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Abstract

Statins are cholesterol-lowering medicines utilized worldwide and are associated with 
reduced risk of cardiovascular mortality and events. However, 0.5–10% of patients suffer 
from adverse effects especially on skeletal muscle. Recently, new onset of diabetes has been 
reported in subjects on statin therapy. Pro- and anti-oxidant effects of statins have been 
reported, thus fostering a debate. Previously reported data provide evidence that statins 
induce alterations in intracellular calcium homeostasis and mitochondrial dysfunctions that 
can be counteracted by antioxidants (e.g., CoQ10, creatine, and L-carnitine). Therefore, we 
have proposed that statin-induced inhibition of mitochondrial respiration leads to oxidative 
stress that opens a calcium-dependent permeability transition pore, an event that may lead to 
cell death. In addition, mitochondrial oxidative stress caused by statin treatment may be a sig-
nal for cellular antioxidant system responses such as catalase upregulation, possibly explain-
ing the alleged statins’ antioxidant properties. Muscle mitochondrial dysfunction induced by 
statin treatment may be associated with the peripheral insulin resistance and may explain 
statins-induced new onset of diabetes. Together, the data presented in this review suggest 
that the statins’ detrimental effects can be prevented by co-administration of antioxidants.

Keywords: statins adverse effects, statins pleiotropic effects, reactive oxygen species 
(ROS), mitochondrial permeability transition, antioxidants

1. Introduction

Familial hypercholesterolemia (FH) is an autosomal dominant disorder characterized by the 
presence of very high levels of low-density lipoprotein cholesterol (LDLc) in the blood stream 
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since birth. This cholesterol disorder was first described in the 1960s, and the existence of a 
mutated LDL receptor (LDLr) in FH patients was later discovered by Brown and Goldstein [1]. 

They observed that FH fibroblasts did not specifically bind and internalize LDL when com-

pared with normal fibroblasts; that finding was the beginning of decades of work and discover-

ies concerning cholesterol metabolism regulation that led the pair to Nobel Prize award in 1985. 
Although the homozygous mutants for LDLr have an early cardiac death in the first or second 
decade of life, heterozygous FH patients usually do not present any early severe symptoms. 

The lack of diagnosis and treatment may have severe consequences considering the lifetime 
exposure to high LDLc concentrations. Increased LDLc levels are a well-established indepen-

dent risk factor for cardiovascular diseases [2], and lowering LDL serum levels remains the 
primary treatment target in hypercholesterolemia [3, 4] that is undertaken in order to prevent 

and reduce cardiovascular and coronary heart diseases [5, 6].

Cholesterol is synthesized from acetyl-CoA by a 30-step pathway, in which 3-hydroxy-3-meth-

ylglutaryl coenzyme-A (HMG-CoA) reductase is the rate-limiting enzyme, converting HMG-
CoA into mevalonate. However, besides being involved in cholesterol synthesis, mevalonate 
is also a precursor for isoprenoids farnesyl diphosphate. Geranyl- (GPP), farnesyl- (FPP) and 
geranylgeranyl-pyrophosphate (GGPP) are precursors of sterols, dolichols, CoQ10, isopren-

oids, and carotenoids. These important metabolites are involved in membrane structures, pro-

tein glycosylation and prenylation, electron transport in mitochondrial respiratory chain, and 

scavenging of ROS [7].

The first cholesterol-lowering agent, citrinin, was discovered in the 1970s. It was derived from 
fungal cultures, but this product was discontinued due to its hepatotoxicity [8, 9]. After this, 

another fungal-derived compound called compactin was purified and tested in rats; however, 
it failed to reduce plasma cholesterol because it had the rebound effect of inducing HMG-
CoA reductase activity a few hours after administration [10]. At the end of the 1970s, a very 
potent compound chemically similar to compactin was synthesized based on independent 
studies from Endo and Alberts [11, 12], and after several trials, this potent compound, lovas-

tatin, was approved and commercially available in 1986 [13]. Presently, there are seven natu-

ral (fungal-derived) or synthetic statins that are commercially available; this group consists of 
three hydrophilic (pravastatin, rosuvastatin, and pitavastatin) and four lipophilic (lovastatin, 
simvastatin, fluvastatin, and atorvastatin) [14–16]. Cerivastatin was approved by the Food and 
Drug Administration in 1998, but it was removed from the market in 2001 after reports of fatal 
rhabdomyolysis [17].

Statins are one of the most successful drugs for reducing cardiovascular diseases. High-intensity 

statins treatment is associated with the greatest reduction in mortality [18]. In addition to lower-

ing plasma cholesterol, various studies have reported that statins have pleiotropic effects such 
as antioxidant, anti-inflammatory, and anti-tumorigenesis. Regarding statins redox effects, some 
groups have demonstrated protective roles of these compounds against cell oxidative damage 
[19, 20], whereas others have reinforced their toxic effects [21, 22]. Despite these discrepancies 
in these results over the last decade, accumulated data have indicated that alterations in mito-

chondrial energy-linked functions such as respiration, oxidative phosphorylation, redox state, 
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Ca2+-dependent permeability transition underlie statins toxicity. The impact on cell or tissue 
pathophysiology will depend on the intensity of statins’ effects on mitochondria. In this chapter, 
we review the literature data on the statins effects on mitochondrial functions and consequent 
toxic tissue events.

