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Abstract

Progress in technology and industrial developments demands the efficient and suc-
cessful energy utilization and its management in a greater extent. Conventional heat-
transfer fluids (HTFs) such as water, ethylene glycol, oils and other fluids are typically 
low-efficiency heat dissipation fluids. Thermal management is a key factor in diverse 
applications where these fluids can be used, such as in automotive, microelectronics, 
energy storage, medical, and nuclear cooling among others. Furthermore, the miniatur-
ization and high efficiency of devices in these fields demand successful heat management 
and energy-efficient materials. The advent of nanofluids could successfully address the 
low thermal efficiency of HTFs since nanofluids have shown many interesting proper-
ties, and the distinctive features offering extraordinary potential for many applications. 
Nanofluids are engineered by homogeneously suspending nanostructures with average 
sizes below 100 nm within conventional fluids. This chapter aims to focus on a detail 
description of the thermal transport behavior, challenges and implications that involve 
the development and use of HTFs under the influence of atomistic-scale structures and 
industrial applications. Multifunctional characteristics of these nanofluids, nanostruc-
tures variables and features are discussed in this chapter; the mechanisms that promote 
these effects on the improvement of nanofluids thermal transport performance and the 
broad range of current and future applications will be included.

Keywords: nanofluids, thermal conductivity, nanoparticles, challenges, thermal 
transport

1. General overview

With global population rapid growth and industrialization surge, resources have reached 
unprecedented levels. Energy has been pointed out as the most important issue facing 
Humanity in the next years [1]. Energy management becomes crucial for meeting the rising 
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needs of mankind [2]. Nowadays, with increasing pressure of globalized markets and compa-

nies’ profit race, a dramatic search to obtain proper materials performance, optimizing compo-

nents and devices designs, improving efficiencies, reducing tools wear, materials consumption 
and pollution, and obtaining the most possible revenue. In addition to issues regarding materi-
als scrap, maintenance and components wear among others, a hot topic in industry is the heat 
dissipation. Among diverse forms of energy used, over 70% is produced in or through the form 
of heat [2]. Heat transfer is a crucial area of research and study in thermal engineering. Heat is 
transferred either to input energy into a system or to remove the energy produced in a system. 

Hence, reducing energy loss and intensifying heat transfer processes are becoming paramount 
tasks to be addressed. Therefore, thermal management plays a vital factor concerning devices, 
machinery or apparatuses performance; thermal transport role has been subjected to countless 
investigations and is under the scope of the operational useful life of these components and 

devices. Being this an opportunity area for successful heat management and energy efficient 
fluid-based heat transfer systems, with aid of reinforced materials.

Nanotechnology is a science that deals with diverse characteristics and properties of materials 
at a nanometric level (1 nm = 10−9 m). Recently, diverse techniques, equipment, and instru-

mentations have been devised, as well as various relevant and interesting characteristics and 
properties of these materials were sorted out. Hence, with aid of nanotechnology, with novel 
developments linking electronic, optical, mechanical, and magnetic properties, industrial 
devices have emerged, and this trend is certainly continuing in this century. Cooling of electric, 
electronic and mechanical devices has been a hot topic in today’s fast-growing technologies. 
The heat required to be dissipated from systems is continually increasing due to industrial 
and economic trends to miniaturize designs, make better use of resources, obtain more power 
output, develop and use more environmentally friendly materials, and obtain more profits.

2. Introduction to nanofluids

Nanofluids are a new generation of HTFs with anomalous behavior, engineered by homoge-

neously suspending nanometer-sized materials or structures within conventional fluids. In 
other words, nanofluids are nanoscale colloidal suspensions containing condensed nanoma-

terials. Nanofluids have been found to possess enhanced thermo-physical properties such as 
thermal conductivity, thermal diffusivity, viscosity, and convective heat transfer coefficients 
compared to those of base fluids such as water (DiW), ethylene glycol (EG) or oils. They have 
demonstrated great potential applications in many fields such as microelectronics, transpor-

tation, industrial cooling, magnetic sealing, reducing pollution, space and defense, energy 
storage, air conditioning, power transmission systems, medical therapy and diagnosis, antibac-

terial activity nanodrug delivery, fuel cells, components and tools wear, friction reduction and 
nuclear systems cooling, etc. [3–8]. Among diverse techniques to cool down or maintain certain 
temperature in these systems, the use of fins, vanes or radiators as well as forced air/fluids 
through cooling channels are being used, even though these are costly. Diverse machinery and 
devices use inexpensive conventional HTFs to intensify heat dissipation. However, the inherent 
limitation of these fluids is the relatively low thermal conductivity; water for instance, is roughly 
three orders of magnitude less conductive than copper or aluminum (Table 1). What these con-

ventional fluids lack in thermal conductivity however, is compensated by their ability to flow.
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The main mechanism for heat transfer in fluids is convection; its efficacy mostly depends on 
the thermo-physical properties of the conventional fluids. Furthermore, if the thermal con-

ductivity of conventional fluids were enhanced, it would be much more effective. Hence, 
since the solid materials possess several orders of higher thermal conductivities, compared 

Material Thermal conductivity  

(W/m K)

Reference

Conventional fluids Water (DiW) ~0.598–0.609 [9–11]

Ethylene glycol (EG) ~0.251 [12–14]

Engine oil ~0.145 [12, 14]

Mineral oil ~0.115 [3, 15]

Kerosene ~0.139 [16]

R141b refrigerant ~0.089 [17]

Carbon structures Single wall nanotubes (SWCNTs) 3000–6000 [18–21]

Multi wall nanotubes (MWCNTs)

carbon (diamond)

~3000 [22, 23]

900–2320 [24, 25]

Carbon (graphite) 119–165 [24]

Graphene ~3000 [4]

Graphite 130–2000 [26]

Metallic solids Aluminum 237 [27]

Copper 398 [27]

Gold 315 [27]

Silver 424 [27]

Nonmetallic solids Alumina (Al
2
O

3
) 31–41 [26, 28]

Aluminum nitride (AlN) 319–550 [29]

Boron nitride (h-BN) ~300 [30, 31]

Boron nitride nanotubes (BNNTs) ~600–960 [32–34]

Cobalt oxide (Co
3
O4) 12.8 [35]

Copper oxide (CuO) 76.5 [36]

Molybdenum disulfide (MoS
2
) 34.5 ± 4 [37]

Silicon carbide (SiC) 148–270 [27, 38]

Silicon oxide (SiO
2
) 1.4–12 [39–42]

Titania (TiO
2
) 8.4–11.2 [13, 39, 42]

Tungsten disulfide (WS
2
) 32–124 [43, 44]

Zinc oxide (ZnO) 13–29 [13, 39]

Zirconia (ZrO
2
) 2.2 [45]

Table 1. Typical thermal conductivities for diverse conventional fluids and solid materials.
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Figure 1. Diverse particle shapes and geometries.

with that of conventional fluids, an idea to introduce conducting particles to fluids was con-

sidered. Among diverse particles geometry, different particle shapes occur naturally or are 
engineered for specific applications, as shown in Figure 1.

Heat transfer using fluids is a very complicated phenomenon, and various factors such as fluid 
stability, composition, viscosity, surface charge, interface, and morphology of the dispersed 
nanostructures influence the observed results [3, 6, 46–59]. Optimization and high efficiency 
of components and devices have gained great importance since these factors play a crucial 

role in diverse fields. Solid materials such as metals, CNTs, oxide/nitride/carbide ceramics, 
semiconductors, and composite materials having higher thermal conductivity can be homo-

geneously suspended and stabilized within conventional fluids, resulting in better thermal 
transport performance composite fluids. Nevertheless, improvement in thermal conductivity 
cannot be achieved by just increasing the solid filler concentration because each system pres-

ents a threshold, in which beyond a certain limit, increasing the filler fraction will also increase 
the viscosity, which will adversely affect the fluid properties and performance.

