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Abstract

The kidneys serve an essential regulatory role in most of the animals, including verte-
brates and some invertebrates. They are important in the urinary system and also serve 
homeostatic functions like regulation of electrolytes, maintenance of acid-base balance 
and regulation of blood pressure (via maintaining salt and water balance). They also 
serve as natural filter of the blood and remove wastes that are diverted to the urinary 
bladder. By producing urine, the kidneys excrete wastes such as urea and ammonia. The 
kidneys are responsible for reabsorption of water, glucose, amino acids and trace ele-
ments. They also produce hormones including calcitriol, renin and erythropoietin. The 
kidney is approximately 11–14 cm long, 6 cm wide and 4 cm thick. Each adult kidney 
weighs between 125 and 170 g in males and between 115 and 155 g in females. The left 
kidney is typically slightly larger than the right kidney. Each kidney is made up of about 
1 million microprocessor units called nephrons.

Keywords: polycystic kidney disease, renal failure, single nucleotide polymorphism, 
polymerase chain reaction, disease complications

1. Introduction

The kidneys play an essential regulatory role in animals and are responsible for reabsorp-

tion of water, glucose, amino acids and trace elements. They also produce hormones includ-

ing calcitriol, renin and erythropoietin. The kidney is approximately 11–14 cm long, 6 cm 

wide and 4 cm thick. Each adult kidney weighs between 125 and 170 g in males and between 

115 and 155 g in females. The left kidney is typically slightly larger than the right kidney [1] 

(Figure 1). Each kidney is made up of about 1 million microprocessor units called nephrons. 

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The nephron is the basic structural and functional unit of a kidney [3]. Each nephron has an 

initial filtering component composed of a glomerulus and Bowman’s capsule, which is con-

nected to a long convoluted tubule lined by transporting epithelia.

Sodium chloride, potassium and glucose are filtered and reabsorbed along with water in the 
nephron back into the bloodstream. This maintains a correct balance of trace element within 

the blood, which assists in blood pressure regulation and normal levels of blood sugars. 

Hence, the kidneys are found to play a crucial role in regulating the amount of water and 

chemicals (electrolytes) in the body such as sodium, potassium and phosphorus [4].

1.1. Different types of kidney diseases

Usually both the kidneys are affected by various forms of diseases and then the waste prod-

ucts and excess fluid build up, causing severe swelling and symptoms of uremia (kidney 
failure). They are congenital kidney disease, hereditary kidney disorders and acquired kidney 

diseases.

1.1.1. Congenital disease

It involves malformation of the genitourinary tract, usually leading to some type of obstruc-

tion that subsequently produces infection and/or destruction of kidney tissue, which may 

eventually progress to chronic kidney failure. For example, horseshoe kidney, also known as 

ren arcuatus (in Latin), renal fusion or super kidney, is a congenital disorder affecting about 
1 in 500 people [5, 6].

1.1.2. Hereditary disorders

Hereditary diseases are Alport's syndrome or hereditary nephritis, primary hyperoxaluria, 

cystinuria and polycystic kidney disease (PKD). The chapter found that polycystic kidney 

disease is more common among the population.

Figure 1. Structure and location of kidney. Source: [2] (http://www.sugarbp.org/kidneystucture_diabetes.htm).
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1.1.2.1. Polycystic kidney disease (PKD)

Epithelial cell polarity is vitally important for correct function of different tubule segments [3]. 

Cell polarity defects have been linked to a number of hereditary kidney diseases including 

polycystic kidney diseases (PKDs) characterized by the accumulation of fluid-filled cysts in the 
cortex and medulla [7–10]. There are two types of PKDs. They are autosomal dominant polycys-

tic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD) [10].

1.1.3. Acquired kidney diseases

These diseases are numerous and are generally known as nephritis (inflammation of the 
kidney). The most common type of nephritis is glomerulonephritis and has many causes. 

The acquired kidney diseases are renal agenesis, multicystic dysplastic kidney, renal dys-

plasia, diabetic nephropathy, glomerulonephritis, hydronephrosis, interstitial nephritis, kid-

ney stones, kidney tumors: Wilms tumor and renal cell carcinoma, lupus nephritis, minimal 

change disease (MCD), nephrotic syndrome, pyelonephritis and renal failure.

