natural populations

Biological systems are highly robust to perturbation by mutations, recombination, and the

environmental stress. Robustness to mutation and recombination permits genetic variation to

accumulate as hidden genetic diversity (or CGV). CGV might be revealed in response to stress,

and “the amount of heritable phenotypic variation available can be correlated to the degree of

stress and hence to the novelty of the environment…” [44].

The CGV role in genetic assimilation was extensively studied by computational evolutionary

tests (as overviewed in Section 4.2). They are considered to contribute to evolutionary

responses to environmental changes by generating phenotypic diversity [61–63]. Furthermore,

the CGV’s ability to accumulate and release multiple mutations in populations supports some

researchers’ considerations that CGVs also promote the acquisition of new traits [38, 64, 65].

Some experiments support these considerations. For example, as it was shown by Suzuki and

Nijhout [55], a mutation in the larval hormone-regulatory pathway in Manduca sexta moth

enables heat stress to reveal a hidden larval coloration. The black mutant strain of the moth,

which was originally green, demonstrated variations in thermosensitivity: heat shocks during

the sensitive period generated larvae with colors that ranged from normal black to nearly

normal green [55]. Suzuki and Nijhout also successfully established two lines by artificial

selection: one selected for increased greenness upon heat treatment (sensitive line) and the

other for decreased color change upon heat treatment (insensitive line). Hence, CGVs really

could contribute to phenotypic evolution.

5.2. Phenotypic capacitors

Phenotypic capacitor “is a biological switch capable of revealing previously cryptic heritable

variation” [25]. This is an analogy with an electric capacitor, which is capable to store and

release an electric charge. Many of the capacitors are proteins whose function contributes to

robustness and, therefore, whose damage or modification reveals phenotypic variation [66].

In a complex GRN, there are many gene products which could appear as “phenotypic”

capacitors, such that their removal increased phenotypic variability. An extensively studied

example is the molecular chaperone Hsp90, but GRN dynamics indicated there should be
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many more. Experiments in yeast indicated more than 300 gene products whose removal

increased variation [10].

In Drosophila, other molecular chaperones—Hsp22, Hsp67, and Hsp70—were also observed

to affect either within-individual variation (measured by asymmetry of bilateral traits) or

among-individual variation in morphology [67]. In eukaryotes, Hsp90 impairment has been

found to reveal CGV in organisms ranging from yeast to flies to vertebrates to plants [68, 69].

Masel and Siegal [25] considers three approaches based on the use of phenotypic capacitors to

study robustness. The first approach is a genome-wide screening for genetic perturbations

affecting the variance of a given trait. The trait can be morphological [10, 70, 71], or physiolog-

ical [72] or can be measured as RNA and protein concentrations [73–75]. Good examples of the

approach include the studies of cellular morphology in S. cerevisiae mutant strains [10, 76] and

the genome-wide analysis of more complex and quantitative traits in both S. cerevisiae [70, 73]

and A. thaliana [71, 74].

The second approach is based on usage of a well-characterized model developmental

system under the impact of perturbations. Good example of the approach is the consider-

ation of the developmental lineage of the cells comprising the vulva of nematode species of

the genus Caenorhabditis [77, 78]. Perturbation of C. elegans vulva development by mutation

or environmental variation revealed changes in the underlying signaling pathways [77, 78].

Robustness of the vulval developmental system to environmental perturbations results

through an integration of multiple buffering capacities at the molecular and cellular level

[77, 78].

The third complementary approach is to focus on a single well-characterized perturbation and

the variety of developmental systems that it affects. Examples include perturbation of transla-

tion termination by the yeast prion [PSI+] [79–81] and the heat shock protein, Hsp90, which

affects a stunning variety of developmental processes [70, 82].

Namely the computational evolutionary experiments with the GRN models revealed possible

existence and evolutionary significance of the phenotypic capacitors and brought intent atten-

tion to its experimental study.