Most early studies used suspensions of millimeter or micrometer-sized particles, which led to 
countless problems, such as a tendency to rapidly sediment, unless flow rate is increased; not 
only losing the improvements in thermal conductivity, but also forming sludge sediments, 
increasing the thermal resistance and impairing the heat transfer capacity of the conventional 

fluids. Furthermore, fluids of this scale size could have considerably larger pressure drops 
[60–64], thus making flow through small channels much more difficult since diverse param-

eters are critical for device performance, such as morphology and stability of nanostructures, 
fluids composition, viscosity, fast sedimentation, channels clogging, erosion or wear, among 
others, which are often very serious for systems consisting of small channels [3, 65–69].

A revolution in the field of HTFs arose with the advent of nanofluids (NFs), a term introduced 
by Prof. Choi’s research group in the late 1990s at Argonne National Lab [68]. The first inves-

tigations were performed by Masuda et al. [69] for Al
2
O

3
 nanoparticles within water, and by 
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Choi-Eastman group [68] for copper nanostructures dispersed in water as well. Nanofluids 
research has been exploited and novel developments have been able to fulfill industrial neces-

sities. This research area has been increasing through time, starting at 5 publications in 2003, 
reaching up to more than 2100 publications by 2017, according to scientific search engine “sci-
encedirect.com” and keyword Nanofluids. Nanofluids are a novel class of stable heat-transfer 
suspensions which are engineered containing homogeneously dispersed solid nanofillers. 
Compared to micro- or millifluids, nanofluids tend to be more stable, since nanofillers possess 
unique properties, such as large surface area to volume ratio, as well as dimension-dependent 
physical properties, which make nanostructures better and more stably dispersed in conven-

tional fluids. Nevertheless, some limitations of the effective incorporation of nanostructures 
within conventional HTFs are dispersion and solubility, because these tend to aggregate and 
sediment over time. In some cases, additives or surfactants are used to stabilize the nanostruc-

tures within the fluids, even though the surfactants could affect and diminish the thermal 
conductivity of the nanofluids, since surfactants introduce defects at the interfaces [70, 71]. 

Therefore, one of the main advantages of nanofluids is that they can be specially engineered to 
optimally fulfill specific objectives, such as enhanced thermal conductivity, a higher thermal 
energy storage capacity, higher heat transfer coefficients, a better temperature stabilization 
and less pressure drop, among others. Hence, search for new nanofillers which can get high 
thermal conductivities at lower filler fractions is important [3, 72].

It has been demonstrated that nanofluids for heat transfer applications have provided better 
thermal performance than conventional fluids [3, 12, 73, 74]. Hence, the advent of nanofluid-
based heat transfer systems can make compact designs with high efficient thermal, physical and 
electrical performance for instruments and devices. Experiments on convection heat transfer of 

nanofluids were conducted by several research groups [75–77], showing significant improve-

ments in heat transfer rates of nanofluids. Meanwhile, the thermal conductivity enhancement 
of nanofluids show a temperature-dependent characteristic and increase of enhancement with 
rising temperature, which makes the nanofluids more suitable for applications at elevated 
temperatures [3, 6, 78–81]. Additionally, previous research has shown that nanofluids display 
better performance in their thermo-physical properties, such as thermal conductivity, thermal 
diffusivity, viscosity, friction, etc., compared to conventional fluids [3, 4, 82–87]. Hence, nano-

fluids could be used for aforesaid engineering applications.

3. Synthesis and preparation of nanofluids

The manipulation of matter on the nanometer scale has become a central focus from both 
fundamental and technological perspectives. Unique, unpredictable, and highly intriguing 
physical, electrical, mechanical, optical and magnetic phenomena result from the confine-

ment of matter into nanoscale features. Morphology control in nanostructures has become a 
key issue in the preparation of electronic or mechanical nanodevices and functional materials 
[88]. A wide variety of combinations of nanostructures and conventional fluids can be used 
to synthesize and prepare stable nanofluids for diverse applications. Nanofluids could be 
manufactured by two methods. The first step method is a process in which, simultaneously, 
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nanostructures are made and dispersed within the base fluid [89–91]. This method avoids 
diverse processes such as particles drying, storage, handling, and dispersion; so, the agglom-

eration of nanoparticles is minimized; therefore, stability of nanofluids is improved [89, 90]. In 
most experimental studies, nanofluids are synthesized in a two-step process [3, 6, 56, 92–96], 
which is a classic synthesis method of nanofluids. Various nanostructures such as nanofi-
bers, nanotubes, nanosheets, among other nanomaterials used in this technique are initially 
produced by mechanical comminuting, chemical reaction, inner gas condensation or decom-

position of organic complex [97–99] and finally obtained as dry powder. Then, it is followed 
by the second step in which the as-produced nanostructures are homogeneously dispersed 
into base conventional fluids through mechanical agitation (stirring) or ultrasonication [6, 97–
102]. Furthermore, this process is an economic method to produce nanofluids at large scale, 
since nanostructures synthesis techniques are readily scaled up to mass production levels. To 
obtain a good stability and homogeneous dispersion of nanostructures within a fluid, sonica-
tion process is used to speed dissolution by breaking intermolecular interactions. The main 
disadvantage of this method is that due to the high surface area and surface attractively, the 
nanostructures tend to agglomerate. The nanostructures agglomeration in the fluid results in 
decreasing the thermal conductivity performance and increasing the settlement and clogging 
of microchannels. Therefore, to reduce these effects, surfactants or additives are widely used 
to stabilize nanostructures within the fluids.

3.1. Nanofluids: Variables and features

The concept and strategies of this work have a significant departure from diverse investiga-
tions in thermal management applications. Even though there have been several investiga-
tions on HTFs with nanoparticles reinforcement, there is still a room for great opportunities 
to continue developments and understand the implications and effects of this technology. 
Diverse challenges regarding nanoparticles effect on thermal transport and energetic perfor-
mance as well as nanofluids industrialization have been studied (Figure 2). The heat transfer 
enhancement in nanofluids has been attributed to many variables, which are presented in the 
following section.

3.1.1. Brownian motion

Researchers have found that Brownian motion, which is the random movement of particles 
(Figure 3), is a key mechanism for the anomalous increase in the heat transport of nanofluids 
[55, 78, 103–108]. Brownian motion tends to move the particles from higher concentration 
areas to the lower concentration areas. Research on fillers motion caused by temperature gra-
dient was studied by Koo and Kleinstreuer [103]; it was shown that the Brownian motion 
has more impact on the thermal properties of nanofluids than to the effects of a temperature 
gradient. Aminfar and Motallebzadeh [108] investigated the concentration distribution and 
velocity field of nanoparticles on water/Al

2
O

3
 nanofluid in a pipe. It was observed that the 

Brownian forces have most impact on the nanoparticles filler fraction distribution and the 
velocity field when compared to other forces such as thermophoretic and gravitational forces. 
Brownian motion only exists when the particles within the fluid are extremely small and, as 
the size of the particles gets larger, Brownian motion effects are reduced.
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3.1.2. Nanofiller size

Diverse studies have found that as nanostructures are reduced in size, the effective thermal 
conductivity of the nanofluid increases [13, 109–114]. As the nanoparticle size is reduced, 
Brownian motion is induced. Also, lighter and smaller nanoparticles are better at resisting 
sedimentation, one of the biggest technical challenges in experimenting with nanofluids [77]. 