2. Renal failure

In renal failure, the kidneys lose their normal function due to various factors including infec-

tions, autoimmune diseases, diabetes and other endocrine disorders, cancer, and toxic chem-

icals [11]. Genetic variability on the development of renal failure is becoming clearer and 

emphasizes the need to elucidate the genetic basis for renal diseases and associated complica-

tions. Studies on genetic variability in renal failure would lead to better understanding of dif-
ferent phenotypes observed in polycystic kidney disease and would enable us to determine 

whether a patient is genetically predisposed to such complications.

2.1. Acute renal failure

Acute kidney injury (AKI), previously called acute renal failure (ARF), is a rapid loss of kidney 

function due to low blood volume from any cause, exposure to substances harmful to the kid-

ney and obstruction of the urinary tract [12, 13]. Elevated blood urea nitrogen and creatinine 

or inability of the kidneys to produce sufficient amounts of urine is noted in these patients.

2.2. Stage 5 chronic kidney diseases

Stage 5 CKD is often called end stage renal disease (ESRD). The symptoms of Stage 5 CKD 

are:

• Increase in serum creatinine or protein in the urine are observed.

• The patients develop hypertension or congestive heart failure due to fluid overload and pro-

duction of vasoactive hormones created by the kidney via the RAS (renin-angiotensin system).
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• Urea accumulates, leading to azotemia and ultimately uremia. Urea is excreted by sweat-

ing and crystallizes on skin (“uremic frost”) (http://en.wikipedia.org/wiki/Chronic_kid-

ney_disease; “Chronic Kidney Disease”. medscape.) [14].

• Later this progresses to secondary hyperparathyroidism, renal osteodystrophy and vascu-

lar calcification that further impair cardiac function.

• Metabolic acidosis, due to accumulation of sulfates, phosphates, uric acid, etc., leads to 

excitability of cardiac and neuronal membranes by promoting hyperkalemia [15].

People with chronic kidney disease (hyperlipidemia) suffer from accelerated atherosclerosis 
and are likely to develop cardiovascular disease than the general population [16].

3. Polycystic kidney disease (PKD)

There are two forms of PKD:

(i) Autosomal dominant polycystic kidney disease (ADPKD)

(ii) Autosomal recessive polycystic kidney disease (ARPKD)

3.1. Autosomal dominant polycystic kidney disease (ADPKD)

Autosomal dominant polycystic kidney disease occurs worldwide and in all races. ADPKD 

is one of the most commonly inherited conditions in humans with an incidence of 1:500 to 

1:1000 [17, 18]. It is genetically heterogeneous with two genes identified: PKD1 (16p13.3) and 
PKD2 (4q21) [9, 19, 20].

3.2. Autosomal recessive polycystic kidney disease (ARPKD)

ARPKD is uncommon and occurs primarily in neonates and children. The gene responsible 

for ARPKD (PKHD1) has recently been identified on chromosome 6. Fibrocystin is defective 
in ARPKD [21, 22]. The occurrence of ADPKD is most common when compared to ARPKD 

and the mean age of onset is between 30 and 40 years. Both men and women are equally 

affected [23]. Hence the present study is also focused on PKD1 and PKD2 gene polymorphism 

in autosomal dominant polycystic kidney disease subjects and control subjects among South 

Indian population.

Tables 1 and 2 show polymorphism study in PKD1 and PKD2 gene among various popula-

tions on both national and international level.

3.3. Pathogenesis and genetics of polycystic kidney disease (PKD)

Abnormalities in gene expression, cell polarity, fluid secretion, apoptosis and extracellular 
matrix have also been described in PKD [17, 34–36]. ADPKD is one of the most common 

Mendelian disorders in humans [37, 38] and the most frequent genetic cause of renal failure 

Chronic Kidney Disease - from Pathophysiology to Clinical Improvements242



in adults. ADPKD is a genetically heterogeneous condition [39], which is caused by mutations 

in one of the three genes: PKD1 on chromosome 16 accounts for 85% of cases, whereas PKD2 

on chromosome 4 accounts for 15% and mutations in the PKD3 gene are rare [40]. Hence the 

present study is focused on PKD1 and PKD2 genes in patients with ADPKD among South 

Indian (Madurai) population.

