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Abstract

High rates of chromosomal rearrangements are remarkably abundant in Drosophila 
Fallén, 1832 (Insecta, Diptera) genus, highlighting the paracentric inversions. Since different 
species of this genus are paradigms for genetics, evolutionary, and population studies, 
polymorphism analyses for chromosomal inversions have provided basic knowledge for 
beautiful biological questions. Chromosomal inversions suppress meiotic recombination 
and thus, natural selection can act to preserve favorable gene complexes. Analyses of 
natural and laboratory populations show that these polymorphisms provide adaptive 
advantages to their carriers in relation to diverse factors, such as niche exploration and 
climatic factors. In addition, due to their monophyletic origin, they also serve as genetic 
markers for the construction of unrooted phylogenies. With the increasing domain of 
molecular techniques and genome sequencing, factors such as the reuse of breakpoints 
by different inversions and the mechanisms that give rise to these polymorphisms have 
been exploited with scientific refinement. These analyses show the presence of regions 
that are hot spots for breakpoints, fitting the fragile breakage chromosomal evolution 
model, as well as the involvement of transposition elements at the origin of chromosomal 
inversions.

Keywords: chromosomal evolution, chromosomal inversion, polytene chromosomes, 
staggered breaks, transposable elements

1. Introduction

Structural chromosome rearrangements originate from chromosomal breaks at different sites, 
followed by reconstitution of these breaks in a distinct combination. They involve large quantities 
of genetic material at the cytological level and can be visualized under light microscopy.

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The analysis of different rearrangements in the karyotype of the species of this genus was 
favored due to the presence of the polytene chromosomes. These polytene chromosomes are 
formed in interphase nuclei and are the final product of successive replication cycles without 
the consequent separation of the daughter chromatids, resulting in a huge structure that 

presents natural banding, formed by the precise synapses of parallel chromomeres of the 

sisters’ chromatids. It is estimated that the polytene chromosomes founded in the salivary 

glands undergo 210 replication events, generating up to 1024 filaments in each chromosomal 
pair of a diploid cell [1], originating a unique visualization magnitude. Tissues and organs 
containing cells with polytene chromosomes are, in general, involved in intense short time 

secretory functions, in a fast-growing context. Another peculiarity of the interphase polytene 

chromosomes is the non-segregation after replication; the parental chromosomes remain united 

and paired in the same conformation only seen in meiosis I of most other organisms [2].

The physical structure of the polytene chromosomes enables the accurate analysis of the 
different chromosomal rearrangements in Drosophila focusing on inversions—the most frequent 

rearrangement of the genus. This rearrangement consists in the simultaneous break of two sites 
in a chromosome and the reorganization of this area with a 180° inverted order.

Inversions are classified in two types, in diploid organisms: paracentric (do not involve the 
centromere in its formation, occurring in the same chromosome arm) and pericentric (involve 

the centromere and more than one chromosome arm). This rearrangement can be visualized 
as heterozygous during the pairing of the homologous chromosomes in meiosis I when only 

one of the parental chromosomes carries the inversion, forming an inversion loop for the 

correct pairing of the homologous chromosomes; or as homozygous when both parental 

chromosomes carry the inversion. These chromosomal conformations can be visualized on 
the Drosophila interphase polytene chromosomes (Figure 1) [3].

Figure 1. Chromosome inversions in heterozygosis in Drosophila willistoni Sturtevant, 1916 polytene chromosomes. (A) 

IIR-E inversion in the IIR chromosome arm. (B) III-J inversion in the chromosome III. Arrows point to the inversion loops 

formed by the correct pairing of the homologous chromosomes. Both inversions are physically at the distal end of the 

chromosome. Note that the precise synapse of the sister chromatids, according to the degree of compaction along the 

chromosome, forms a pattern of dark and light bands (bands and interbands, respectively). Regarding the chromosome 
polymorphism in D. willistoni, see the review in [56]. Source: Collection of images by Professor Vera L. S. Valente, 
deposited in the Laboratory of Drosophila at the Federal University of Rio Grande do Sul, Brazil.
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Chromosomal inversions, compared to the other structural chromosomal rearrangements, 

use to be better tolerated by the organisms that carry them, since do not imply, theoreti-
cally, an increase or reduction of the genomic material. An inversion that occurs within a 

gene, however, can result in mutation, often lethal to the organism. The changing position 
of the genes, related to each other’s and their controlling sequences, which is called the 

position effect, is another consequence of the inversion, resulting in alterations of gene 
expression and, consequently, alterations at the phenotypic level.

The behavior of a heterozygous inversion and the consequences it may entail differs during 
meiosis and mitosis. In meiosis I, the occurrence of crossing over inside of a paracentric 

inversion loop induces the formation of a dicentric chromosome (with two centromeres) and 

an acentric fragment (without centromere), resulting in gametes with deletions. In contrast, 

the occurrence of a meiotic recombination at the pericentric inversion loop results in the 

normal segregation of the chromosomes during meiosis I, since the centromeres are contained 

in the inversion, but originates gametes with deletion and duplications at meiosis II ending. 

During the mitosis, a heterozygous inversion does not imply major difficulties for the course 
of the cycle, since each chromosome duplicates and the sister chromatids are directed to the 

resulting daughter cells [4]. Illustrations of this are found in several genetics books, usually 

in Structural Chromosomal Alterations chapter.

Species of the Drosophila genus are model organisms for the study of chromosomal inversions, 

given the high resolution of the polytene chromosomes analysis, coupled with the fact that 

more than half of the studied species of Drosophila are naturally polymorphic for inversions [5]. 

However, based on the knowledge of the genomic destabilization and effects on the production of 
gametes that the inversions can originate, the high occurrence of chromosomal polymorphism 

is not expected a priori in the different living beings. The species of the genus Drosophila present 

a high rate of paracentric inversions, without a major deleterious effect on their reproductive 
success duo the presence of defense mechanisms in males and females, preventing the production 

of gametes bearing unbalanced chromosomal rearrangements [6].

There is a mechanism in the meiosis of females of Drosophila melanogaster Meigen, 1830, car-

rying heterozygous inversion that selectively eliminates the recombinant gametes during the 

formation of the polar corpuscles. In this mechanism, the first polar corpuscle to be excluded is 
one of the balanced chromatids (standard order, or inverted order). The second polar corpuscle 
eliminated is the dicentric chromosome. The acentric fragment is not oriented in the meiotic 
spindle and is later degraded. The last polar corpuscle to be eliminated, which will be 
effectively fertilized, also presents the standard order, or inverted order [7].

The mechanism of protection against the production of inviable gametes in males of 
D. melanogaster seems to be the suppression of recombination in spermatogenesis [8]. 

Mutations in genes that affect the segregation of chromosomes that did not undergo mei-
otic exchange in Drosophila females do not have the same effect in males, suggesting that 
the exchange is not necessary for the correct segregation of homologous chromosomes in 

meiosis I in males of this genus [6].

Aside from the inferred suppression of recombination in males, reports of its occurrence at 

the meiotic level are present in the literature, evidencing some peculiarities. Among these, 
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the high occurrence in males showing the phenomenon of the hybrid dysgenesis of different 
species stands out. This phenomenon is also characterized by the presence of high frequencies 
of inviable offspring, mutations, structural chromosomal alterations, and distortion of the rate 
of transmission of alleles by one sex [9].

Another peculiarity is the spontaneous occurrence of recombination in males of species 

with a high degree of polymorphism for paracentric inversions, such as D. melanogaster [10], 

Drosophila ananassae Doleschall, 1858 [11], and D. willistoni [12].