5.3. Phenotypic plasticity and genetic assimilation in biology

Baldwin [56], Simpson [83], and Waddington [84, 85] proposed that phenotypic plasticity may

benefit populations in new environments. In accordance with Waddington’s pioneer consider-

ations, artificial selection can turn an alternative phenotype into a native one [5, 7]. More

recently, other researchers have confirmed his observation for diverse traits and different

species [55, 70, 86].

Many empirical studies of wild populations support the hypothesis that an ancestral alterna-

tive phenotype could have facilitated the evolution of novel, adaptive traits [16, 28, 29, 72, 87–

93]. For example, severe environments enhance phenotypic differences among fruit fly strains

[94], and a temperature rise caused by a lack of shade increases the frequency of abnormal

morphologies in fruit flies [95].
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The phenotypes where plasticity may have facilitated adaptation are very diverse. They

include gill surface area in cichlid fishes [96], pigmentation patterns in the crustacean Daphnia

melanica [97], and head size in the snake Notechis scutatus [98]. Despite an abundance of

candidate examples, plasticity’s importance for adaptive evolution is not universally accepted,

and we still do not know whether existing observations are rare oddities or hint at general

principles of evolution [99–105].

5.3.1. Natural populations in changing environments

During millions of years of existence, species repeatedly encounter extreme changes in average

environment, and the capacity to accelerate phenotypic adaptation by transient evolution of

plasticity may be crucial for long-term persistence. Sudden environmental change often occurs

at the start of natural biological invasions and colonizations (reviewed in [106]).

The success of natural invasions, and artificial introductions for biocontrol, may depend on the

evolution of increased plasticity during adaptation to novel environments outside the native

range of a species [107–109]. Genetic variance in plasticity within and/or among populations

has commonly been observed [110, 111], and species invading novel or extreme environments

often display increased plasticity compared to populations from the native range [96, 112–117].

Populations of invasive species outside their native range usually maintain substantial genetic

variance [118–120].

Experiments on newly established small populations show that intense artificial selection can

rapidly create large phenotypic changes, often altering the mean phenotype by several stan-

dard deviations within a few dozen generations [121–123]. For extremely large populations

undergoing sudden environmental change in situ, sustained intense directional selection can

cause adaptation by a rare allele of major effect [124, 125].

Many empirical studies suggest that invasive species tend to have an evolutionary history of

environmental disturbance [53]. Ecological disturbances constitute fluctuating selection pres-

sures over evolutionary time, and evolutionary genetic theory predicts that patterns of fluctu-

ating selection can cause genetic architectures to take different paths (e.g. [126]).

When environmental changes happen infrequently, populations maximize fitness by produc-

ing a single phenotype [58]. When the environment changes more frequently, organisms that

can evolve more rapidly are favored by selection. As Janna Fierst concluded, “when environ-

mental fluctuations are rapid, fitness is maximized by genetic architectures that produce a

broad, generalist phenotype or short-term phenotypic plasticity” [58].

Increasing amounts of evidence suggest that traits induced by non-genetic factors are impor-

tant for innovation in nature [98, 127–129]. For example, taxa with genetically determined

dextral or sinistral morphologies are frequently derived from taxa in which the direction of

the asymmetry is not genetically fixed but where it is a plastic response [128, 130]. Transitions

like these imply genetic assimilation of a direction of asymmetry. This was observed for

multiple traits, such as the side on which the eye occurs in flat fishes (Pleuronectiformes) and

the side of the larger first claw in decapods (Thalassinidea) [128].
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More generally, good candidates for genetic assimilation are the traits where fixed differences

among closely related species are mirrored by plastic variation within populations. Amphibian

traits, such as gut morphology [129], limb length, and snout length [130], are illustrative

examples.

We can conclude that the observations on the environmental dependence of phenotypic and

genetic variances evidences accelerated phenotypic adaptation after an extraordinary environ-

mental change [52].
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