1.1. Mitochondrial energy-linked functions and reactive oxygen generation

Mitochondria participation in the process of statin toxicity adds to the numerous roles of these 
organelles in cell pathophysiology [23, 24]. Considering that statin-mediated mitochondrial dys-

functions include many aspects of mitochondrial physiology such as inhibition of respiration, 
depletion of ubiquinone, redox imbalance, opening of the mitochondrial permeability transition 
pore (PTP) and disruption of energy conservation, we next outline some of these mitochondrial 
properties in the following sections.

During the last several decades, mitochondria have emerged as the center of attention in pro-

cesses of cell signaling, cell injury, and cell death [25, 26]. According to the concept of coupling 

between respiration and oxidative phosphorylation through a transmembrane proton electro-

chemical potential that was introduced by Peter Mitchell [27], it is not difficult to understand 
that any condition that interferes with the ability to sustain the inner membrane proton poten-

tial leads to mitochondrial dysfunction [28]. In addition, the continuous oxygen reduction by 
the mitochondrial electron transport chain to build up the transmembrane proton gradient also 
generates a well-regulated amount of superoxide [23, 29]. Therefore, mitochondria have devel-
oped a complex antioxidant defense system composed of Mn-superoxide dismutase that con-

verts the superoxide radical generated during respiration into hydrogen peroxide (H
2
O

2
). H

2
O

2
 

is then reduced to water by glutathione and thioredoxin peroxidase or catalase [30]. Oxidized 
glutathione (GSSG) and thioredoxin (TSST) generated by peroxidases are converted to their 
reduced forms by glutathione and thioredoxin reductases, using NADPH as reducing power. 
NADH then reduces NADP+, in a reaction catalyzed by NADP transhydrogenase that is pres-

ent in the inner mitochondrial membrane [31–33]. Therefore mitochondria redox state is tightly 
regulated and connected with whole cell redox balance [34–36]. Furthermore, it is now gener-

ally accepted that superoxide as well as other forms of ROS can function as a signal for either 
adaptation or maladaptation to stress conditions [35]. In this regard, mitochondrial ROS genera-

tion leads to a nonlinear dose-response relationship called mitohormesis. In mitohormesis, high 

reactive oxygen concentrations exert devastating and irreversible effects on cell function and 
structures, whereas low concentrations may be associated with protective effects due to activa-

tion of cellular defense mechanisms [37, 38]. In fact, at progressively increasing physiological 

levels, ROS may successively regulate cellular processes such as proliferation and differentia-

tion, activate adaptive programs such as transcriptional upregulation of antioxidant genes, and 
at higher levels, ROS may be a signal for senescence and regulated cell death [35]. In addition 

to the physiological processes, it seems that mitochondrial oxidative stress is responsible for the 
development and progression of a series of diseases such as cancer, diabetes, inflammatory dis-

eases, hypertension, neurodegenerative and ischemia-related diseases, and aging [39–46]. Statin 

toxicity may also include the participation of mitochondrial generated ROS [47–49].
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1.2. Mitochondrial Ca2+ transport and mitochondrial membrane permeability 

transition (MPT)

Ca2+ modulates several metabolic pathways through transient changes in its free concentrations in 
different cell compartments [50, 51]. In order to fulfill these physiological roles, Ca2+ movements 

across cell membranes are driven directly or indirectly by ATP hydrolysis. Therefore, defects in 
processes that supply cellular ATP may lead to deregulation in Ca2+ signaling that may compro-

mise cell functioning, redox balance, and mitochondrial membrane permeability transition (MPT) 
[51, 52]. In this review, we briefly describe how mitochondrial Ca2+ load promotes MPT [53].

MPT is characterized by the opening of a high conductance, nonspecific proteinaceous pore, 
the PTP. It was first described by Hunter and collaborators [54] and then demonstrated by 
Vercesi’s group to be dependent on redox imbalance promoted either by thiol oxidants or oxi-
dative stress [55]. Matrix Ca2+ participates in at least two steps in the process of PTP opening: 
(a) stimulates superoxide generation by mitochondria and (b) binds to membrane sites expos-

ing specific buried thiols to the oxidants (Figure 1) [55]. Accordingly, Ca2+ binding to cardio-

lipin alters mitochondria inner membrane lipid organization characterized by increased lipid 
packing and domain formation. As a consequence, the electron transfer along the respiratory 
complexes is impaired favoring superoxide generation [56].

Robust data has provided evidence that PTP opening is a main step in the mitochondrial path-

way leading to cell death either by apoptosis or necrosis [57, 58], and is a major cause of cell 
death under a variety of pathophysiological conditions, including ischemia/reperfusion injury, 
traumatic brain injury, neurodegenerative diseases, metabolic diseases, muscular dystrophy, 
and drug toxicity [59–67].