Li and Peterson [109] investigated the thermal properties of Al
2
O

3
/DiW nanofluids with par-

ticle sizes of 36 and 47 nm at various filler fractions. The nanofluid with 36 nm particles 
improved the effective thermal conductivity enhancement at ~35°C, as varying the filler frac-

tion from 0.5 vol.% up to 6.0 vol.% (~7% to ~28%, respectively). Agarwal et al. [115] presented 

the impact of Al
2
O

3
 size of nanoparticles on thermal conductivity and the dynamic viscosity 

of kerosene-based nanofluid. Thermal conductivity increases from 1.3% to 9.3% over a parti-
cle filler fraction of 0.01 vol.% to 0.10 vol.%. Thermal conductivity performance and viscosity 

Figure 2. Common challenges of nanofluid developments.

Figure 3. Schematic of Brownian motion of nanoparticles.
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were found to be higher for smaller size nanoparticles compared to larger size. At 0.50 vol.%, 
nanofluid with 13 nm particle size displays 22% improvement in the effective thermal con-

ductivity, compared to only 17% for 50 nm. Beck et al. [116] investigated Al
2
O

3
/water nano-

fluids with diverse particle sizes ranging from 8 nm to ~300 nm in diameter; the thermal 
conductivity enhancement decreases as the particle size decreases below ~50 nm. This behav-

ior was attributed to nanoparticles thermal conductivity, as the particle size becomes small 
enough to be affected by increased phonon scattering [116]. Teng et al. [112] studied on the 

effect of particle size, temperature, and weight fraction on the thermal conductivity ratio of 
Al

2
O

3
/water nanofluid with filler fraction up to 2.0 wt.% and different Al

2
O

3
 particle nominal 

diameters. The results showed a dependence relationship between high thermal conduc-

tivity ratios and enhanced sensitivity, and small nanoparticle size and higher temperature. 
Nguyen et al. [117] studied the heat transfer enhancement and behavior of Al

2
O

3
/water nano-

fluid for microprocessors/electronic purposes. It is found that with smaller nanoparticles 
(36 nm in diameter), nanofluids showed higher convective heat transfer coefficients than 
with larger ones (47 nm in diameter). From Nguyen’s research, thermal transport increased 
40% at 6.8 vol.% filler fraction, as compared to water. He et al. [118] studied the heat transfer 

behavior of TiO
2
 water nanofluids with diameters of 95 nm, 145 nm and 210 nm at various 

filler fractions. For the 95 nm particle size nanofluid, the thermal conductivity showed an 
increase from 1% to ~5% at 1.0 wt.% and 4.9 wt.%, respectively, compared to water; as filler 
fraction increased, the thermal conductivity increased as well. It was shown that the effec-

tive thermal conductivity decreases as particle size increases. On the other research, Żyła 
et al. [119] studied the effects of TiN nanoparticles within EG at two different particles size, 
20 and 50 nm. It was concluded that the increase in nanoparticle filler fraction led to similar 
trends for nanofluids properties. At same content, thermal conductivity and surface tension 
of nanofluids are higher with smaller nanoparticles. Esfahani et al. [120] observed that ther-

mal conductivity of graphene oxide (GO) NFs depends on both particle-size distribution of 
GO and viscosity of GO NFs. In their work, GO NFs showed enhanced thermal conductivity 
performance as compared to base water.

There have been a few reports on SiC, CeO
2
, and SiO

2
 nanoparticles reinforcing conventional 

fluids that stated a decrease of the effective thermal conductivity with increase in particle 
size [47, 121–132]. Beck et al. performed studies on water-based ceria (CeO

2
) nanofluids [123], 

which showed an increase in the effective thermal conductivity with an increase of nanopar-

ticle size, although only two particle sizes were studied (12 nm and 74 nm). Silica-ethanol 
nanofluid was investigated by Hossein Karimi Darvanjooghi and Nasr Esfahany [132] over 

various particle sizes, temperatures and filler fractions. It was observed that with the increase 
in particle size and temperature, the thermal conductivity performance of silica–ethanol 
nanofluid increases for all the investigated filler fractions. 2D nanostructures have also been 
recently studied; Taha-Tijerina et al. developed a novel nanofluid by adding only 0.10 wt.% 
of exfoliated hexagonal boron nitride (h-BN) 2D-nanosheets within mineral oil (MO) [30]. 

Enhancement in thermal conductivity for 0.10 wt.% h-BN/MO nanofluid was more than 75% 
in comparison with MO. Similarly, Mehrali et al. [133] investigated the effects on thermal 
transport of graphene-based nanofluids. It was found that at 4.0 vol.%, a significant thermal 
conductivity enhancement of ~45% was obtained.
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The nanostructure size effect is apparently due to interlaying mechanism, van der Waals 
forces and the micromotions of nanoparticles are stronger when containing lower-sized 
nanostructures; and the interactions between nanoparticles and fluids are more severe, which 
results in a stronger energy transmission and a higher thermal transport process in nanoflu-

ids. The smaller the particle size, the higher will be the improvement due to the high surface 
area observed. This trend is observed by most researchers and is supported by two mecha-

nisms: Brownian motion and liquid layering around nanostructures. Hence, nanofillers size 
is a determinant variable for heat transfer nanofluids, since, as previously stated, its smaller 
size reduces or avoids critical issues of larger fillers.

3.1.3. Particle shape/surface area

Particle geometry is an important parameter to be considered since it has critical effects on 
nanofluids performance. There have been several efforts to understand the effects of nanoparti-
cles shape regarding the thermal transport phenomena. It has been observed by several studies 
that rod-shaped nanoparticles, such as CNTs, remove more heat than spherical nanoparticles 
[134–139]; this is most probably due to rod-shaped particles’ larger aspect ratio (ratio between 
a particle’s surface area to volume) than spherical nanoparticles. For instance, Elias et al. [134] 

studied various boehmite alumina (γ-AlOOH) nanoparticle shapes (spherical, cylindrical, 
blades, bricks and platelets) dispersed within EG/water mixtures. The best performance was 
achieved by the cylindrical-shaped nanoreinforced fluid, followed by bricks, blades, platelets 
and spherical-shaped nanoparticles, respectively. Thermal conductivity enhancement of cylin-

drical shape nanoparticles is observed to be ~3% higher than the spherical shape at 1.0 vol.% 
concentration. On similar study, Kim et al. [140] investigated the effects of particle shape on 
suspension stability and thermal transport performance of water-based boehmite alumina 
nanofluids. The thermal conductivities of nanofluids with blade, brick and platelet shaped 
particles are maximally enhanced up to 16, 28, and 23% at 7.0 vol.%, respectively.

From various studies, it can be concluded that the rod-shaped nanostructures possess higher 
thermal conductivity performance compared to spherical shape nanoparticles due to larger 

surface area and rapid heat transport along relatively long distances due to the greater length, 
usually of the order of micrometers. However, there is some contradiction observed based on 
studies performed by Xie et al. [141], where thermal conductivity enhancement using spheri-
cal (26 nm average) and cylindrical (600 nm average)-shaped SiC nanoparticles suspended 
within water were evaluated. An enhancement of ~23% at 4.0 vol.% for cylindrical particles 
was observed, but only 16% increase at 4.2 vol.% for spherical particles was reported. Results 
showed higher enhancement at larger particle size. These contradictions with other litera-

ture could be explained by the severe clustering of nanoparticles having smaller particle 
size. Although at a certain level clustering may enhance the thermal conductivity, exces-

sive clustering may create an opposite effect, resulting in the sedimentation of nanoparticles 
[142]. Sudarsana Reddy and Chamkha[139] studied the effects of shape on nanoparticles on 
natural convection magnetohydrodynamic (MHD) fluids. Results reveal that significant heat 
transfer enhancement is noticed as the size of nanoparticles decreases. Moreover, the type of 
the nanoparticles and the type of the base fluid (water/kerosene) also influenced the natural 
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convection heat transfer. In another study, Aaiza et al. [143] investigated energy transport 

in MHD nanofluids with different nanoparticles shapes such as cylinders, platelets, blades, 
and bricks. It was observed that elongated structures such as cylinders and platelets result in 
higher viscosity at the same filler fraction due to structural limitation of rotational and tran-

sitional Brownian motion, which resulted in effects on thermal conductivity.