Despite the exceptions, the presence of several cases of multiple heterozygosities occurring 

in many species of Drosophila support the great efficiency of these mechanisms and direct us 
to other biological aspects involving these chromosome rearrangements. The purpose of this 
chapter is to provide a basic overview of the knowledge of the evolutionary basis of its wide 

occurrence, and the adaptability conferred by the chromosomal polymorphism to the bearers 

of paracentric inversions found in this genus, converging in the present day in the analyses at 

the genomic level of the mechanisms that originate these inversions.

2. Population studies of chromosomal inversions in the genus 

Drosophila

The high polymorphism of chromosomal inversions has been used as a model for different 
adaptative processes, involved in the maintenance of the genetic variation. The concerns of 
Theodosius Dobzhansky and collaborators, more than 80 years ago, originated the early studies 
encompassing analyses of chromosomal inversions in natural populations of Drosophila persimilis 

Dobzhansky and Epling, 1944 and Drosophila pseudoobscura Frolova, 1929 [13]. Their findings 
were the stimuli for many of the discoveries that constituted the basis of modern evolution-

ary synthesis, which intricately combines Charles Darwin theory of evolution of species with 

Mendelian heritage patterns and population genetics.

The work of Dobzhansky “Genetics and the Origin of Species” [14] was a great incentive to 

the development of experimentation in evolutionary and population genetics.

Several experiments with D. pseudoobscura performed by Dobzhansky and colleagues were 

the basis to the postulation of the co-adaptation model of the genes contained in inversions 

[15]. Dobzhansky established that the reduced recombination in the inversions of this species 

is able to sustain positive combinations of genes in epistasis with other gene arrangement 

prevailing in the population. Therefore, gene complexes linked in an inversion in the different 
chromosome types are inherited as blocks and are rarely corrupted by meiotic recombination. 

Thus, the heterozygosity would be preferable to homozygosity, as predicted by the balancing 
selection [13, 14]. Thenceforth, the analysis and characterization of the chromosomal inversion 
polymorphism in natural populations of other species have become extensively explored. 

Also, indirect evidence of the association of chromosomal inversion with a better adaptation 
of the carrier individuals based on statistics was reported.

Drosophila pseudoobscura presents a broad geographic distribution in North America, being 

founded since west Canada, USA, and part of Central America, with the presence of a  subspecies 
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in Colombia (D. pseudoobscura bogotana), and individuals collected in New Zealand (Oceania) 
[16]. The ST, AR, CH, PP, SC, OL, EP, and TL arrangements founded on the chromosome 3 of this 

species are extensively monitored and traditionally present altitudinal cline on their frequencies. 

Among these, the TL inversion presents a frequency increase on the Pacific coast since the 70 
decade, which seems to be related to environmental changes [17].

Drosophila subobscura Collin, 1936 is a species with high chromosomal inversion polymorphism. 

Their rearrangements have been traditionally associated with adaptation to environmental vari-
ables. This Palearctic species invaded the American continent in the 70/80 decades [18]. Studies 

encompassing the frequency of inversion in European, North-, and South American populations 

show an inversely proportional relation of the increase in the frequency of inversions occurring 

in low latitudes (hot climate areas) and a decrease of frequency of the inversions occurring in 

high latitudes (cold climate areas) [19]. The chromosomal polymorphism in this species has also 
been related to environmental heavy metal contamination [20].

Drosophila buzzatii Patterson and Wheeler, 1942 belongs to the cactophilic species of the 
repleta group. It is originally from Southern Latin America, and its occurrence has been 
reported in the 1970s in the Mediterranean region, the Canary Islands, equatorial Africa and 

Australia, associated with cactus species of the genus Opuntia, which have been disseminated 

by human interference [21]. In this species, latitudinal clines in the frequency of some inver-

sions have been inferred for the populations of the original areas and the colonized areas. 

The polymorphism described for the second chromosome, for example, the 2j arrangement 

has been related to the longer development time, and larvae viability [22].

The Neotropical species Drosophila mediopunctata Dobzhansky and Pavan, 1943, belongs to the 
Drosophila subgenus, tripunctata group (the second largest group of Neotropical species). The 
acrocentric chromosome II of this species is highly polymorphic, with 17 inversions described, 

which are distributed in the distal (inversions DA, DI, DS, DP, DR, DL, and DJ) and proximal 

(inversions C0, PC1, PC2, PC3, PC4, PC5, PB0, PA0, and PA8) regions. Based on the 72 haplo-

types already described for this chromosome it is possible to infer that the inversions at the 

distal and proximal regions practically do not overlap, and there is strong linkage disequilib-

rium between them. Thus, DA inversion is mostly found in association with PA0 inversion. 

In the same way, DI inversion is associated with PB0 inversion, DS with PC0, DP with PC0, 

and DS with PC0. Thus, it is difficult to find one of these distal inversions not associated with 
the corresponding proximal inversions. These five haplotypes are the most frequent (>90%) 
in the natural populations of D. mediopunctata from Southeastern Brazil. Since 1980, the inver-

sions of chromosome II of this species have been analyzed as potential bioindicator of genetic 

responses to environmental changes, under the action of natural selection. Collections con-

ducted from 1986 to 1988 and from 1991 to 2002 in different places of Southeast and Southern 
Brazil showed that DA, DP, and DS inversions present seasonal variation of their frequencies, 

and the inversion DA increased in dry and cold periods, and DP and DS inversions during 

rainy and hot periods. In addition, this panorama is related to altitudinal clines. Later collec-

tions (2007–2010) in one of the sampled sites (Itatiaia National Park, Rio de Janeiro, Brazil) 
allowed the comparison of the mean frequencies of inversions at the distal region, with the 

previous frequencies for this site. It was observed that the mean frequencies of DA and DI 

inversions increased, while DS, DP, and DV (associated with higher temperatures) decreased 
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their frequencies; and the DA inversion no longer has a significant correlation with altitude. 
Considering the climatic changes that occurred during these two decades in the region of  

Itatiaia Park, this suggest that temperature change has little influence on the seasonal changes 
in the frequencies of inversions in this species. Climate changes may have affected other 
genetic or morphological features, which may be more directly related to the inversions in 

chromosome II of D. mediopunctata [23–26].

Although several characteristics are indirectly associated with the inversions, little progress 
has been made in defining the genetic-evolutionary basis of these associations [23]. Direct 

shreds of evidence associating chromosomal inversions and selective pressures have been 

presented with the advancement of molecular techniques and genome sequencing.

Increasing amounts of data tend to confirm the inhibition of the recombination within the 
inversion area and also in adjacent areas, which is fundamental to the maintenance of the 

adaptive role. The patterns of linkage disequilibrium (LD) located within these regions reflect 
the inversion history and the gene flow since its origin [27–31].

An example of this case comes from the study of genetic variation and the unbalance of cosmo-

politan inversion In(3R)P in two D. melanogaster populations from Australia, one from a tropi-

cal region (subdivided between individuals with inversion and individuals with the standard 

arrangement) and another from a temperate region (whose individuals carried only the standard 

arrangement). Since their high frequencies are related to higher temperatures, this inversion is 

known to be associated with climatic adaptations and the success of an evolutionarily recent 

migratory event (100 years) of this species in Australia. The results of this analysis support the 
hypothesis that In(3R)P inversion is associated with capture of locally adapted alleles, which 

interact substantially with loci external to the inversion. However, it was not possible to clarify 

whether these alleles are either in an additive or epistatic mode. Interestingly, high rates of LD in 
the region within the inversion are also found in the corresponding genomic region of the indi-

viduals that carried the standard arrangement in the tropical population, evidencing selection of 

such loci. Another result showed a high differentiation of the genomic region that involves the 
In(3R)P inversion between the tropical and the temperate population [30].