Since mitochondrial Ca2+ overload stimulates superoxide generation and MPT, the mecha-

nisms of Ca2+ transport by mitochondria will be outlined next. The inner mitochondrial 
membrane possesses three different carriers for Ca2+ influx and efflux [68]. A mitochondrial 

calcium uniporter (MCU) located in the inner membrane mediates the influx of Ca2+ down 

its electrochemical gradient without coupling Ca2+ transport to the flux of another ion. This 
mechanism was discovered in the 1960s [69, 70], but the molecular nature of the channel was 
only recently identified [71, 72]. Ca2+ release from mitochondria occurs via Ca2+/3Na+ or a 

Ca2+/2H+ exchangers [73–75] depending on the tissue [68, 76].

The high loads of matrix Ca2+ that stimulate ROS production in mitochondria [55] appear to 

be associated with either dysregulation of cellular Ca2+ homeostasis or regulated release from 

endo(sarco)plasmic reticulum [77–79] (Figure 1). Under both conditions, the opening of the 
PTP can occur allowing for the movements of molecules up to 1.5 KDa. The entry of solutes 
and water to the matrix causes large amplitude mitochondrial swelling. These conditions dis-

rupt both the electrochemical proton potential and oxidative phosphorylation [23, 55]. When 

PTP opens in a large number of mitochondria, cell death occurs by necrosis due to the lack of 
ATP, and when PTP is limited to a small number of mitochondria, apoptosis is triggered by the 
release of cytochrome c [80]. Anti-apoptotic proteins (members of Bcl-2 family) or cyclosporine 
A inhibits the opening of PTP [81, 82]. Evidence has been provided that high intracellular Ca2+ 

levels and ROS have additive effects in the process of PTP opening [23, 53, 55, 83–88].

It is well recognized that mitochondrial Ca2+ is essential for PTP opening [54, 55, 89, 90], 

whereas oxidative modifications of inner membrane protein thiols, oxidative stress, presence 
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of  inorganic phosphate [53, 55, 83, 85, 91], and Bcl-2 family proteins [81, 82] participate in PTP 
modulation. The close location of mitochondria and the endoplasmic reticulum (ER) [75] per-

mits mitochondria to take up large amounts of Ca2+ that are released from the ER. This pro-

cess seems to be controlled via a redox-regulated cross talk between mitochondria and ER that 
is mediated by NADPH oxidases [36]. Such redox interactions may link PTP opening to the 
induction of Ca2+ signals specifically for cell death [26]. Considering the understanding on how 
Ca2+ and ROS act synergistically in the mechanism of PTP opening, it should be emphasized 
that mitochondria are more susceptible to MPT when their antioxidant systems are exhausted, 
especially due to an oxidized state of NADPH and GSH [55]. Accordingly, mitochondria iso-

lated from mice deficient in nicotinamide nucleotide transhydrogenase (NNT), which cannot 
sustain NADPH in the reduced state, present defective antioxidant capacity and increased sus-

ceptibility to MPT [92, 93]. Thus, MPT can be induced by pro-oxidants and prevented or even 
reversed by antioxidants [85, 86, 94, 95].

Figure 1. Statins triggers mitochondrial oxidative stress and calcium-dependent permeability transition. Statins diminishes 

the respiratory capacity at the level of complexes I, II and III of the respiratory chain, increasing superoxide generation 
(O

2

.-). The Fe-S clusters present in these respiratory complexes are vulnerable to superoxide attack, thus inhibiting their 
activity and diminishing their resistance to Ca2+ induced MPT. Superoxide is dismutated in hydrogen peroxide (H

2
O

2
). 

When not metabolized by mitochondrial antioxidant systems, H
2
O

2
 can induce (directly or indirectly) membrane protein 

sulfhydryl-disulfide transitions, a process involved in PTP opening. Statins also impair cellular Ca2+ homeostasis, inducing 

Ca2+ release from the ER via IP
3
R and increasing cytosolic Ca2+ levels. Thus, mitochondria uptake the excessive cytosolic Ca2+ 

via VDAC and MCU channels, leading to its accumulation in mitochondrial matrix. Ca2+ binds to membrane sites exposing 
specific buried thiols to the oxidants and also impairs mitochondrial respiration, increasing O

2

.- formation. The association 
of ROS and mitochondrial Ca2+ overload, PTP may open and trigger cell death. In addition, a decrease in the levels of CoQ10 
that acts as an electron carrier and antioxidant also occurs due to inhibition of the mevalonate pathway by statins. The 
antioxidants CoQ10, L-carnitine and creatine prevent PTP opening induced by statins.
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2. Statins pleiotropic effects

Statins are among the most commonly prescribed medicines worldwide. They are safe and 
well-tolerated and seem to present a range of cholesterol-independent protective actions 

called pleiotropic effects. Indeed, several studies claim that statins act as antioxidants [19, 96], 

anti-inflammatory agents [97], and can increase stability of the atherosclerotic plaque [98], 

improve endothelial function [99], and induce cancer cell death [100].

2.1. Antioxidant responses triggered by statins

Extensive literature reports have indicated that antioxidant effects can be attributed to statins. 
It has been postulated that statins decrease systemic or local oxidative stress and this appears 
to confer additional vascular protection. The first possible mechanism for this protective effect 
could be secondary to statins’ main target effect, which is to decrease the concentration of the 
oxidizable substrate, LDLc. This decrease may lead to a reduction in oxidized-LDL, which 
constitutes a very early step involved in atherosclerosis development [101–103].