3.1.4. Filler fraction

One of the most extensively considered factor on thermal transport performance, the key 
variable for nanofluids’ improvement, is the nanostructures concentration dispersed within 
conventional fluids. Filler concentration has been stated by weight and volume percentages 
in research, reports, papers and patents. Effective thermal conductivity (keff) among other 
properties of nanofluids improve with increasing nanoparticles filler fraction [144, 145]. 

Nevertheless, as the nanoparticle concentration increases, it may no longer be valid to assume 
well-suspended nanostructures, due to particles agglomeration, sedimentation, stability and 
increase in viscosity, which could cause other problems such as possible abrasion and clog-

ging of microchannels. It has also been observed that pressure drop increases in diverse con-

ventional fluids as filler concentration is increased [10]. This is why it is more effective to use a 
very small filler fraction in nanofluids [3, 146–151]. At low filler fractions, nanostructures have 
more intense Brownian motion at higher temperatures, which can significantly enhance the 
effective thermal conductivity. But at high volume fractions, nanoparticles have high poten-

tial to be agglomerated at high temperatures. Higher concentration of particle shows less sta-

bility which leads to the agglomeration process due to increase in number of molecules within 
the fluid. This causes an increase in weight which cannot be maintained in the suspension by 
Brownian agitation, and settle out of the suspension [152].

Pang et al. [153] studied the effect of Al
2
O

3
 and SiO

2
 nanoparticles dispersed in methanol 

at various concentrations, such as 0.01, 0.10 and 0.50 vol.%. Effective thermal conductivity 
increases with an increase of the nanoparticles volume fraction; for Al

2
O

3
, the increments were 

1, 5 and 11%, respectively, compared to pure fluid and, for SiO
2
, the increments were 6, 11 

and 16%, respectively, as compared to pure fluid, as well. Arulprakasajothi et al. [151] inves-

tigated TiO
2
 concentrations of 0.1, 0.25, 0.5 and 0.75% using two step method. It was observed 

that as concentration increases, the surface area of particle also increases and exchange more 
heat. The effective thermal conductivity for nanofluid concentrations was increased from 1 to 
6%, respectively. On research conducted by Wang et al. [147], 2D-graphene structures with 
average particle size were 0.5–2.0 μm and thickness of 0.8–1.2 nm. Graphene was dispersed 
uniformly into base oil without any surfactant by ultrasonic oscillation. Graphene/oil nano-

fluids’ concentration was 0.02, 0.05, 0.1, and 0.2 mg/ml. Thermal conductivity for all concen-

trations was raised 4, 8, 17 and 25%, as compared to pure oil, respectively. On this same path, 
according to Taha-Tijerina et al., the superb thermal transport performance of 2D-based nano-

fluid was observed, in which nanosheets of h-BN within MO showed improvements of ~10% 
and ~80% at 0.01 wt.% and 0.1 wt.%, respectively, without significant increase of kinematic 
viscosity [3, 145, 154]. Tiwari et al. [47] investigated CeO

2
/water nanofluids and its effects 

of filler fraction, ranging from 0.5 to 3.0 vol.%, and temperature. The experimental results 
indicate that the convective heat transfer coefficient increases with increase in nanoparticle 
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filler fraction (up to a threshold-optimum value). It was observed that the increase in particle 
concentration also increases the fluid viscosity, which should result in an increase in the 
boundary layer thickness, which overcomes the convective heat transfer coefficient as well. 
However, significant improvements in thermal conductivity are shown. For instance, at 40°C, 
the thermal conductivity improvements were significant: 7, 11, 13, 16 and 21% at 0.5, 1.0, 1.5, 
2.0 and 3.0 vol.%, respectively. Research by Paul et al. [155] demonstrated that the thermal 

conductivity of water-based SiC nanofluids could be improved by 12% at only 0.1 vol.%. 
Studies on mixtures of water and EG-based SiC nanofluids were performed by Timofeeva 
et al. [121, 156], where nanofluids displayed 1.5–20% thermal conductivity enhancement 
at different filler fraction and nanoparticle sizes. Ferrouillat et al. [157] estimated that heat 

transfer of SiO
2
/water nanofluid in the particle ranges from 5 wt.% to 34 wt.%, and found an 

improvement of 10–60% compared to pure water. Lee et al. [158] investigated the thermal 

conductivity of DI-water-based SiC nanofluids; a ~7% improvement was observed, compared 
to pure DI-water. Li and Zou [159] prepared homogeneous and stable nanofluids by dispers-

ing SiC nanoparticles within mixtures of ethylene glycol and water. It was observed that 
thermal conductivity of water/EG-based SiC nanofluids increased with SiC concentrations. 
Improvements of ~34% at 1.0 vol.% of SiC were achieved. Pang et al. [153] studied the effect 
of SiO

2
 nanoparticles within methanol at various concentrations (0.01, 0.10 and 0.50 vol.%). 

Thermal conductivity enhancements were 6, 11 and ~16%, respectively, as compared to pure 
fluid.

3.1.5. Stability/particles agglomeration

A key challenge with nanofluids is that nanoparticles tend to agglomerate due to molecu-

lar interactions, such as van der Waals forces [122, 160]. The agglomeration of nanoparticles 
results not only in the settlement and clogging of microchannels, but also causes the effec-

tive surface area to volume ratio to decrease, which impacts the thermal conductivity perfor-

mance of nanofluids. Nanoparticles agglomeration increases as filler fraction increases, due 
to closer particles and higher Van der Waals attraction. Similarly, this issue generates other 
problems such as viscosity increments (Figure 4).

Figure 4. Scheme of nanoparticles sedimentation over time.
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The stability of nanofluids is considered one of the critical issues, which should be addressed 
before any application [48, 145]. Synthesis of nanoparticles and preparation methods of nano-

fluids play an important role on stability, which effects are observed on nanofluids’ thermal 
transport characteristics. In addition to filler fraction and working temperature, pH has an 
important role in stability of nanofluids. For instance, Nikkhah et al. observed that by control-
ling the pH value, the stability of CuO/water nanofluids (50 nm in diameter) can be increased 
and thus the thermal conductivity performance [161]. Due to nanostructures interlayer adhesion 
forces, nanoparticles become agglomerated and their settlement can be observed due to gravity 
forces. Nanostructures sedimentation overcomes one of the major drawbacks of suspensions; 
nanoparticle aggregates promote settling of particles; hence, the dispersion stability may decay 
with time. To increase the stability of nanofluids, diverse techniques have been employed, such 
as extended ultrasonication [162–164]. Ultrasonic vibration is a possible way to break-up cluster 
formation of nanoparticles and help to scatter the nanostructures within base fluids, so that 
ultrasonication processes were widely used for nanofluid preparation. Furthermore, to enhance 
the stability of nanofluids, surfactants or additives are used; nevertheless, these have impacts on 
thermal characteristics and there could be certain drawbacks by using them.