Despite the confirmed association of chromosomal inversions with the maintenance of com-

binations of alleles that lie within this region, gene recombination in the inverted region of 

a chromosome is possible because viable recombinant gametes arise through double meiotic 

recombination within the inverted region and also in consequence of gene conversion [31].

The prediction of recombination rates analysis in chromosomes carrying a heterozygous 
inversion, based on two mathematical models (Poison and Couting), made by Navarro and 
collaborators [32] infer three main points about this: “(i) the lower the inversion, the greater 
the effect on the reduction of the double meiotic recombination rate; (ii) in short inversions 
and in regions around the breakpoint, inversion reduces the rate of recombination but does 

not have the same capacity to prevent gene conversion; (iii) reduction of the recombination 

rate is not uniform throughout the chromosome, generally reducing the gene flow between 
different arrangements to near zero close to the breakpoints, and higher recombination rates 
are found in the central regions of the inversion.” The inversion also influences the events 
of recombination of regions outside their limits. All these findings have implications for the 
analyses that use balancer chromosomes [32–34].
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It should be noted that a fraction of these chromosomal polymorphisms occurring in the different 
species is adaptively neutral, and thus suffer less selective pressure (or none), and its fixation, or 
loss, depends on population size and migration. These inversions can also reach high frequencies 
through other mechanisms, such as the inversion In(1)Be of the X chromosome of D. melanogaster. 

This inversion, considered of recent origin, has its maintenance probably due to the distortion of 
the transmission ratio through males of the species [35].

Despite the high acceptance and diffusion of the co-adaptation model of the genes contained 
in the inversions in Drosophila [15], alternative hypotheses point to different scenarios for the 
propagation and distribution of chromosomal inversions in populations of living beings, as a 

result of the increasing acquisition of knowledge and domain of improved analysis  techniques 

[33, 34, 36].

3. Inversions breakpoints in Drosophila: chromosomal distribution

Parallel to the evolutionary-population studies of chromosomal inversions in Drosophila, the 

concern about the cause and origin of these polymorphisms in populations was already present.

Krimbas and Powel [37] wrote the best definition of the traditional point of view for the genesis 
of inversions: “It is that they are the result of two independent breaks, occurring at the same time, 
followed by the reconnection of the broken parts of the chromosome in an inverted orientation 

with respect to neighboring regions. Thus, the multiple overlapping inversions found in many 
Drosophila species would have occurred sequentially, not due to the simultaneous occurrence 

of multiple breaks. Regarding in tandem inversions (side-by-side inversions), the coincidence of 

breakpoints is attributed to chance, in events that occurred at different times. The hypothesis of 
the unique origin of the inversion is reinforced by the rarity of a chromosomal inversion event. 

It is even rarer that two events originating the same inversion occur spontaneously at the same 

time in the same chromosome site [37, 38].”

The monophyletic origin of the inversions implies that different rearrangements in the same 
chromosome can clarify some aspect of the evolutionary history of the analyzed species 

(or distinct species, when inter-crossings are possible), establishing the inversions as genetic 

markers for the reconstruction of unrooted phylogenies [39, 40].

“The first genetic dataset used for phylogenetic construction were the inversions of the chro-

mosome 3 of D. pseudoobscura [41].” For this, the karyotype of a given populations of this 

species was arbitrarily inferred as the standard arrangement, being named ST. The cross-

ings of males collected in the wild (as well as male offspring of the collected females), with 
females of the ST lineage, showed the differences of the chromosomal arrangements between 
the populations due to the formation of inversion loops in the F1 offspring. This comparative 
methodology of chromosomal inversions allowed relating the different triads of overlapping 
heterozygous inversions found in an unrooted phylogenetic tree. Based on this, a hypotheti-

cal central arrangement in the phylogeny, which has never been found in nature in later 

works, has been inferred. However, the key point for this analysis was that all copies of a 

particular inversion would have a unique origin, the arrangement being seen in the individu-

als of a population as a replica of the single arrangement that arose in the past in a single 
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common ancestor; in other words, its monophyletic origin. Later, molecular phylogenies cor-

roborated the unique origin of the inversions in the chromosome 3 in D. pseudoobscura, and 

the topology of molecular phylogeny is in accordance with the topology obtained from the 

cytogenetic data [41].

The analysis of the phylogenetic relationships of overlapping inversions [39] considers the most 

parsimonious route (those with the small amount of inversion) for the evolutionary inference. 

Phylogenies were constructed for various species groups, such as melanogaster [42], cardini [43], 

Hawaiian Drosophila [44], virilis [45], fasciola subgroup [46], willistoni subgroup [47], among others.

Considering the traditional point of view of an inversion genesis, the distribution of the 

inversions along the chromosomes occurs randomly [37]. Sometimes, this characteristic 

seems to be well suited to the chromosomal distribution of the arrangement of chromosome 

3 of D. pseudoobscura in natural populations [48], sometimes does not seem [39]. The inversion 
breakpoints induced by X-ray in Drosophila (and many other organisms, in general), seem 

to cluster preferentially in regions closer to the centromere [37, 49]. Add to this postulate, 

the evolutionary random breakage model, which gained notoriety with analyses of genomic 

comparisons, mainly between humans and mouse, later extending to other mammals in 

the 1980s. This model, in a simplistic way, assumed that the chromosome rearrangements, 
responsible for the breakdown of the synteny between these organisms, had their breakpoints 

distributed randomly along the chromosomes [50–52].

However, increasingly consistent studies evidencing the occurrence of repeated breaks in 

the same site for different inversions in a considerable amount of species have raised doubts 
regarding the randomness of the breakpoints distribution. These sites were denominated 
“hot spots,” and may involve particular structural instabilities of these regions [37].

The availability of the complete human genome and other mammals showed the effects of the 
limitations of the random breakage model, since it did not consider countless regions of the 

genomes of these organisms, because they were not available. The analysis of 281 syntenic 
blocks up to 1 Mb shared between humans and mouse showed the presence of 190 additional 

blocks with less than 1 Mb in size, which was very difficult to identify by alignment, and were 
totally unknown until then. The comparison of the chromosomal rearrangements occurred 
during the divergence between the two species showed a large number of breakpoints close 

to each other. This characteristic did not fit the random breakage model theory, so the fragile 
breakage model was proposed [53, 54].

This model was based on the inference that breakpoints of chromosome rearrangements occur 
mainly within fragile genome sites (hot spots), in other words, regions prone to breakage. These 
fragile sites may correspond to regions with lots of transposable elements (TEs), to segmental 
duplications, or to a palindromic sequence. “The reuse feature does not imply the use of the 
same genomic position (at the nucleotide level) repeatedly, but rather that, the breakpoint 

presents multiple genomic regions that originate chromosomal rearrangements [53, 54].”

Pioneering results at cytological level, on the reuse of breakpoints by different inversions, 
provided challenging data about the randomness of these breaks in Drosophila. Cáceres et al. 