Another antioxidant mechanism frequently attributed to statins is the upregulation of cellular 
antioxidant defenses. For instance, atorvastatin treatment decreased the expression of essential 
NAD(P)H oxidase subunits and upregulated catalase expression in cultured rat vascular smooth 
muscle cells and in the vasculature of spontaneous hypertensive rats (SHR) [104]. Simvastatin 

treatment restored endothelial function in SHR by increasing superoxide dismutase and gluta-

thione peroxidase activities [105].

Other studies have demonstrated a protective effect by statins against oxidative damage of 
biomolecules. In whole blood leukocytes of non-treated dyslipidemic diabetic type 2 patients, 
simvastatin treatment [19] protected against DNA oxidative damage. Similarly, rosuvastatin 
inhibited lipid peroxidation and attenuated the oxidative damage to DNA in treated rat liver 
[106]. Rosuvastatin-treated HL-60 cells exhibited a glutathione-dependent protective mechanism 
against DNA oxidation [107]. In addition, simvastatin or fluvastatin administration prevented 
lipid peroxidation, superoxide generation, cytokine production, and neutrophil accumulation in 
a rat colitis model [108].

With respect to statins’ effects on specific mitochondrial redox homeostasis, literature reports are 
more controversial. It was shown that atorvastatin and simvastatin reduced oxidative stress trig-

gered by Ca2+ and prevented MPT and cytochrome c release in rat liver mitochondria [96]. On the 
other hand, results from our group and others suggest that statins, when administered to mito-

chondria, muscle biopsies, or in vivo exert pro-oxidant activities (this will be discussed in more 
detail in the next section) [47, 49, 109]. Thus, our hypothesis for the alleged statin antioxidant 
effects is based on the mitohormesis concept [37, 38]: mild mitochondrial oxidative stress caused 
by statins may function as a signal that leads to a cellular adaptive response such as increasing 
the expression and activity of cellular antioxidant systems in order to overcome this stress.

2.2. Statins and cancer

Statins have been proposed as adjuvant in cancer therapy since the 1990s and, until then, several 
mechanisms have been proposed for this specific function depending on the type of cancer and 
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statins lipophilicity [100, 110–112]. In this regard, literature reports suggest that the mevalonate 

pathway inhibition is associated with anti-proliferative, pro-apoptotic, and anti-metastatic statins 
effects [113]. In addition, statins may impair cell membrane function, due to the lowering of cho-

lesterol levels and inhibition of the tumor cell cycle, and may lead to cell death by distinct path-

ways, including the mitochondrial pathway (for more details, see Ref. [114] and other reviews).

Prostate cancer is one of the most commonly diagnosed cancer in men and is a significant 
cause of male morbidity and mortality [115]. Literature reports have shown that statins pro-

tect against prostate cancer in human patients [116, 117], and some of these effects may be 
attributed to a decreased isoprenoid synthesis due to mevalonate pathway inhibition. As a 
consequence, Ras proteins that regulate signaling pathways of cell proliferation, angiogen-

esis, and metastasis are not able to be isoprenylated, thus reducing their function and trigger-

ing apoptosis [118]. Statins also stimulate the mitochondrial apoptosis pathway [119, 120] via 

an increase in pro- and decrease in anti-apoptotic Bcl-2 proteins [121], activation of caspases 

3, 7, 8, and 9 [122–124], and decrease in the formation of lipid rafts, membrane microdo-

mains involved in several regulatory functions, including cell survival [125, 126]. In addition, 

statins have a dose-dependent effect on cell death. For instance, simvastatin at concentrations 
below 10 μM induced PC3 prostate cancer cells apoptosis [21] via a mechanism sensitive to 

mevalonate but not to cyclosporin A (CysA), an MPT inhibitor. On the other hand, necrosis 
is stimulated by higher doses of simvastatin (≥60 μM) and is preceded by an increase in free 
cytosolic Ca2+ concentration and PTP opening, sensitive to CysA, but not to mevalonate [21]. 

Both MPT and necrosis induced by simvastatin (60 μM) are sensitive to L-carnitine (antioxi-
dant) and piracetam (membrane stabilizer) in an additive manner. When combined, these 
compounds act at lower doses than when each compound is used separately [22]. These 
data provide evidence that statin toxicity to tumor cells is not only the result of HMG-CoA 
reductase inhibition but also is mediated by the increase in free cytosolic Ca2+ concentration, 

stimulation of ROS generation, and PTP opening [21, 22]. Although many studies show that 

statins which are efficient in inducing tumor cell death claim their potential use as adjuvant 
therapy, there are no robust data that non-tumor cells are less affected by statins’ toxic effects 
than tumor cells. Therefore, it is still premature to conclude that statins are anti-tumorigenic 
agent.

3. Statins adverse effects

After decades of statins’ use, some side effects have been consistently described in a minority 
of patients, particularly regarding muscle function. Adverse effects other than muscle symp-

toms such as headache, digestive problems, liver enzymes abnormalities, and neurological 
dysfunction may occur in some patients [127, 128]. The side effects are often the decisive 
factor for the noncompliance to statins treatment [129, 130] and its discontinuation usually 

makes the side effect symptoms disappear [131].