Timofeeva et al. [122, 165] studied the thermal conductivity and viscosity of Al
2
O

3
 nanopar-

ticles dispersed in water and EG. It was observed that the main parameters for controlling 
nanofluids’ thermal conductivity enhancement are the geometry, agglomeration state and 
surface resistance of nanoparticles. Karthikeyan et al. [144] identified that CuO nanoparticles 
and clusters size have a significant influence on thermal conductivity of water and EG. It 
was also found that nanoparticles agglomeration is time-dependent; as time elapsed, agglom-

eration increased, which decreased the thermal conductivity performance. However, some 
reports show aggregation in water-based Al

2
O

3
 nanofluids significantly increases the thermal 

conductivity of the fluid [166], such as research by Shima et al. [167], where an increase in 
thermal conductivity with particle sizes of average diameters of 2.8–9.5 nm was observed. For 
5.5 vol.%, the improvement was 5% and 25%, for 2.8 nm and 9.5 nm, respectively. According 
to their studies, interfacial resistance, nature, and aspect ratio of agglomerates dictate heat 
conduction enhancement in nanofluids. Yu et al. observed that stable nanofluids could be 
able to withstand or maintain no significant variation in thermal conductivity with time. This 
was observed for EG-based ZnO nanofluids [168] and kerosene-based Fe

3
O4 nanofluids [169].

3.1.6. Surfactants/additives

Surfactants have been widely used to stabilize the nanofillers within conventional fluids, even 
though these surfactants may affect the nanofluids performance; since surfactants thermal 
conductivities are generally lower than the base fluids per se, the addition ratios of surfactants 
are generally extremely low to prevent from reducing the thermal conductivity or increasing 
the viscosity of nanofluids. Surfactants could also introduce defects at the molecular inter-

faces [170]. The use of surfactants and dispersion agents has shown to be effective providing 
repulsion between nanoparticles and reducing agglomeration [6, 95, 171]. Additives are also 

incorporated to materials to enhance their mechanical properties. Nevertheless, the function-

ality of the surfactants under high temperature is also a big concern, especially for high-tem-

perature applications [39].
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Utomo et al. [172] concluded that surfactants in high-loading ratios could reduce the effective 
thermal conductivity performance of water-based Al

2
O

3
 and TiO

2
 nanofluids. Khairul et al. 

[173] studied the effects of Al
2
O

3
 and CuO nanoparticles, as well as sodium dodecyl benzene 

sulfonate (SDBS) surfactant on viscosity and thermal conductivity of water-based nanofluids. 
It is observed that increasing the SDBS concentration, thermal conductivity for both systems 
tend to rapidly decrease, which is attributed to the increased nanostructures aggregation. 
Murshed et al. [135] observed that low concentration (≤0.02 vol.%) of oleic acid (OA) or a 
cationic surfactant, cetyl trimethyl ammonium bromide (CTAB), as dispersants could greatly 
improve the dispersion stability of TiO

2
 nanofluids without reducing the thermal conductivity 

of TiO
2
 nanofluids. From other studies, non-ionic surfactants were found to strongly interact 

with graphite surfaces in case of CNTs stabilization within aqueous suspensions [174]. Quite a 

few results indicated that surfactants played positive roles in the thermal conductivity. Saleh 
et al. [175] found that each of the three kinds of surfactants: CTAB, anionic surfactant, sodium 
dodecyl sulfate (SDS) and nonionic surfactant sorbitan monooleate (Span80) could greatly 
improve the dispersion behavior and thermal conduction performance of TiO

2
 nanofluids. 

Chen et al. [176] investigated the effects of SiC on saline water, for solar distillation systems. 
Nanofluids with 0.4 vol.% of SiC were dispersed within saline water, and additionally, polyvi-
nyl pyrrolidone (PVP) dispersant was used (0.02 wt.%) to keep nanoparticles homogeneously 
dispersed. It was observed that thermal conductivity of seawater/SiC nanofluids improved 
~5% compared to pure seawater, which confirms the feasibility of nanofluids application in 
solar desalination system. Therefore, it can be concluded that the right amount of surfactant 
can play positive roles in both dispersion and heat conduction performance nanofluids.

3.1.7. Viscosity

Among diverse nanofluid properties, viscosity is a paramount parameter. Viscosity describes 
a fluid’s internal resistance to flow. Many parameters affect the nanofluid’s viscosity, includ-

ing the preparation method, base fluid type, operating temperature, nanostructure size and 
geometry, filler fraction, acidity (pH value), shear rate, usage of additives or surfactants, and 
particle aggregation and sedimentation [3, 93, 177–181]. It has been demonstrated that the vis-

cosity of nanofluids increases with the nanoparticle volume fraction. This property is trouble-

some due to lack of understanding of viscosity mechanisms and lack of general mathematical 
models to predict the viscosity behavior in nanofluids. Nguyen et al. [177] investigated the 

nanostructures size effect for Al
2
O

3
 aqueous-based nanofluids and observed that particle size 

effects on viscosity are more significant for high filler concentrations. Yiamsawas et al. [178] 

measured the viscosity of Al
2
O

3
/water nanofluids at high filler concentrations and high tem-

peratures. The filler fraction ranges varied from 1.0 vol.% to 8.0 vol.%, while the tempera-

ture evaluation varied between 15°C and 60°C. It was observed that the viscosity decreases 
with a temperature increase. Nanofluids prepared in higher viscosity base fluids exhibit more 
enhancement compared to low viscosity base fluids.

Li et al. [179] investigated EG-based nanofluids containing ZnO nanostructures at different 
concentrations ranging from 1.75 wt.% and 10.5 wt.%. Results showed that viscosity increases 
with increasing the concentration of ZnO nanoparticles and decreases with temperature. 
Attari et al. [180] explored the effects of adding TiO

2
, Fe

2
O

3
 and ZnO nanoparticles to crude 

Thermal Transport and Challenges on Nanofluids Performance
http://dx.doi.org/10.5772/intechopen.72505

227



Figure 5. Thermophoretic motion of particles. The Brownian motion brings more particles to the colder region of the 
system.

oil at different filler fractions, ranging from 0.5 to 2.0 wt.% at different temperatures. It was 
observed that with the increase in nanoparticle loading, the relative viscosity of ZnO-crude 
oil nanofluid increases. At the mass fraction lower than 1.0 wt.%, the relative viscosity of 
nanofluid decreases slightly with the increase in temperature and the main factor which can 
influence the relative viscosity is nanoparticle type. On research by Jeong et al. [181], the 
viscosity behavior of water-based ZnO nanofluids with two nanoparticle shapes and semi-
rectangular and spherical at various filler fractions ranging from 0.05 to 5.0 vol.% was inves-

tigated. Their results indicated that the viscosity increased from 5.3 to ~70% with increase in 
the filler concentrations. Moreover, the enhancement of the viscosity of the nearly rectangular 
shape nanoparticles was found to be more than 7%, rather than the spherical nanoparticles. 
Williams et al. [182] studied ZrO

2
-water nanofluid for 60 nm particle size, at small filler frac-

tions (0.2–0.9 vol.%) and found a 54% increase in viscosity, when compared to pure water.

3.1.8. Temperature dependence

Thermophoresis or thermodiffusion is an interesting consequence of the Brownian motion of 
the nanostructures. High energy molecules in a warmer region of a liquid migrate in the direc-

tion opposite the temperature gradient to cooler regions; small particles tend to disperse faster 
in hotter regions and slower in colder regions. Thermophoresis and Brownian motion effects 
are the mass transfer mechanisms which also influence the convective heat transport perfor-

mance of nanofluids [78–81, 183–189]. As Michaelides [189] explained, interparticle collisions 
in the colder regions where the nanostructure concentrations are higher, partly hinder this 
accumulation and a dynamic equilibrium for nanoparticle concentration is established, with 
lower concentrations in the hotter regions and higher concentrations in the colder regions. 
Figure 5 schematically depicts the differential dispersion and the resulting thermophoresis 
which shows the effects of the magnitude of the molecular collisions on small particles.