[55] analyzed 86 paracentric (heterozygous and fixed) inversions described for species of 
the D. buzzatii complex and 18 inversions induced in D. buzzatii by introgression, through 
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crossings with Drosophila koepferae Fontdevila and Wasserman, 1988. The authors found that 
inversions of intermediate size are the most successful for the fixation in this species. They 
also observed that the breakpoints distribution of chromosome 2 inversions of these spe-

cies, taking into account the location of the band involved in the break, is not random. The 
authors founded up to eight breakpoints at the same band in certain chromosomal seg-

ments. Similar results were observed in D. subobscura [56], Hawaiian Drosophila [57], and  

D. willistoni [58].

Although the reuse intra or interspecific of the inversions breakpoints, at cytological level, is 
common and well documented in the Drosophila genus, the characterization at DNA sequence 

level is still limited [59–61]. In silico comparisons of total genomes of different species available 
[62], estimate between 1.5 [63] and 2.27 [64] times the reuse of breakpoints throughout the 

evolutionary history of the species of this genus.

4. Characterization of inversion breakpoints in Drosophila and origin 

mechanisms

Delimitation and characterization of the inversion breakpoints are fundamental to determinate 

the mechanisms that originate them. In Drosophila, two main mechanisms have been high-

lighted in the origin of chromosomal inversions.

The first mechanism is the non-allelic homologous recombination (NAHR, also called ectopic 
recombination) between repetitive sequences, especially, the TEs [65–67]. The molecular 
machinery used by this mechanism is the same as allelic recombination, which has direct 

involvement with the genetic recombination in meiosis I. When ectopic recombination occurs 

between two copies of a repetitive sequence (very similar or identical), which are located 

physically at different chromosomal sites and in opposite orientations, the resulting inverted 
chromosome segment is flanked by two copies of these sequences, which are chimeric due to 
the exchange between them [66, 67]. The minimum identity between two sequences required 
for recombination is called minimal effective processing segment (MEPS). This parameter is 
not yet satisfactorily elucidated, in vitro analyses with prokaryotic organisms and mammalian 

cells infer that efficient MEPS for NAHR is 50 bp and between 270 and 280 bp, respectively 
[68]. However, the genomic approach of NAHR between copies of Ty retrotransposons in 

Saccharomyces cerevisiae Meyen ex E. C. Hansen, 1883 points out that more important than the 

identity between the copies of TEs is the genomic distance between them [69]. Figure 2 

illustrates a schematic for this mechanism. Based on this, it is important to note that when 

NAHR involves transposable elements, target site duplications (TSDs) of these can also be 
changed during recombination, a feature that has been very relevant for the recognition of 

this mechanism (see Section 4.1). For a long time, the TEs were considered junk DNA, and the 
involvement of these in the genesis of inversions of Drosophila genus provides solid knowledge 

to support the participation of these sequences in the molding of the genomes of living beings.

The second mechanism is via the erroneous repair of the free extremities, resulting from the 
chromosomal staggered breaks, by the non-homologous end joining (NHEJ). The physically 
close breaks in the chromosome cause failures in the correct pairing of the nitrogen bases, and 
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the chromosomal regions separate. The inversion is due to the junction of the 5′ end with the 3′ 
end of the other breakpoint [60, 70]. Duplicated DNA segments and in opposite orientations 

(delimiting the inverted chromosome segment) are the result of the repair and the main 

recognition mark of this mechanism [59]. In Figure 3 it is possible to notice that staggered 

breaks occurred on both sides, duplicating two sequences that were originally single copies. 

However, based on the same figure, it is possible to extrapolate the occurrence of staggered 
breaks in only one side, and a simple break in the other side. The result is the duplication 
of just one originally single copy segment flanking the inversion. These duplicate sequences 
may involve genes. Gene duplication has been implicated as one of the main sources for the 

evolution of the genomes. The duplicate copy often does not undergo selective pressure, thus 
mutating more rapidly than the other essential regions of the genome. This may result in new 
gene functions, which is considered one of the most important results of these duplication 

events [71]. Thus, the repair of the free ends of staggered breaks by NHEJ gives rise to two 
different structural rearrangements: chromosomal inversion and duplication. Although in the 
case in question, duplications have small chromosomal magnitude compared to inversions, 

when they involve genes, they can also provide genomic variability in populations, and act on 

adaptive processes, speciation, and chromosome evolution.

The contribution of these two mechanisms is not completely clarified, and intriguing ques-

tions such as “whether these mechanisms are generalized among species of the genus and 
whether there are functional implications through the chromosomal evolution maintained by 

these inversions, remain open [59]”.

Table 1 presents a compilation of the different studies that characterized the inversion 
breakpoints at the molecular level in different species of the Drosophila genus. As can be 

Figure 2. Standard schematic representation of the origin of chromosomal inversions via the non-allelic homologous 

recombination mechanism between identical or similar repetitive sequences. The arrow in dark gray represents the 
region that undergoes the inversion and its orientation. The repetitive sequences that flank this region in the left and 
right sides are represented with the tips indicating their orientations.
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seen, the origin of different inversions, besides being via NAHR between TEs and other 
repetitive sequences, and staggered breaks followed by NHEJ, is also via simple breaks and 

repair. The breakpoint analysis does not always allow us to infer the probable origin of the 
inversions, a point that may be related to the antiquity of the inversion genesis, implying a 

greater amount of modifications in these regions, and loss of the signals that point to their 
origin mechanisms.

Figure 3. Standard schematic representation of the origin of chromosomal inversions via repair of the staggered breaks 

by non-homologous end joining. The gray arrow represents the region that suffers the inversion and its orientation. 
Adjacent sequences, originally single copies, are represented in the top of the image by vertical bars (left side) and 

horizontal bars (right side).

Species Chromosomal inversion Breakpoints description and mechanism of chromosomal 

inversion genesis

D. melanogaster In(3R)P Analysis by microdissection and sequencing of the 

inversion region in the chromosome. Absence of repetitive 

sequences at the breakpoints [72].

D. melanogaster x

D. subobscura

Fixed inversion in the X 

chromosome of D. subobscura

Sequences of approximately 30–50 bp rich in thymines 

flanking the breakpoints [73].

D. melanogaster In(2L)t Analysis of the proximal breakpoint and presence of a TE – 
LINE [74].

D. buzzatii 2j Presence of homologous copies of a TE denominated Galileo 

at the breakpoints, and origin of the inversion by NAHR 

between inverted copies of this TE [65].

D. buzzatii 2q7 Presence of homologous copies of a TE denominated Galileo 

at the breakpoints, and origin of the inversion by NAHR 

between inverted copies of this TE [66].

D. pseudoobscura Arrowhead Presence of 128 and 315 bp repetitive motifs in opposite 
orientation at the breakpoints of the inversion. Origin of the 
inversion by NAHR between the inverted copies of these 

repetitions [75].

D. melanogaster In(3R)Payne Small duplications in both breakpoints of the inversion [76].

Drosophila Chromosomal Polymorphism: From Population Aspects to Origin Mechanisms…
http://dx.doi.org/10.5772/intechopen.73246

25



Species Chromosomal inversion Breakpoints description and mechanism of chromosomal 

inversion genesis

D. melanogaster x  

D. simulans x

D. yakuba

29 inversions 17 (59%) of the inversions presented inverted duplications 
at the breakpoints, including the In(3R)84F1;93F6–7 

inversion, which traditionally differentiates the karyotype 
of D. melanogaster and D. simulans. Origin of these inverions 
by staggered breaks mechanism [59].

D. americana In(4)a Repetitive sequences in opposite orientation of a MITE 

element in both breakpoints of the inversion [77].

D. mojavensis x

D. arizonae

Inversion in the X 

chromosome

Absence of repetitive sequences at the breakpoints of the 

inversion [78].

D. pseudoobscura x  

D. persimilis

Inversion in the X and II 

chromosomes

In tandem repetitions of a 319 bp motif at the breakpoints of 

the inversion in the XR arm of D. persimilis [79].