The precise mechanisms involved in statins toxicity and the reasons why only a few subjects 
are affected remain unclear. Several groups, including ours, have proposed that mitochondria 
are the main players in statin-induced toxicity.
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3.1. Mitochondrial dysfunction caused by statins treatment

Mitochondrial redox imbalance is associated with aging, degenerative disorders, and drug-
induced toxicity [26, 132]. Several reports concerning statin in vitro effects on isolated tissues or 
mitochondria from experimental models demonstrated that statins promote inhibition of mito-

chondrial respiration, mitochondrial oxidative stress, and cell death [47, 49, 109, 133]. It has been 
previously shown that lipophilic (cerivastatin, fluvastatin, atorvastatin, and simvastatin) and 
hydrophilic (pravastatin) statins-induced mitochondrial membrane potential decrease in rat 
skeletal muscle cell line (L6) [133]. The four lipophilic statins also induced mitochondrial swell-
ing, cytochrome c release, and DNA fragmentation in these L6 cells. Mitochondrial β-oxidation 
enzymes activities were strongly impaired by all lipophilic statins, but in the case of pravastatin, 
it occurred only at high concentrations. In isolated rat skeletal muscle mitochondria, glutamate-

supported state 3 respiration and respiratory control ratios were decreased by all lipophilic 
statins, but not by pravastatin [133]. According to the authors, this mitochondrial dysfunction 

caused by lipophilic statins in skeletal muscle might partially explain the muscle symptoms pre-

sented by some patients. Abdoli and coworkers demonstrated in isolated rat liver mitochondria 
that atorvastatin, simvastatin, and lovastatin increased ROS formation followed by lipid peroxi-
dation, inner mitochondrial membrane depolarization, and a decreased GSH/GSSG ratio [47].

More recently, mitochondrial redox imbalance [67, 134] was observed in a genetic human 
familial hypercholesterolemia mouse model, the LDL receptor knockout mouse (LDLr−/−) 

[135]. Mitochondria isolated from several tissues of these mice (liver, heart, and brain) and 
intact spleen mononuclear cells presented higher ROS production and higher susceptibility 
to MPT. In addition, these mitochondria showed lower capacity to sustain reduced NADPH 
[67, 134], which is the most important reducing power involved in reconstituting mitochon-

drial antioxidant systems [132]. As a consequence, H
2
O

2
 accumulates and PTP opens [67, 

134]. Since cholesterol synthesis consumes a large amount of NADPH, we have proposed 
that the increased steroidogenesis observed in these mice would be partially responsible for 
the lower mitochondrial content of NADPH and Krebs cycle intermediates observed in their 
liver mitochondria [67, 134]. Therefore, we hypothesized that inhibition of cholesterol syn-

thesis by statins treatment could prevent the decrease in NADPH oxidation in LDLr−/− mice 

mitochondria. Unexpectedly, liver mitochondria from wild type and LDLr−/− mice treated 

with lovastatin presented a higher susceptibility to PTP opening, and in vitro experiments 
revealed a drug dose- and class-dependence of this effect [109]. Statin induced PTP opening 
was shown to be Ca2+-dependent and associated with oxidation of protein thiol groups. Thus, 
statins induced a direct oxidative damage in mitochondrial proteins [109].

3.2. Ca2+ and statins toxicity

It has been proposed by our group and others that statins impair cellular Ca2+ homeosta-

sis, leading to mitochondrial dysfunction. Increased cytosolic Ca2+ levels were observed after 
simvastatin treatment of myoblasts culture [136], rat skeletal muscle [137], and human skel-

etal muscle fibers, and this was followed by mitochondrial Ca2+ accumulation [138]. Indeed, 

Hattori and coworkers [139] proposed that statins induced Ca2+ release from the endoplasmic 

reticulum to the cytosol in human CD19+ primary lymphocytes. As a consequence of high 
Ca2+ levels in the cytosol, Ca2+ enters the mitochondria and induces MPT as demonstrated by 
our group in PC3 cells after simvastatin treatment [21, 22].
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3.3. Statins effects on respiratory chain complexes

It is well known that enzymes containing 4Fe-4S clusters are particularly vulnerable to dam-

age by superoxide or peroxynitrite radicals [140–145]. Complexes I and II present six and one 
of these 4Fe-4S clusters, respectively, thus showing a high superoxide-sensitivity. Some stud-

ies have demonstrated that superoxide generation inhibits respiration at complex I and II lev-

els as a result of 4Fe-4S clusters damage. These alterations diminish resistance to Ca2+-induced 

MPT and induce necrotic cell death [65, 145]. As mentioned before, our group demonstrated 
that mitochondrial dysfunction caused by simvastatin incubation in permeabilized skeletal 
muscle was L-carnitine and CoQ10 sensitive [49]. L-carnitine did not protect against CoQ10 
depletion, indicating that both CoQ10 and L-carnitine are protecting mitochondrial respira-

tion due to its ROS scavenging properties. Since L-carnitine also binds Fe2+ [146], it is fea-

sible that this antioxidant molecule interacts with 4Fe-4S clusters in complexes I and II of the 
respiratory chain, protecting these sites against superoxide attack. Simvastatin lowered the 
ADP-stimulated respiration supported by substrates of complexes I and II in primary human 
skeletal myotubes and increased susceptibility to MPT, mitochondrial oxidative stress, and 
apoptosis [48]. These results are in agreement with a decrease in complex I activity in muscle 
of patients undergoing statin treatment [147].