Diverse theoretical and experimental investigations have been developed. For instance, Wang 
et al. [187] observed the effects of temperature-dependent properties on natural convection 
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of Al
2
O

3
 nanofluids; lattice Boltzmann (LB) method was considered for their study. It was 

concluded that for a given nanoparticle filler fraction, the value of the heat transfer enhance-

ment is increased as the temperature increases, and the nanoparticle diameter decreases. On 
the other hand, Das et al. [78], similarly to Lee et al. [190], observed that thermal conductiv-

ity performance of Al
2
O

3
 and CuO nanofluids has a temperature-dependent influence; they 

posed motion of reinforced fillers as an important factor for that. Jyothirmayee Aravind and 
Ramaprabhu [184] observed a temperature dependence on graphene nanosheets reinforcing 
EG and DiW. It was observed that thermal conductivity performance increases with increas-

ing filler fraction and operating temperature. The thermal conductivity of the base fluids did 
not show significant improvements as the temperature increases, similar tendency as reported 
by Jha and Ramaprabhu [191]. An enhancement in thermal conductivity of ~2.4% is observed 
at 25°C with a very low filler fraction of 0.008 vol.% of the graphene/EG nanofluid; mean-

while, at 50°C, the increment was ~17%. At 0.14 vol.%, the thermal conductivity improvement 
was 6.5 and 36%, at 25 and 50°C, respectively. On the research conducted by Wen and Ding 
[192], it was observed that thermal conductivity increases with increasing temperature on the 
system, showing a nonlinear dependence after temperatures above 30°C.

The influence of temperature on thermal conductivity on 0.5 vol.% and 1.0 vol.% CeO
2
—EG 

nanofluids was studied by Rajan et al. [164]; it was observed that an enhancement in thermal 
conductivity increases as filler fraction increases. Thermal conductivity enhancements were 5 
and 10% for the filler fraction studied. Also, by increasing temperature, the thermal conduc-

tivity ratio decreases for both nanofluid concentrations. Li et al. [179] investigated EG-based 
nanofluids containing ZnO nanoparticles at different filler fractions (1.75–10.5 wt.%. The 
thermal conductivity increases with increasing the temperature ranging from 15 to 55°C. The 
thermal conductivity gradually increases with mass fraction and temperature, and it was 
observed that the growth rate decreases at 15°C in the range of 8.75–10.5 wt.%. It was con-

cluded that thermal conductivity performance depends on filler fraction, and it increases 
nonlinearly with the mass fraction of nanoparticles. Kandasamy et al. [107] observed that 
the combined effect of thermophoresis and Brownian motion play a very dominant role on 
heat transfer in the presence of thermal stratification, mainly due to the nanoparticles geom-

etry and size. Although thermophoresis effect is important in heat transport, there are other 
characteristics and parameters that may have effects on nanofluids and should be addressed. 
These effects include the increase in nanofluids viscosity due to the presence of nanoparticles 
and fluid density variation due to variable volume fraction.

3.1.9. Interfacial layering on the liquid-nanostructure interface

Interfaces are ideal templates for assembling nanoparticles into structures by the nature of the 
interfaces. Interfacial layering or nanolayer refers to a phenomenon at the liquid-particle inter-

face where liquid molecules are more ordered than those in the conventional fluids; therefore, 
the interface effect could enhance the thermal conductivity by the layering of the liquid at the 
solid interface (given that crystalline solids possess much better thermal transport that liq-

uids) [193–195], by which the atomic structure of the liquid layer is significantly more ordered 
than that of the conventional liquid. At the interfaces, the nanostructures are mobile, and 
defects could be eliminated [196]. Nanoparticles suspended in base fluids form clusters that 
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create a low thermal resistance path which can enhance the thermal conductivity, according 
to Saterlie et al. [197]. The ordered structure could have higher thermal conductivity than that 
of the conventional, therefore an enhancement of the effective thermal conductivity. Various 
researchers have suggested that there is liquid layering on the nanoparticles, which helps to 
enhance the heat transfer properties of nanofluids [197–201]. Yu et al. [200] proved the forma-

tion of layers by the liquid molecules close to a solid surface, even though the thickness and 
thermal conductivity of the nanolayers are not well known yet. According to Elis Josna Mary 
et al. [164], a temperature-dependent, linear variation in thermal conductivity increase with 
filler fraction was observed, which could be attributed to liquid layering.

4. Nanofluids application fields

Diverse studies on nanofluids have been carried out by many researchers. This section deals 
with literature review on nanofluids; nanofluids preparation and characterization, thermo-
physical properties, as well as nanofluids applications, which lays foundation and basis for 
further investigations.

4.1. Thermal performance of nanofluids

Heat transfer is classified into various mechanisms, such as thermal conduction, thermal con-

vection and thermal radiation. In diverse fields, thermal transport is a critical parameter to 
obtain efficient performance of machinery and devices. Heat convection occurs when bulk 
flow of a fluid (liquid or gas) carries heat along with the flow of matter in the fluid, this 
process could be “forced,” where fluid motion is generated by an external source such as a 
pump, fan or other mechanical means, or “natural,” by density differences in the fluid occur-

ring due to temperature gradients. Radiation heat transfer is the transfer of energy by means 
of photons in electromagnetic waves in much the same way as electromagnetic light waves 
transfer light. On the other hand, heat conduction is the direct microscopic exchange of kinetic 
energy of particles through the boundary between two systems. When an object is at a differ-

ent temperature from another body or its surroundings, heat flows so that the body and the 
surroundings reach the same temperature, at which point they are in thermal equilibrium. 
The thermal conductivity (k) of liquids can be successfully measured if the time taken to mea-

sure k is very small so that the convection current does not develop [202].

Diverse techniques have been proposed to measure nanofluids thermal conductivity over the 
past years. The most common techniques to measure the effective thermal conductivity of nano-

fluids are the transient hot-wire method [3, 147, 202–207], steady-state method [109, 208–210], 
cylindrical cell method [211], temperature oscillation method [183, 212, 213], and 3-ω method 
[40, 214–216] to name some. Eastman et al. reported a 40% enhancement with only 0.40 vol.% 
of copper oxide (CuO) particles [217], while Choi et al. reported a remarkable 160% increase in 
thermal conductivity of MWCNTs/engine oil nanofluid at 1.0 vol.% filler fraction of nanotubes 
[218]. Ilyas et al. [58] study a commercial brand oil (THO) with incorporation of MWCNTs 
where significant thermal conductivity improvement of ~22 and ~30% was achieved at 35 
and 60°C, respectively, at 1.0 wt.%. Hwang et al. [41] investigated the thermal conductivity of 
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DiW- and EG-based nanofluids reinforced with MWCNTs, CuO and SiO
2
. It was observed that 

thermal conductivity was improved almost linearly as filler fraction increased. For DiW-based 
systems, the addition of SiO

2
, CuO and MWCNTs at 1.0 vol.% filler fraction showed an increase 

of 3, 5 and ~12%, respectively. Also, CuO/EG nanofluid at 1.0 vol.% showed an increase of ~9%. 
Wen and Ding et al. [192] also investigated the effects of MWCNTs within DiW, with addition 
of 0.25 wt.% gum Arabic (GA) dispersant with respect to DiW. For MWCNTs at 0.50 wt.% and 
1.0 wt.%, an increase in thermal conductivity enhancement was achieved up to ~30% and ~38% 
at 25°C, and ~35% and ~80% at 30°C, respectively. It was found that these improvements were 
slightly higher than the results reported by Liu et al. [14], Assael et al. [219], Wen et al. [220], and 
Xie et al. [221], but lower than the results showed by Choi et al. [218]. There are diverse factors 

that cause these discrepancies among the different groups; as mentioned by Sing [55], these 
discrepancies should rely on the dependency of thermal conductivity is on diverse important 

factors such as the structure and properties of the CNTs, their aspect ratio, clustering, addition 
of dispersants, temperature and the experimental errors involved as well.