D. buzzatii 2z3 Presence of homologous copies of the TE GalileoN at the 

breakpoints and origin of the inversion by NAHR between 

the inverted copies of this TE [67].

D. buzzatii 5 g Absence of significant repetitive sequences at the 
breakpoints [80].

D. mojavensis Xe Absence of significant repetitive sequences at the 
breakpoints. Probable origin by single breaks [70].

D. americana x D. virillis Inversions (In) Xa and (In)5a Presence of copies of the MITE DAIBAM at the breakpoints 

of the inversions in D. americana. Origin of the inversions by 
NAHR between the inverted copies of this TE [81].

D. buzzatii Inversions 2m and 2n 2m inversion with 13 Kbp duplications in both breakpoints; 

origin of the inversion by staggered breaks [60]

D. melanogaster Inversions In(2L)t, In(2R)NS, 

In(3R)K,

In(3R)Mo,

In(3R)P,

In(3L)P,

Presence of inverted duplications at the breakpoints of the 
In(2R)NS, In(3R)K, In(3R)P, In(1)A, In(1)Be inversions [82].

In(1)A,

In(1)Be

D. mojavensis Inversions 2c, 2f, 2g, 2h, 2q 

and 2r

Presence of copies of the TE But-5 in both breakpoints of the 

2s inversion by NAHR between the inverted copies of this 

TE. Presence of inverted duplications at the breakpoints 
of the 2h and 2q inversions; origin of the inversions by 

staggered breaks [83].

D. subobscura O
3

300 bp sequence in both breakpoints; origin of the inversion 

by staggered breaks [84].

D. subobscura Inversions E
1
 and E

2
Probable origin of the E

1
 inversion by staggered breaks and 

duplication of a region with approximately 400 bp, named 

β motif; origin of the E
2
 inversion by NAHR between α 

motifs (~ 700 bp) [61].
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4.1. Involvement of the transposable elements at the origin of the inversions:  

non-allelic homologous recombination

Transposable elements are interesting and dominant components of the prokaryote and 
eukaryote genomes, meaning that the comprehension of their biology is a fundamental subject 

in genetics. Since their discovered by McClintock [88], much has been learned regarding the 

molecular properties of the TEs and their contribution to genome configuration of living beings.

These elements are classified according to their characteristics and transposition mode. Class 
I elements, also called retrotransposons, replicate through a “copy and paste” method and 
involve the production of an RNAm intermediary, processed by reverse transcription to DNA 

and re-inserted in the genome. The retrotransposons subdivide into elements with Long 
Terminal Repeats (LTRs), for example, copia and Gipsy elements in Drosophila, that are simi-

lar to retroviruses; and the retrotransposons without LTRs, as Long Interspersed Elements 
(LINEs) and Short Interspersed Nuclear Elements (SINEs), which do not encode their reverse 
transcriptase and are also called retroposons [89, 90].

Class II elements, or DNA transposons, replicate, generically by a “cut and paste” mechanism, 
where the elements are physically excised from the genome and inserted into another site. In this 

case, there is an increase in the number of copies during the repairing of the excision sites of the 

DNA transposon by the host during DNA synthesis, or by the insertion of the TE in a genome site 
which has not been replicated [90, 91]. Still, among Class II elements, there is a non-autonomous 

element group denominated MITEs (Miniature Inverted-repeat Transposable Elements). These 
elements are short sequences with several copies in the genome and without coding capacity, as 

suggested by Mar element, which seems to be restricted to the D. willistoni subgroup [92].

The TEs of both classes are also classified in Subclass, Order, Superfamily, Family, and 
Subfamily based on their sharing of certain structures and sequence similarities [91].

The studies associating TEs with chromosomal rearrangements breakpoints in Drosophila 

genus begin mostly with the analysis of lineages presenting hybrid dysgenesis syndrome. 

This syndrome is caused by crossing certain lineages of Drosophila and is characterized by 

high mutation rates in germinative cells, causing a high frequency of inviable offspring, 

Species Chromosomal inversion Breakpoints description and mechanism of chromosomal 

inversion genesis

D. subobscura Inversions E
9
 and E

3
Presence of duplicated region (~8 Kbp) at the breakpoints of 

the E
9
 inversion and of the duplicated region (~3.5 Kbp) at 

the breakpoints of E
3
 inversion. Origin of the inversions by 

staggered breaks [85].

D. subobscura E
12

Presence of the Ugt58Fa gene in both breakpoints. Origin of 
the inversions by staggered breaks [86].

D. subobscura Inversions O
4
 and O

8
Duplications in both breakpoints of the inversions; origin 

by staggered breaks [87].

Table 1. Molecular characterization studies of the inversion breakpoints in species of the Drosophila genus.
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recombination in males, mutation and structural chromosomal abnormalities [9]. The cause 
of hybrid dysgenesis has been reported to the activation of several TEs families, including 
P, I, and hobo elements in D. melanogaster [93] and Penelope, Ulysses, Helena, and Telemac in 

Drosophila virilis Sturtevant, 1916 [94]. Subsequently, studies involving programed crossings 

and also cytogenetic and molecular analyses of the offspring followed the movement of 
the involved TEs and the appearance of chromosomal rearrangements associated with this 
movement [95].

The association of TEs insertions at cytological level with inversions breakpoints in natural 
populations of Drosophila has also been reported. Among them, stands out the analysis of the 

transposon hobo in D. melanogaster [96], the P element in D. willistoni [97], and the retroelements 

Penelope and Ulysses in D. virilis species group [98, 99].

The first analysis that directly evidenced the involvement of a TE at the origin of an inversion in 
a natural Drosophila population was made by Cáceres et al. [65]. This study analyzed the break-

points of the polymorphic inversion 2j (of the second chromosome) of the species D. buzzatii 

(subgenus Drosophila, repleta group), which originated from the 2st (standard) chromosome 

arrangement. For the analysis of the breakpoints of the 2j inversion, these were delimited by 

chromosome walk, cloned, and sequenced in two lineages of D. buzzatti, which presented the 

2st (lineage st-1) and 2j (lineage (j-1) arrangements in homozygosis. For organization pur-

poses, the breakpoints were designated AB and AC (distal breakpoint), CD and BD (proximal 

breakpoint) in the 2st and 2j lines, respectively. Sequencing and alignment of these regions 

in both lineages showed large insertions at the two inversion breakpoints, which were not 

present in the 2st standard arrangement. The insertion between A and C had 392 bp with long 
inverted repeats terminals (ITRs) of 106 bp. The insertion between B and D had 4319 bp, with 
ITRs as those of the 106 and 47 bp AC inserts. The central 180 bp of the AC insert and the BD 
sequence had 95% homology but was in opposite orientations. Sequences of 7 bp separated 
and inverted flanked each insert and resembled TSDs, which are the result of the TE insertion 

event. These characteristics pointed out that inversion 2j was generated by intrachromosomal 

pairing and recombination between the two homologous sequences inserted at distant sites 

and opposite orientations. The original structure of these inserts was homologous at approxi-
mately 274 bp and sustained a NAHR in Drosophila. These same insertions of the inversion 
breakpoints 2j were characterized as copies of a Class II TE, which was named Galileo [65].

Subsequently, the Galileo element was classified as a member of the P Superfamily of Class II 

Transposons [100] and subdivided into three subfamilies: GalileoG (Galileo), GalileoN (Newton), 

and GalileoK (Kepler) [67]. The involvement of this family was also pointed on the origin of 
two more polymorphic inversions of the chromosome 2 of D. buzzatii: 2q7 [66] e 2z3 [67]. These 
analyses showed, through cytological, molecular, and in silico analyses, that the origin of these 

inversions was due to the occurrence of NAHR between two copies of the TE Galileo, present 

at the breakpoints of these inversions.