Another study performed in myoblasts culture (C2C12) incubated with several statins (ator-

vastatin, cerivastatin, fluvastatin, lovastatin, pitavastatin, pravastatin, rosuvastatin, and sim-

vastatin) showed that the respiratory capacity is reduced not only at the levels of respiratory 
chain complexes I and II but also in complex III [148]. In this case, it was suggested that statins 

in the lactone form binds to Q
o
 site of complex III, inhibiting its activity. Similarly, complex III 

activity of muscle from patients presenting myopathies induced by statins was also reduced 
[148]. On the other hand, statins do not seem to affect the complex IV-supported respiration 
[49, 148].

4. Muscle sensitivity to statins

It is well known that about 10% of patients undergoing statin treatment develop mild myo-

pathic symptoms such as weakness, muscle pain, exercise intolerance, and other symptoms that 
are usually with normal or minimally elevated creatine kinase (CK) serum levels [149, 150]. 

Moreover, myositis, defined as muscle symptoms associated with increased CK, is usually pres-

ent [151, 152]. Rhabdomyolysis, the most severe adverse effect of statins, is a very rare condi-
tion affecting 1.6/100,000 patients-years. It may result in acute renal failure and disseminated 
intravascular coagulation, leading to death. This condition is frequently related to drug interac-

tions and occurs with CK levels 10-fold higher than the normal limit and elevated levels of cre-

atinine [153, 154]. Increased intracellular lipid stores, cytochrome oxidase-negative myofibers, 
ragged red fibers, and subsarcolemmal accumulation of mitochondria were found in patients 
with muscle symptoms during statin therapy [155, 156]. Schick and colleagues also observed 
reduced mitochondrial DNA levels in patients treated with simvastatin [157]. Muscle-associated 
statin toxicity seems to be more severe with increasing lipophilicity, whereas more hydrophilic 
statins exert only mild or no toxicity [133, 153]. The myotoxic effect is attributed to their ability to 
penetrate and accumulate in cell membranes and alter their structural conformation [158–160]. 
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On the other hand, high statin sensitivity may also be related to genetic factors; for instance, the 
activity of specific liver transporters may be impaired, thus reducing statins hepatic uptake and 
increasing its plasma concentrations that may potentially affect muscles [161–163].

Skeletal muscles are highly heterogeneous and present distinct fiber types classified as 
I or II and their respective subtype spectrum as determined by the myosin heavy chain 
isoforms. Type I and II fibers present relatively distinct metabolic, contractile, and motor 
properties in addition to antioxidant defense capacity. Thus, type I fibers appear red due to 
high myoglobin content, extensive mitochondrial content, and oxidative capacity, whereas 
type II fibers have relatively low myoglobin and mitochondrial content that depends mostly 
on glycolytic activity [164, 165]. In this regard, our group observed that respiratory rates 
were inhibited in the presence of Ca2+ in permeabilized plantaris muscle (predominantly 
type II fibers) in LDLr−/− mice chronically treated with pravastatin and catalase activity 

increased. In contrast, no alterations were observed in soleus muscle (predominantly type 
I fibers) [166]. Similarly, previous studies reported a distinct sensitivity of different muscle 
fiber types to lovastatin [162]. After 10 days of lovastatin administration, rat gastrocnemius 

muscles showed organelle degeneration, microvacuolization, and 20–50% necrosis, whereas 

soleus muscle was spared, suggesting that type II fibers are more vulnerable to lovastatin-
induced myopathy [167]. In line with this finding, Westwood and colleagues characterized 
time-dependent muscle necrosis triggered by simvastatin or cerivastatin in rats after 10 days 
of treatment. The authors demonstrated that glycolytic fibers were more prone to necrosis 
than oxidative fibers, which in turn were consistently spared even when myotoxicity was 
severe. Since these fibers present distinct metabolism and MPT may precede necrosis, it is 
conceivable that mitochondria exert a central role in this process. In fact, it was observed that 
the first subcellular alterations were found in mitochondria of type II fibers, characterized 
by vacuolization as well as myeloid and vesicular body accumulation in sarcolemma areas 
[168]. Later, the same group performed a similar study using rosuvastatin in rats. Although a 
much higher statin dose was required to achieve muscle necrosis in comparison to the earlier 
study, the same pattern of muscle damage was observed and the soleus muscle remained 
unaffected [169]. Specific soleus-insensitivity to statin toxicity has also been demonstrated 
by other groups. Schaefer and coworkers demonstrated necrosis and inflammation in mus-

cles with predominance of type II fibers in rats after 15 days of cerivastatin administration. 
Sarcomere disruption and altered mitochondria was also found in degenerated fibers, while 
these alterations were not found in type I fibers [170]. Similarly, cerivastatin-induced degen-

eration was evident in several muscles but not in the soleus muscle of female rats after the 
same treatment time (15 days). After 15 days of treadmill exercises, the severity of muscle 
damage had increased, but the soleus remained unaltered. Degenerated mitochondria were 
also observed with no changes in contractile elements such as endoplasmic reticulum and 
other subcellular compartments [171]. Although the role of mitochondria in myotoxicity in 
type II fibers is well established, there is no consensus as to whether this involvement pre-

cedes myofiber degeneration, thus justifying further studies to clarify this matter [170, 171]. 