Nanodiamonds (NDs) dispersed in EG and mineral oil (with addition of OA) were studied by 
Branson et al. [222]. It was observed that addition of 0.88 vol.% of NDs enhanced the thermal 
conductivity by ~12%. In MO, for instance, an enhancement of ~6% and ~11% is achieved at 
NDs loading of 1.0 vol.% and 1.9 vol.%, respectively. According to Branson et al., the differences 
on enhancement efficiencies are attributable to divergence in thermal boundary resistance at 
nanoparticle/surfactant interfaces [222]. Research by Khairul et al. [173] on the effects of Al

2
O

3
 

and CuO nanoparticles filler fraction and use of SDBS surfactant on viscosity and thermal con-

ductivity of water-based nanofluids was performed. It was observed that thermal conductiv-

ity of the nanofluids increased nonlinearly with increasing nanoparticles filler fraction, with a 
maximum increase of 10 and 14% for Al

2
O

3
 and CuO, respectively, at 0.15 wt.%, similar to what 

Kong et al. found for the maximal enhancement for Al
2
O

3
 nanofluids [223]. On the field of oxide 

nanostructures, Yiamsawasd et al. [224] reported a maximum thermal conductivity enhance-

ment of 20% for TiO
2
/water nanofluid. Elis Josna Mary et al. [164] investigated CeO

2
/EG nano-

fluid and observed a temperature effect on thermal conductivity rise of 17% and ~11% at 10 and 
30°C, respectively. Serebryakova et al. [225] investigated the effects of dispersing Al

2
O

3
 within 

EG/water mixtures. It was observed that thermal conductivity performance was improved by 
5% at 1.5 vol.%. Mariano et al. [226] estimated thermal conductivity behavior and rheological 
properties of Co

3
O4/EG nanofluids and obtained thermal conductivity enhancement of 27% at 

5.0 wt.%. Aluminum nitrides (AlN) can also find many applications in the heat exchange pro-

cess. Thermal conductivity performance of AlN/ethanol nanofluid was investigated by Hu et al. 
[227]. Results showed a 20% increase in the thermal conductivity of ethanol with 4.0 vol.% at 
room temperature. Furthermore, a strong temperature dependence of the thermal conductiv-

ity was observed in this research. Yu et al. [228] thermal conductivity of AlN dispersed in two 
different conventional fluids, such as EG and propylene glycol (PG), was investigated. It was 
found a 39 and 40% thermal conductivity improvement for EG and PG, respectively, having the 
same particle size and nanoparticles filler fraction.

A great improvement on 2D-nanostructure-based nanofluids was obtained by Taha-Tijerina 
et al. [3], where exfoliated h-BN and graphene were homogeneously dispersed within mineral 
oil with superb thermal conductivity increase up to ~80% at very low filler fractions (<0.10 wt.%) 
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Filler Type of oil Nanoparticles 

morphology

Filler fraction TC enhancement Ref.

Al
2
O

3
Engine oil Spherical ~80 nm diam. 0.5 vol.%

1.0 vol.%

~9%

~12%

[194]

Al
2
O

3
Engine oil Spherical ~28 nm diam. 5.0 vol.%

7.5 vol.%

~26%

~30%

[209]

Al Engine oil Spherical ~80 nm diam. 1.0 vol.%

3.0 vol.%

~20%

~37%

[194]

AlN Mineral oil Spherical ~50 nm diam. 0.05 vol.% ~8% [244]

CeO
2

Transformer oil @ 
50C

Spherical ~3–7 nm diam. 0.7 vol.% ~15% [203]

CuO Mineral oil Spherical ~100 nm diam. 2.5 vol.%

5.0 vol.%

~12%

~23%

[245]

Diamond Mineral oil Spherical ~<10 nm diam. 1.0 vol.%

1.9 vol.%

~5%

~11%

[222]

Graphene Mineral oil (50°C) 2D-sheets ~500 by 500 nm

~8–10 atomic layer thick

0.01 wt.%

0.10 wt.%

~10%

~80%

[3]

Graphene Heat-transfer oil 2D sheets ~0.5–2.0 μm

~0.8–1.2 nm thick

0.05 wt.%

0.10 wt.%

0.20 wt.%

8%

17%

25%

[147]

h-BN Mineral oil (50°C) 2D sheets ~500 by 500 nm

~5 atomic layers thick

0.01 wt.%

0.05 wt.%

0.10 wt.%

~9%

~10%

~80%

[3]

h-BN Synthetic fluid 2D sheets ~500 by 500 nm

~5 atomic layers thick

0.10 wt.% 8% [6]

with no significant increase in viscosity. Continuing with 2D structures, several research stud-

ies have developed graphene-based nanofluids with high nanoparticle stability and significant 
enhancements [229–235]. Shaikh et al. studied the effect of exfoliated graphite dispersed within 
PAO oil at various concentrations, ranging from 0.10 vol.% up to 1.0 vol.%. It was observed that 
addition of 2D-structures improved the thermal conductivity from 18% up to ~130%, respec-

tively [230]. Hadadian et al. [236] prepared highly stable graphene oxide (GO)-based nanofluid. 
Thermal transport of EG increased by 30% with 0.07 GO mass fraction. Other EG-based nano-

fluids synthesized by Yu et al. [237, 238] have shown better enhancements of 61 and 86% with 
GO [237] and graphene nanosheets [238], respectively, at 5.0 vol.% loading.

Diverse theories explain the mechanisms that could affect the behavior of nanofluids; the 
most accepted being Brownian motion [40, 104, 239, 240], percolation theory [55, 104, 198, 241, 
242], micro convection cell model [104, 198, 239–242], and liquid layering theory [55, 104, 193, 
198, 242, 243]. Table 2 shows the influence of oil-based nanofluids on thermal conductivity. 
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Similarly, Table 3 shows the results from diverse investigations on other water-based nano-

fluids; and various materials and sizes used as reinforced nanoparticles. Table 4 shows the 
influence of various nanofluids in thermal management properties as well.

Filler Type of oil Nanoparticles 

morphology

Filler fraction TC enhancement Ref.

MWCNT Engine oil (15 W-40) Rods ~length: 0.3–10 μm

Diameter: 10–50 nm

0.25 vol.%

0.5 vol.%

1.0 vol.%

~10%

~17%

~45%

[18]

MWCNT Mineral oil Rods ~length: 10–50 μm

Diameter: 10–30 nm

0.5 vol.% ~8.5% [92]

MWCNT Synthetic PAO oil Rods ~length: 50 μm

Diameter: 25 nm

1.0 vol.% 160% [218]

MWCNT Poly-α-olefin (PAO) Rods ~length: 1–100 μm

Diameter: 20–300 nm

1.0 vol.% ~175% [19]

Notes: if not specified, measurements were conducted at room temperature.

Table 2. Influence of oil-based nanofluids in thermal management.

Filler Nanoparticles morphology Filler fraction TC enhancement Ref.

Al
2
O

3
Spherical ~60 nm diam. 5.0 vol.% ~20% [141]

Al
2
O

3
Spherical ~131 nm diam. 1.0 vol.%1

4.0 vol.%

4.0 vol.%1

~11%

~10%

~25%

[246]

Al
2
O

3
Spherical ~27–56 nm diam. 1.6 vol.% ~10% [247]

Al
2
O

3
Brick ~20 × 40 × 40 nm 7.0 vol.% 16% [140]

Al
2
O

3
Platelet ~15 nm diam., 5 nm thick 7.0 vol.% 28% [140]

Al
2
O

3
Blade ~8 × 15 nm, 5 nm thick 7.0 vol.% 23% [140]

Au Spherical ~10–20 nm diam. 0.00026 vol.% ~8% [11]

Ag Spherical ~60–80 nm diam. 0.001 vol.% ~5% [11]

CeO
2

Spherical 74 nm diam. 2.0 vol.%

3.0 vol.%

~9%

~14%

[123]

CeO
2

Spherical 30 nm diam. 1.0 vol.%

2.0 vol.%

3.0 vol.%

11%

16%

21%

[47]

Cu3 Spherical ~60–100 nm diam. 1.0 vol.% ~48% [197]

CuO Spherical ~36 nm diam. 1.0 vol.%

5.0 vol.%

~12%

~60%

[12]
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Filler Nanoparticles morphology Filler fraction TC enhancement Ref.