Still, with respect to inversion 2j of D. buzzatii chromosome 2, its effect on the CG13617 gene 

was analyzed. This gene was chosen because it is very close to the proximal breakpoint of this 
inversion (12 bp), and the embryos of homozygous lineage for the 2j arrangement have the 

expression five times lower compared to the standard lineages, without the presence of the 
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inversion. Based on the characterization of this region in the D. buzzatti genome and analysis 

of the mRNA levels, the authors pointed that the TE denominated Kepler is responsible for 

originating an antisense RNA, which forms a complex with the mRNA of the CG13617 gene, 

performing a post-transcriptional regulation, making it inactive. Kepler TE is inserted adjacent 
to the proximal breakpoint in the lineages that carry the inversion 2j and is not found in this 

same region of the breakpoint in the lineages without the inversion. The results of this study 
show a scenario of the interaction of antisense RNA with the CG13617 gene via position effect. 
“Thus, the silencing of the CG13617 gene is not due to the influence of the inversion 2j itself, 

but rather due to the performance of sequences associated with them [101].”

There are also analyses of fixed inversions 2m and 2n in D. buzzatti, which are distributed 

in tandem and share the central breakpoint at the cytological level [60]. The delimitation and 
molecular characterization of the breakpoints were based on the genomic library of bacterial 

artificial chromosomes (BACs), and physical map of this species [102], and in the genome 

of the related species Drosophila mojavensis Patterson, 1940 [62], which did not exhibit such 

inversions. It was possible to establish which clones contained the regions of the three 

breakpoints in D. buzzatii (breakpoints denominated AC, BE, DF, whose direction from the 

left to the right is from the telomere to the centromere), by means of chromosomal walk by 

in situ hybridization, using BACs as probes. These positive BACs had their terminal portions 
sequenced, and these sequences served as a basis for delimiting the breakpoints (denominated 

AB, CD, EF, although not fully representative of the ancestral karyotype) in the genome 

of D. mojavensis. Subsequently, probes based on this genome were physically mapped on 

the polytene chromosomes of D. buzzatii, thus allowing the gene delimitation of the three 

breakpoints of 2m and 2n inversions. The comparison of these regions at the molecular level 
presented a very complex scenario. Small fragments of the BuT-5 TE were found at both 
breakpoints of the 2n inversion (breakpoints BE and DF), which may indicate their probable 

origin by ectopic recombination between these copies. However, due to the age of inversion, 

this assumption cannot be strongly based since these regions have already undergone many 

modifications and the TSDs have not been found. On the other hand, the 2m inversion 

(AC and BE breakpoints) is flanked by ~13 Kbp duplications, which contain the CG4673 gene. 

Thus, its most probable origin is via staggered breaks followed by NHEJ (See Section 4.2).

There is an extensive analysis of the mechanisms of origin of fixed inversions in Drosophila 

mojavensis, another representative of the repleta group. This species is the only representative 
of the mulleri complex that inhabits the Sonora desert, one of the aridest known environ-

ments, with fauna and flora quite peculiar [83]. The analysis of the chromosome evolution 
of D. mojavensis shows 10 fixed inversions in relation to the primitive arrangement I of the 
repleta group, along the evolution: one on the chromosome X (Xe), seven on chromosome 

2 (2c, 2f, 2g, 2h, 2q, 2r, and 2s) and two on chromosome 3 (3a and 3d) [83, 103]. The molecular 
characterization of the breakpoints of the seven inversions of chromosome 2 of this species 

occurred by means of end sequencing of clones of chromosome 2 of the genomic library of 

BACs of D. buzzatii [102]. Subsequently, these sequences were mapped in the genome of 

D. mojavensis and compared with the genome of D. virilis (external species with the karyo-

type without inversions). The breakpoints of 2c, 2r, and 2s inversions showed copies of 

TEs flanking both sides of the inversion. However, the 2s inversion stood out, due to the 
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presence of the BuT-5 transposon at its breakpoints. The distal copy had 981 bp delimited 
by 9 bp AAGGCAAGT and CTGTATAAT sequences. At the proximal breakpoint, the copy 
of BuT-5 TE was a 27 bp fragment, with 12 bp identical to one end and the remaining 15 bp 
were identical to the other end of this TE, delimited by sequences of 9 bp ACTTGCCTT and 
ATTATACAG. The sequences ACTTGCCTT and CTGTATAAT are the inverted complemen-

tary sequences of AAGGCAAGT and ATTATACAG, respectively, and constitute the TSDs 
derived from the insertion of the element. These characteristics indicate that the origin of the 
2s inversion of D. mojavensis is due to ectopic recombination between the two copies of the 

BuT-5 TE. Functional inference of this inversion in the D. mojavensis genome indicates that 

the proximal copy of BuT-5 TE acts on the Dmoj\CG10375 gene promoter (which probably 

relates to the Hsp40 gene family). In silico analyses show that 2s inversion and the proximal 

copy of BuT-5 TE increase the expression of this gene and may have direct implication with 
the thermotolerance regulation in this species [83].

Another species that clearly presents the involvement of TEs in the genesis of their inver-

sions is the Drosophila americana Spencer 1938 (subgenus Drosophila, virilis group). The neo-X 
chromosome of this species is derived from a centromeric fusion segregating between the 

X-chromosome (Muller element A) and chromosome 4 (Muller Element B) in this species. This 
chromosomal fusion is positively correlated with latitude and has a polymorphic In(4)a inver-

sion [77]. In addition, the arrangement of D. americana chromosome 4 is homosequential to 

the arrangement of the same chromosome in D. virilis, a related species that has its genome 

sequenced. Thus, its genome served as the basis for the design of the analysis, associated with 
the construction of a genomic library of BACs of D. americana. The analysis of In(4)a inversion 

of neo-X indicated its probable origin by means of ectopic recombination between two copies of 

a repetitive MITE element, which was widely dispersed in the genome of D. virilis. These same 
sequences were not present in the corresponding region in strains of the species without inver-

sion (analysis made by PCR) and in D. virilis. The characteristics of this repeating sequence that 
support its identity as TE is the presence of 240 bp TIRs flanking an internal region of 869 bp. 
Comparisons of the multiple copies present in the genome of D. virilis with the sequences found 

at breakpoints in D. americana indicate that the copy present at the proximal breakpoint is a 

canonical element, whereas the copy present at the distal breakpoint is a rearranged element. 

From the functional point of view, the proximal breakpoint of this inversion presents allelic 

associations consistent with co-adaptation [77].

Subsequently, sequencing with low genome coverage of two strains of D. americana allowed 

the analysis of the Xa inversion fixed in D. americana and absent in D. virilis and the polymor-

phic 5a inversion in D. americana [81]. The alignment of the breakpoints of both inversions 
between the two species indicated that in the regions where the alignment was corrupted, 

there was always a sequence varying between 500 and 1130 bp, present only in the lineages 

carrying the inversions. These sequences showed by BLASTN high similarity to an incomplete 
MITE sequence, with TIRs of 240 bp. In this study, the authors named it DAIBAM (Drosophila 

americana Inversion Breakpoints Associated MITE). In Xa inversion, it was possible to find 
clear TSDs and defective copies of TE DAIBAM flanking the inversion. In 5a inversion, cop-

ies of the DAIBAM element flanking the inversion had more than 70% nucleotide similarity. 
Considering that TE DAIBAM copies are defective and that the analyzed inversions are old, 
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the authors infer that the data found supported the origin of inversions Xa and 5a by ectopic 

recombination between the DAIBAM elements present at the breakpoints of these inversions. 