In addition, MPT is associated with apoptosis or necrosis in several diseases [172] and is 

probably an important statin-induced event in muscle necrosis.
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5. Statins toxicity to liver

Although rare, the main liver injury studies have reported statins toxicity alone [173–176] or in 

combination with other drugs with variable patterns of injury [177–181]. Some cases exhibited 
autoimmune features [180, 182, 183] and a range of latencies to onset [184] and progression 

was also observed [182, 185]. Liver adverse symptoms are unspecific and most patients remain 
asymptomatic [186]. A 3-fold increase in serum aspartate (AST) and alanine (ALT) aminotrans-

ferases activities have been described in less than 1% of patients receiving starting and inter-

mediate statins doses [187–191] and this alteration may be accompanied by bilirubin elevation 
[192]. Two factors are frequently related to the hepatotoxic effects of statins: (a) the lipophilic-

ity of these medicines and (b) alterations in cytochrome P450 system [193–195]. Accordingly, 

lipophilic statins (atorvastatin and simvastatin) are associated with more than 130 cases of liver 
injury, and a few cases progress to liver transplantation and death [173, 174, 178]. Rare cases 
of portal inflammation or fibrosis and mild necrosis were also described in patients undergo-

ing lovastatin treatment [196] or atorvastatin treatment [197]. On the other hand, hydrophilic 
statins are minimally metabolized by the cytochrome P450 pathway [193–195] and are gener-

ally less toxic [109, 198]. A multicenter report also showed that pravastatin was well-tolerated in 

patients with compensated chronic liver disease [199]. Our group also attributes statin-induced 
liver toxicity to mitochondrial dysfunction associated with oxidative stress and MPT [193].

6. Statins and new onset of diabetes

Recent studies suggest that chronic use of statins is associated with risk of developing type 2 

diabetes [200–202]. Meta-analyses of large-scale statin trials support the concept of the diabe-

togenic effect of statins, but the precise mechanisms have not yet been identified [203, 204]. 

We have recently revealed diabetes-related mechanisms induced by statin treatment in a 
familial hypercholesterolemia animal model, the LDLr−/−. We demonstrated that pravastatin-

treated LDLr−/− mice exhibit marked reductions of insulinemia and of glucose-stimulated insulin 
secretion by isolated pancreatic islets. These effects were associated with increased oxidative 
stress and apoptosis [205] and were counteracted by co-treatment with CoQ10 (Lorza-Gil 
et al., unpublished data). Therefore, we have proposed that pancreatic toxic effects of pravas-

tatin could be caused by statin inhibition of CoQ10 biosynthesis. On the other hand, we and 
others have hypothesized that insulin signaling in their target tissues (such as muscle) could 
also be impaired by chronic statin treatment. However, studies relating statins therapy and 
insulin sensitivity are controversial [206–208]. A meta-analysis by Baker and colleagues shows 
that while pravastatin improved insulin sensitivity, atorvastatin, simvastatin, and rosuvastatin 

worsened it [209]. Experimental studies suggest that atorvastatin leads to reduced expression 
of GLUT4 in adipocytes in vivo and in vitro [210] and that simvastatin decreases IGF-1 signaling 
(pAKT, pERK) in muscle cells [211]. Kain et al. [212] showed that myotubes treated with simv-

astatin and atorvastatin presented impaired insulin signaling pathway and glucose uptake. We 

have evidence that long-term pravastatin treatment of hypercholesterolemic mice also induces 
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marked insulin resistance and increased muscle protein degradation (Lorza-Gil et al., unpub-

lished data). Therefore, toxic effects on insulin secreting cells in conjunction with impaired mus-

cle insulin signaling may explain the new onset of diabetes reported in statin-treated subjects.

7. Antioxidant supplement and statins toxicity

The cholesterol biosynthesis pathway generates several products including CoQ10 [213]. 

CoQ10 is an essential component of the electron transport chain where it acts as an electron 
carrier [214]. Ubiquinol, the reduced form of ubiquinone, when associated with proteins in 
the inner mitochondrial membrane, has an important function as a lipophilic antioxidant 
[215, 216]. CoQ10 also has additional functions such as regeneration of reduced intra- and 
extracellular forms of ascorbic acid and tocopherol (vitamin E) [217, 218], participation in 

redox processes associated with PTP opening [219], and regulation of muscle uncoupling 

proteins [220]. It is also known that the reduced form of ubiquinone occurs in all cellular 
membranes [221–223] as well as in serum lipoproteins and DNA, protecting them from oxida-

tive damage [224]. CoQ10 content is larger in tissues such as cardiac and skeletal muscles that 
have high energy demand [223]. Therefore, decreased synthesis of ubiquinone may result in 
two harmful conditions: (a) insufficient rates of mitochondrial ATP synthesis [225] and (b) 
decreased mitochondrial antioxidant capacity [49].