3.4. Chromosomal location of PKD1 and PKD2 gene

PKD1 has been mapped to the short arm of the 16th (16p13.3) chromosome, which encodes 

a protein called polycystin-1. The PKD1 gene is very large in size, consisting of 46 exons 

distributed over 52 kb of genomic DNA [41]. The gene encodes a 14.1-kb mRNA transcript 

to be translated into a protein composed of 4302 amino acids transcript with an open read-

ing frame (ORF) of 12,909 bp [42] (Figure 2). The PKD2 gene maps to chromosome 4q21–23 

(Figure 3). The PKD2 gene encodes a protein, polycystin-2, which is composed of 968 amino 

acids [45]. The interaction of polycystin-1 and polycystin-2 in renal tubules promotes normal 

development and function of the kidneys [46].

Author and year Gene Population Mutation

Sumathy [24] PKD1 Indian PKD1 C-T or G-A, SSCP

Nair et al. [25] ACE, Nellore, Andhra Pradesh I/D polymorphism

Elumalai et al. [26] eNOS, VNTR South Indian a/b polymorphism

Veeramuthumari and Isabel [27]* PKD1 South Indian (Madurai) Ala/Val (C/T) polymorphism

Veeramuthumari et al. [28]* PKD2 South Indian (Madurai) Arg/Pro (G/C) polymorphism

*Current study.

Table 1. National reports of PKD1 and PKD2 gene polymorphism.

Author and Year Gene Population Mutation

Hateboer et al. [29] PKD2 Spain, Netherlands, UK, 

Bulgaria, Australia

C-T substitution, deletion, nonsense mutation, 

frameshift, missense, splice mutation

Koptides et al. [30] PKD1 & 

PKD2

Cyprus Mutation in exon 24, mutation in exon 1

PKD1 & 

PKD2

Slovenia Frameshift/missense mutation; nonsense 
mutation

Son et al. [31] PKD1 Devis, USA CT transversion (SNP)

PKD1 & 2 US Mutation

Lee et al. [32] PKD1 Taiwan C → A transversion

Galeano et al. [33] PKD1 Belgium SNP

Table 2. International reports of PKD1 and PKD2 gene polymorphism.
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Figure 2. Chromosomal location of PKD1 gene. Source: [43] http://ghr.nlm.nih.gov/gene/PKD1.

Figure 3. Chromosomal location of PKD2 gene. Source: [44] http://ghr.nlm.nih.gov/gene/PKD2.

3.4.1. Polycystin-1

The PKD1 gene codes for polycystin-1 (PC-1) and plays a vital role in cell-cell and cell-matrix 

interaction [41]. Thus, a defect in polycystin-1 leads to the alteration in the differentiation of 
epithelial cells and abnormal phenotypic expression of autosomal dominant polycystic kidney 

disease (ADPKD). The proteins encoded by the PKD1 and PKD2 genes define a new family. 
The polycystins play an important role in a variety of biological processes including fertiliza-

tion, ion transduction and mechanosensation. Polycystin-1 is an integral membrane protein, 

which is predicted to contain an array of distinct protein motifs, including two leucine-rich 

repeats flanked by cystine-rich domains. Many of these motifs are involved in protein-protein 
or protein-carbohydrate interaction, which raises the possibility of polycystin-1, as a receptor 

for a yet unidentified ligand. The carboxyl terminus of polycystin-1 is located in cytoplasm 
and contains coil-coil domains and mediates the protein-protein interaction as well as several 

potential sites of phosphorylation. Polycystin-1 is expressed in many tissues, including the 

kidney, brain, heart, bone and muscles [47]. Foggensteiner et al. [48] have reported that sev-

eral studies have identified polycystin-1 in the plasma membrane of tubular epithelial cells, in 
the distal nephron and in the collecting duct. The defect of polycystin-1 might lead to altera-

tion in differentiation of epithelial cells and abnormal phenotypic expression of ADPKD [49].