CuO Spherical ~24 nm diam. 1.0 vol.%

1.0 vol.%1

4.0 vol.%

4.0 vol.%1

~14%

~29%

~15%

~36%

[78]

CuO Spherical ~100 nm diam. 2.5 vol.%

5.0 vol.%

7.5 vol.%

~24%

~55%

~78%

[245]

CuO Spherical ~25 nm diam. 0.10 vol.%

0.30 vol.%

~7%

~12%

[248]

Graphene Sheets, 1 μm lateral 0.40 vol.% ~9% [232]

GO Sheets, range of 200 nm to 
1000 nm

0.01 wt.%

0.10 wt.%

~9%

~19%

[120]

Graphene + 
MWCNTs

G sheets, 1 μm lateral;

MWCNTs ~19 nm diam.

0.40 vol.% ~11% [232]

SiC Spherical ~26 nm 4.2 vol.% 16% [141]

SiC Cylindrical ~600 nm 4.0 vol.% 23% [141]

SiC Spherical ~37–110 nm diam. 0.1 vol.% ~12% [155]

SiO
2

Spherical ~12 nm diam. 1.0 vol.% ~3% [92]

TiO
2

Spherical ~15 nm diam. 1.0 vol.%

5.0 vol.%

~18%

~30%

[135]

TiO
2

Spherical ~95 nm diam. 1.0 wt.%

4.9 wt.%

~1%

~5%

[118]

CNTs Rods ~length: 35 μm

Diam.: 20 nm

0.01 wt.%

0.10 wt.%2

0.10 wt.%2

~38%

~126%

~288%

[249]

MWCNTs Rods ~length: 30 μm

Diam.: 15 nm

1.0 vol.% ~7% [221]

ZnO Semi-rectangular (90–210 nm) 1.0 vol.%

3.0 vol.%

10%

21%

[181]

ZnO Spherical, 20–40 nm diam. 1.0 vol.%

3.0 vol.%

9%

18%

[181]

Notes: if not specified, measurements were conducted at room temperature.
1At 50°C.
2At 60°C.
3With addition of CTAB.

Table 3. Influence of water-based nanofluids in thermal management.
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5. Summary

The heat required to be dissipated from systems is continually increasing due to industrial 
and economic trends to miniaturize designs, make better use of resources, obtain more power 

Filler Conventional fluid Nanoparticles 

morphology

Filler fraction TC 

enhancement

Ref.

Al
2
O

3
Ethylene glycol Spherical ~10 nm 

diam.

5.0 vol.% ~18% [217]

AlN Ethylene glycol Spherical ~50 nm 
diam.

5.0 vol.%

10.0 vol.%

~20%

~40%

[228]

Au Toluene Spherical ~10–20 nm 
diam.

0.011 vol.% ~9% [11]

CuO Ethylene glycol Spherical ~35 nm 
diam.

4.0 vol.% ~22% [190]

CuO Ethylene glycol Spherical ~23 nm 

diam.

~15.0 vol.% ~55% [209]

Fe
3
O4 Kerosene Spherical ~15 nm 

diam.

0.50 vol.%

1.0 vol.%

~15%

~34%

[169]

Graphene Ethylene glycol @ 
20°C

Ethylene glycol @ 
50°C

2D sheets ~500 × 
600 nm

0.14 vol.% 0.14 vol.% 6.5%

36%

[184]

h-BN Stamping lubricant 
@ 50°C

2D sheets ~500 × 
500 nm

~5 atomic layer thick

0.01 wt.%

0.10 wt.%

~25%

~30%

[6]

h-BN Metal cutting fluid 
@ 50°C

2D sheets ~500 × 
500 nm

~5 atomic layer thick

0.01 wt.%

0.10 wt.%

~14%

~18%

[6]

MWCNT Ethylene glycol Rods length: 30 μm

Diam.: 15 nm

0.05 vol.%

1.0 vol.%

~7%

~13%

[67]

MWCNT Ethylene glycol Rods length: μm 
range

Diam.: ~20–30 nm

0.50 vol.%

1.0 vol.%

~8%

~13%

[14]

SiO
2

Ethanol Spherical ~23 nm 

diam.

1.0 vol.% ~5% [40]

SiO
2

Ethylene glycol Spherical ~23 nm 

diam.

1.0 vol.% ~4% [40]

TiO
2

Ethylene glycol/water 
(20/80%)

Spherical ~21 nm 
diam.

4.0 vol.% ~15% [224]

Notes: if not specified, measurements were conducted at room temperature.

Table 4. Influence of diverse nanofluids in thermal management.
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output, environmentally friendly materials, and obtain more profits. The present work offers 
a general overview of the recent research and development on preparation and characteriza-

tion of nanofluids for thermal management applications, with emphasis on experimental 
data, variables and features. Nowadays, many technologies search for the highest efficiency 
mainly for energy savings, particularly on cooling or heat dissipation challenges within 
devices and machinery components. Many interesting properties of nanofluids have been 
reported in the past decades. Several efforts have been made trying to homogeneously dis-

perse nanostructures within conventional HTFs to improve their properties. Nanofillers size 
has positive effects on conventional HTFs performance, i.e., compared to larger dispersed 
solid particles making flow through microchannels much easier, also since diverse param-

eters are critical for devices performance, such as morphology and stability of dispersed 
nanostructures, fluids composition, viscosity, fast sedimentation, channels clogging, erosion, 
wear, among others, which are often very serious for systems consisting of small channels. 
It is noted that nature of enhancement in thermal transport with nanoparticles concentration 
and temperature increment differs from fluid to fluid, which is comprehensible due to many 
factors such as fluids composition, viscosity, nature of fluids (morphology as well as interac-

tion between fluid and nanofillers), etc.

It is found that factors such as temperature and filler fraction are more sensitive in deter-

mining the effective thermal conductivity in low viscosity fluids. The lower the filler con-

centration, the higher the stability (but lower thermal conductivity improvement), which 
means that a medium must be found between the two to prevent nanoparticles sedimenta-

tion/agglomeration, the free phonon/electron movement is affected by these defects, and 
hence a surfactant-free stable suspension can provide much better thermal conductivity. 
Nanofluids stability is a key factor to evaluate the quality of the nanofluids, and is consider-

ably valued in the industrial applications. Additives or surfactants could be used to promote 
nanoparticles stabilization, but with some main drawbacks such as decrease of thermal con-

ductivity, since surfactants could introduce defects at the solution/particle interfaces. Some 
nanofluids are currently expensive, partly due to the difficulty in manufacturing either 
the nanostructures to be afterward dispersed within conventional fluids or the nanofluids 
by themselves. Optimum layer thickness and filler fraction are important parameters in 
research of thermal transport, electrical and physical behavior and general aspects of both 
fundamental and applied characteristics. Mass production of nanostructures could further 

reduce the costs, and also using low filler fractions is another way to make nanofluids more 
affordable. Although nanofluids have displayed paramount and exciting potential applica-

tions, some vital hinders also exist before regular commercialization and industrialization 
of nanofluids.
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