Some studies have proposed that statin-induced mitotoxicity may be mediated by diminished 
CoQ10 content with consequent impairment of mitochondrial respiration [111, 226–234]. On 
the other hand, our group has provided evidence that under our experimental conditions, the 
reduction of mitochondrial respiration associated with CoQ10 depletion was mainly due to 
its free radical scavenging action rather than its electron carrier function. Indeed, it has been 
demonstrated that incubation of permeabilized rat soleus muscle with simvastatin inhibited 
both ADP and FCCP-stimulated oxygen consumption supported by complex I or II substrates. 
Additionally, ubiquinone content was diminished by 40% and the H

2
O

2
 content was signifi-

cantly increased. Under these conditions, all of the following compounds, including mevalonate, 
CoQ10, or L-carnitine protected against H

2
O

2
 generation but only mevalonate prevented CoQ10 

depletion. Thus, independent of CoQ10 levels, L-carnitine prevented the toxic effects of simvas-

tatin. This allows for the conclusion that L-carnitine antioxidant action prevailed in the protec-

tion against simvastatin-induced respiratory inhibition [49]. Therefore, it can be concluded that 
CoQ10 also acted as a free radical scavenger in this mechanism. Accordingly, Kettawan and 
coworkers previously demonstrated that a decrease in ubiquinone levels in serum, liver, and 
heart in mice undergoing simvastatin treatment increased lipoperoxidation. Simvastatin also 
reduced NADPH-CoQ reductase activity, whereas the co-administration of CoQ10 and simvas-

tatin to mice diminished these deleterious effects [235]. Another study revealed that simvastatin 

reduced mitochondrial CoQ10 levels associated with DNA oxidative damage and reduced ATP 
synthesis followed by cell death in hepatocytes (HepG2). All of these alterations were reversed 
by CoQ10 supplementation [236]. Furthermore, it was recently shown that CoQ10 supplemen-

tation improved respiratory control in liver mitochondria isolated from rats treated with high 
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doses of atorvastatin and/or a cholesterol-rich diet [237]. Despite all data correlating CoQ10 
depletion with statin toxicity, the efficacy of ubiquinone supplementation in patients with side 
effects is still under debate [231, 238–240].

Creatine is a guanidine compound synthesized endogenously [241] and widely and safely used 

as supplement by athletes to increase their performance [242]. The role of creatine on the main-

tenance of ATP/ADP ratio by activating CK is very well known, but it also exerts other actions. 
Creatine participates on a protein complex involved in MPT regulation [55, 243, 244] and was 

firstly mentioned as antioxidant in 1998 [245]. A few years later, Lawler and coworkers showed 
that this compound was capable of scavenging radicals such as superoxide and peroxynitrite 
[246]. In our recent work, we showed that diet supplementation with creatine protected LDLr−/− 

mice against pravastatin sensitization to Ca2+-induced MPT [166].

L-carnitine stimulates β-oxidation by increasing carnitine palmitoyltransferase 1A mRNA expres-

sion. This action prevents mitochondrial oxidative stress induced by free fatty acids, increasing 
mitochondrial function [22, 247]. Another property of L-carnitine is to bind Fe2+ [248] that partici-

pates in the mitochondrial oxidative stress involved in MPT [249]. Thus, it is feasible to propose 
that L-carnitine protects complexes I and II of the respiratory chain against superoxide attack 
by interacting with 4Fe-4S clusters in these sites. In a previous work performed in PC3 prostate 
cancer, we showed that L-carnitine and piracetam (a membrane stabilizer) prevented MPT and 
necrosis induced by simvastatin (60 μM) [22].

Taken together, these experimental results suggest that ROS generation and mitochondrial 
oxidative stress play an important role on statins toxicity.

8. Conclusions

Cardiovascular benefits of statins therapy are undoubted and appear to be present across 
diverse demographic and clinical groups. However, the side effects may affect a minority of 
patients. In this review, we addressed the cellular and molecular mechanisms related to statin 

side effects. Mitochondrial oxidative stress seems to be the main cause of toxicity in statin sensi-
tive tissues (Figure 1). The levels and consequences of mitochondrial oxidative stress seem to be 
more deleterious in skeletal muscle. This effect is secondary to: (a) inhibition of electrons flow 
at the levels of respiratory complexes I, II, and III, and (b) decrease in the levels of CoQ10 due 
to inhibition of the mevalonate pathway. In association with mitochondrial Ca2+ overload due 

to increased cytosolic free Ca2+ concentrations, the PTP may open and trigger cell death. In vitro 

experiments provide evidence that this can be blocked in a concerted manner by L-carnitine 
plus the membrane stabilizer piracetam. Experiments performed with muscle biopsies taken 
from hypercholesterolemic mice, chronically treated with pravastatin, show that either CoQ10 
or creatine can protect against statin-induced mitochondrial muscle toxicity both in vitro and  

in vivo. Statin treatment may also result in pro- or antioxidant actions depending on statin class 
(lipophilicity), dose, and patient’s background. We suggest that mitochondrial oxidative stress 
caused by statin treatment may be a signal for cellular antioxidant system response (such as 
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catalase upregulation) possibly explaining the alleged statin antioxidant properties. Together, 
the experimental evidence presented in this review suggests that statins’ detrimental effects 
could be prevented by antioxidants administration such as CoQ10, L-carnitine, and creatine.
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