It was also found that this element was the same as that present at the breakpoints of inversion 

In(4)a [77]. Thus, the DAIBAM element is involved in the origin of at least 20% of the inver-

sions occurring in the virilis group [77, 81].

4.2. Inversion origin via staggered breaks and repair by non-homologous end joining.

It has now been characterized that the origin of the inversions via staggered breaks followed 

by repair by NHEJ, is prevalent in two chromosomal systems: between the fixed chromosomal 
inversions that differentiate the D. melanogaster karyotype from those of D. simulans Sturtevant, 

1919 and D. yakuba Burla, 1954 [59]; and the chromosomal polymorphism of the E and O 
chromosomes of D. subobuscura [61, 84–87].

Drosophila melanogaster, D. simulans, and D. yakuba are members of the D. melanogaster sub-

group (Sophophora subgenus). The main karyotypic difference between D. melanogaster and 

its cryptic D. simulans is the occurrence of inversion in the right arm of the 3 chromosome, 

denominated In(3R)84F1;93F6-7 [104]. Drosophila yakuba, on the other hand, has at least 28 

paracentric inversions differentiating its chromosomes from those of D. melanogaster.

The study of Ranz et al. [59] analyzed the breakpoints of 29 interspecific inversions in these 
species through experimental and computational methods.

The analysis of the breakpoints of the In(3R)84F1;93F6-7 inversion highlighted that the break-

points were proximally flanked by the CG2708 and CG7918 genes, and distally by CG31176 and 

CG34034 in D. melanogaster. Among these regions, there are occurrences of expressed sequences, 

and three of these sequences (HDC14862, pfd800 e HDC12400) are duplicated and in opposite 

directions, in both breakpoints of the inversion in D. melanogaster, with 95% of identity between 
them. These sequences are single copies in D. simulans and D. yakuba, indicating that these 

duplications are a derived state with respect to the chromosomal arrangement of these species. 

Comparisons of the 3R chromosomal arm of D. melanogaster, D. simulans, and D. yakuba at the 

molecular level, highlighted a fixed inversion in the latter species (In3R(7)), that reuses the break-

points of the CG7918-CG34034 region, also used by the In(3R)84F1;93F6–7 inversion. In both 

breakpoints of the In3R(7) inversion, there were two duplicated sequences (CG34034 e CG31286) 

and in opposite orientation [59].

Due to the presence of inverted duplications associated with the In(3R)84F1;93F6-7 and 

In3R(7) inversion breakpoints, the most parsimonious mechanism involved on its origins is 

through staggered breaks, proposed and schematized for the first time in this analysis. These 
staggered breaks can be isochromatid, occurring during the premeiotic mitosis and involving 

staggered single-strand breaks; or chromatid, occurring during the meiotic prophase involv-

ing staggered double-strand breaks [59].

The same in silico study analyzed the breakpoints of 28 paracentric inversions that differen-

tiate the D. melanogaster chromosomes from those of D. yakuba, as well as a pericentric inver-

sion in the chromosome 2. The genomic and phylogenetic evidences suggest that among 

these 29 inversions, 28 originated in the D. yakuba lineage. The analysis of the inversions 
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breakpoints showed that in approximately 62% of the cases (18 of 29 inversions), occurred 
the presence of duplicate sequences, which were presents with just a single copy in the D. 

melanogaster genome. Sequences of both breakpoints were inverted and duplicated in six of 

these inversions (as in Figure 3), and the sequence of just one of the breakpoints was dupli-

cated in 12 inversions, which can be explained by several factors, for example, modifica-

tions occurred along the time. Most of these duplications (except three) did not prove to be 

functional. The comparative analysis of these breakpoints among D. yakuba, D. melanogaster, 

and other species, regarding the occurrence of TEs and its involvement in the origin of these 
inversions via NAHR¸ showed little support for this mechanism. It is clear in this analysis 
that most of the inversions that differentiate the D. melanogaster chromosomes from those of 

D. yakuba originated by staggered breaks in the latter species (17 of 29 analyzed inversions) 
and point to a rapid chromosomal evolution in the lineage that leads to D. yakuba [59].

The polymorphism of the Palearctic species D. subobscura (Sophophora subgenus, obscura 

group) has been extensively characterized and monitored for more than seven decades, which 

allows associating its variation with climate changes [18–20, 56]. Its karyotype is composed 

of six pairs of chromosomes, with the highest level of polymorphisms for inversions in all 

of them (except in the dot chromosome). This polymorphism is well characterized for the 
presence of complex chromosomal arrangements, formed by the occurrence of overlapping 

inversions, being the E and O chromosomes the ones with the highest occurrence of these 
arrangements in natural populations.

One of the pioneering  analyzes in this species involved the characterization of the break-

points of the O
3
 inversion, which can be found in the O

st
 lineages (corresponding to the current 

standard arrangement of the species). This inversion originated from the extinct ancestral O
3
 

arrangement, that also gave rise to the O
3 + 4

 arrangement, which segregates the O
4
 inversions 

in the different populations. For this analysis, breakpoints of the O
3
 inversion in the extinct 

arrangement and without the O
3
 inversion were denominated AB (proximal breakpoint) and 

CD (distal breakpoint). The O
3 + 4

 chromosome arrangement differs from the O
3
 arrangement 

due to a small inversion of its distal breakpoint (called DC), presenting the same order of 

the proximal breakpoint (AB). In turn, the O
st
 chromosomal arrangement differs from O

3
 by 

inversion O
3
 (note that the extinct O

3
 arrangement does not involve the O

3
 inversion, which 

occurs in the O
st
 chromosome), involving B and C regions (their breakpoints being then called 

AC and BD). The analysis was a strategy that mixed in situ hybridization and in silico tests, 

together with the knowledge of the location of previously established probes [84].

New probes were established via comparisons with the available genomes of D. melanogaster 

and D. pseudoobscura, which made it possible to delimit the genomic region containing the 

breakpoints of the O
3
 inversion in the chromosomes of the O

3 + 4
 arrangement. The posterior 

sequencing of this region in the O
st
 e O

3 + 4
 lineages allowed the comparisons between the break-

points of the O
3
 e O

3 + 4
 inversions, respectively. As a result, it was found that the breakpoints 

AB and DC in the O
3 + 4

 inversion comprised two small regions of 309 and 63 bp, respectively. 

The 63 bp sequence was the same 309 bp sequence, which was deleted at the origin of the O
3 + 4

 

inversion. In turn, the same 309 bp sequence was present at both O
3
 inversion breakpoints, 

indicating that at the origin of this inversion such region was duplicated, being present in 
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regions B and C of the breakpoints. The AB and DC regions in the lineage that carries the 
O

3 + 4
 inversion showed no similarity to any known TE. This meticulous analysis, based on 

the absence of TEs and the duplication of the 309 bp fragment, infers that the origin of the 
inversion O

3
, present in the chromosomal arrangement O

st
, was by means of staggered double-

strand breaks [84].

Still, in the O chromosome of D. subobscura, the breakpoints of the O
4
 and O

8
 inversions were 

delimited, sequenced and analyzed. Just as the inversion O
4
 segregates only with the O

3
 arrange-

ment (giving rise to the complex chromosome arrangement O
3 + 4

), the inversion O
8
 segregates only 

with the arrangement O
3 + 4

 (giving rise to the chromosomal arrangement O
3 + 4 + 8

). Comparisons 

of the O
4
 inversion breakpoints with the respective regions in the O

st
 arrangement (without the 

inversion) pointed the occurrence of Pxd, CG5225, Acf, and Set8 gene fragments at the proximal 

breakpoint, and the CG5225, Pxd, and Acf gene fragments at the distal breakpoint [87].

In the regions corresponding to the breakpoints of the O
st
 arrangements, fragments of 

the Pxd, CG5225, and CG4009 genes were found at the proximal breakpoint. The distal 
breakpoint of the O

st
 arrangement encompasses fragments of the Set8 and Acf genes, It is 

evident that at the origin of inversion O
4
 fragments of the Set8 and Acf genes were dupli-

cated at the proximal breakpoint, and fragments of the CG5225 and Pxd genes were dupli-

cated at the distal breakpoint. This scenario fits the origin of inversion O
4
 by the staggered 

double-strand break mechanism. The O
8
 inversion breakpoints in the O

3 + 4
 arrangement 

(without the inversion) and O
3 + 4 + 8

 arrangements presented a similar picture to that of the 

O
4
 inversion. The presence of the Prosβ2R2 gene at both O

8
 inversion breakpoints shows that 

this was doubled and fits the origin of this inversion O
8
 by the staggered double-strand 

break mechanism. This analysis also found that genes CG5225 and Prosβ2R2 are involved 

in multiple rearrangements (duplications and transpositions, in addition to inversions) 

occurring along the chromosomal evolution of the species of the genus Drosophila [87].

The D. subobscura species also had the breakpoints of the E
1
 e E

2
, E

9
, E

3
, and E

12
 inversions 

of the acrocentric chromosome E delimited, sequenced and analyzed. These inversions give 
rise to the complex arrangements E

1 + 2
, E

1 + 2 + 9
, E

1 + 2 + 9 + 3,
 and E

1 + 2 + 9 + 12
. These chromosome 

constitutions, besides providing a great system for the analysis of the mechanisms of origin 

of inversions, also provide a basis for studying the reuse of the inversion breakpoints at the 

molecular level [61, 85–87].

The E
1
 and E

2
 inversions share, cytologically, one of the breakpoints. The comparison of the 

breakpoints of the standard lineage E
st
 (AB, EF, GH breakpoints) with the E

1 + 2
 lineage (AG, 

FB, EH breakpoints) showed two motifs, denominated α and β, which share the terminal por-

tion named δ, in opposite orientations. The α motif was present at the AB and AG breakpoints 
with the same orientation, but with inverted orientation in the GH breakpoint (two copies with 

inverted orientation in the E
st
 chromosome and a single copy in the E

1 + 2
 chromosome). The β 

motif was present with the same orientation at the EF and EH breakpoints, and with inverted 

orientation at the FB breakpoint (a single copy in the Est chromosome and two copies in the 

E
1 + 2

 chromosome). The α motif exhibits small fragments similar to the SGM element, whereas 

the β motif is not similar to any described TE. Based on this scenario, the probable origin of the 
E

1
 inversion was inferred by staggered breakpoints, that lead to the duplication of the β motif 
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present at the FB and EH breakpoints. The origin of the E
2
 inversion, on the other hand, was 

inferred due to the ectopic recombination between two α motifs, present in both AB and GH 
breakpoints. The reuse was inferred by the presence of 400–700 bp repetitions at the break-

points; however, it was impossible to elucidate which of the two inversions originated first [61].

The extensive analysis done in the classical rearrangements of the E and O chromosomes, men-

tioned above, showed that, with the exception of the E2 inversion, the other chromosomal arrange-

ments originated via staggered double-strand break mechanism. Thus, D. subobscura resembles 

D. melanogaster, and both emphasize a possible predominance of this mechanism in the origin of 

the inversions of the species belonging to the subgenus Sophophora. In addition, duplicate regions 

in these events range from a few hundred base pairs to about 8 Kbp (see Table 1), encompassing 

whole and partial genes in some of these duplications. However, no dose effect or generation of 
new transcripts was detected in the analyses [61, 84–87].

Still considering staggered break mechanism followed by erroneous repair by NHEJ, the 

molecular characterization of the inversion breakpoints in D. mojavensis indicates that its 

inversions 2h and 2q originated by this route. The 2h inversion would have originated by 

staggered single-break at the distal breakpoint in the parental chromosome, resulting in a 

duplicated region of approximately 7 Kb, encompassing CG1792, Dmoj\GI23402, and pasha 

genes. This event resulted in the origin of the gene Dmoj\GI23123, located at the proximal 

breakpoint of inversion 2h. This gene, by similarity, showed a relationship with the pasha 

gene, and according to the prediction of the modENCODE software, it is also functional. Thus 
the Dmoj\GI23123 gene originated from the duplication of the pasha gene (the extra copy of 

the gene giving rise to a new gene) in the event that resulted in the 2h inversion [83].

Staggered single-break occurred in the two breakpoints of the parental chromosome in the 

2q inversion. This event resulted in a duplication of an approximately 4 Kb region containing 
a partial fragment of the CG1208 gene. The duplication of this gene resulted in the origin of 
a new gene, called Dmoj\GI22075, at the distal breakpoint of the 2q inversion. The new gene 
maintained the MFS domain (Major Facilitator Superfamily) as an important feature of the 

CG1208 gene [83].

The 2h and 2q inversions of D. mojavensis are pioneer examples of the origin of new genes with 

possible new functions, via duplication, based on the origin of an inversion by the staggered 

break mechanism followed by NHEJ [83].

5. Concluding remarks

Inversions are structural chromosomal alterations that, most of the time, neither imply genetic 

unbalance, nor phenotypic modifications in its carriers. However, one of its characteristics 
is to be a source of genetic variability, in which natural selection acts. Thus, the inversions 
participate in the chromosomal evolution of numerous species, including Homo sapiens. The 
basic knowledge about the biological influence of inversions is largely based on the analysis 
of the polytene chromosomes of the Drosophila model organism, which extends to other living 

beings.
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The first works, with descriptive approaches to the frequency of chromosome polymorphism 
in different natural populations, while indirectly pointing out that the inversions provided 
advantages to its users, raised questions that until now guide the analysis on this theme: 
How does natural selection work in inversions? How do inversions offer greater adaptability 
to living beings? What is the role of the inversions in the speciation processes? What are the 

functional consequences of inversions in living beings? Are inversions randomly distributed 

on chromosomes? How do inversions originate?

The Drosophila model organism provides knowledge and answers to these questions nowa-

days, with the availability of complete genomes of different species, improved cytomolecular 
techniques, as well as a solid knowledge about the cytogenetics of polytene chromosomes.

The molecular characterization of the inversion breakpoints tells us about the mechanisms that 
originate these rearrangements, the genomic composition of the region involved in the inver-

sion—which allows to analyze the nucleotide variation and to show which genes are under 

selection—the reuse of certain regions for the breakage of different inversions that occurred at 
different times, the age of the inversion, its monophyletic origin, possible positional effect and 
its influence on the genes that are inside and outside the inversion, among others. Valuable 
understandings emerge, but are still incipient.

These analyses go far from being simplistic, but, with the current resources, we have never 
had so much opportunity to acquire knowledge. Let us live the new time in science, and avail 
the most of the knowledge already established, with the certainty that many other questions 

will arise.

As the eminent geneticist Michael Ashburner of the University of Cambridge, United 

Kingdom, compiles: “What a wonderful time to be a biologist [105].”
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