3.4.2. Polycystin-2

Polycystin-2 is also widely expressed in many tissues, particularly the kidney, heart, ovary, 

testis, vascular smooth muscle and small intestine [47]. In the kidney, polycystin-2 like 
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polycystin-1 is expressed in all nephron segments, with the possible exception of the thin 

limbs but absent from glomeruli. Several studies have shown that the polycystin-2 chan-

nel conducts divalent cations including calcium and that this activity can be stimulated by 

calcium on the cytosolic side.

3.4.3. Fibrocystin/polyductin

The protein encoded by the PKHD1 gene has been named polyductin or fibrocystin and is 
composed of 4074 amino acids [22]. Polyductin/fibrocystin is predicted to be a membrane 
protein consisting of a large extracellular domain, a single transmembrane segment and a 

short carboxyl-terminal tail. Polyductin is a novel protein, although it has some similarities to 

other proteins in the database.

3.5. Mechanism of cyst formation

Cysts will form in these patient’s kidneys and several studies suggest that the cells that line 
these cysts will have lost both functional copies of a polycystin gene [50, 51]. Defects in the 

genes encoding PC1 or PC2 lead to aberrant gene transcription, cell proliferation and ion 

secretion, which in turn result in the formation of fluid-filled cysts. These cysts lead to the 
displacement of the normal renal parenchyma and the formation of a cyst-filled kidney with 
reduced functional capacity (Figure 4).

3.6. ADPKD-associated common complications

Common complications associated with ADPKD are hypertension, hematuria, urinary tract 

infection, renal calculi, cardiac valve abnormalities, diabetes, hernia of the anterior abdominal 

wall and cerebral berry aneurysms [29, 53]. Hematuria is the presence of red blood cells (RBCs) 

in the urine. In microscopic hematuria, the urine appears normal to the naked eye, but exami-

nation with a microscope shows a high number of RBCs [54]. Diabetic nephropathy (neuropatia 

diabetica) also known as Kimmelstiel-Wilson syndrome, or nodular diabetic glomerulosclerosis 

[55] and intercapillary glomerulonephritis, is a progressive kidney disease. Anterior abdomi-

nal wall hernias, also known as ventral hernias, are involved in the protrusion of part of the 

peritoneal sac through a defect in the muscle layers of the anterior abdominal wall [56]. A 

cerebral or brain aneurysm is a cerebrovascular disorder in which weakness in the wall of a 

cerebral artery or vein causes a localized dilation or ballooning of the blood vessel [57].

Figure 4. Cyst formation in nephron, kidney and at cellular level [52].
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Clinically, PKD is characterized by progressive formation and enlargement of cysts lead-

ing to end-stage renal disease (ESRD) in late middle age. Overall, ADPKD accounts for 

approximately 5–10% of ESRD [58]. Hypertension occurs in 50–75% of patients prior to renal 

insufficiency and it is thought to accelerate the decline in renal function [59, 60]. Systemic 

hypertension is also very common, occurring in more than 75% of patients. Increased blood 

pressure (BP) has been attributed to activation of the renin-angiotensin system, but a primary 
defect in blood vessels may also exist [61].

3.7. Method of diagnosis and screening

Nowadays, ADPKD is studied by ultrasound, CT or MRI with multiple cysts that are generally 

visible that increase in size and number with age [62]. ADPKD is typically diagnosed in adults by 

the detection of bilaterally enlarged polycystic kidneys using transabdominal ultrasound scan-

ning. The diagnosis of ADPKD is established primarily by imaging studies of the kidney [53]. 

For diagnosis of ADPKD, computer tomography (CT) has been used effectively, which has also 
revealed multiple cysts in kidneys and left ovary and aneurysm in the brain [53].

3.7.1. Treatment

When renal function, measured by glomerular filtration rate, is persistently poor, dialysis 
and kidney transplantation could be done. Cotran et al. [63] have stated that a common 

symptom of kidney stones is a sharp pain in the medial/lateral segments of the lower back. 

Approximately 50% of afflicted individuals have been shown to develop end-stage renal dis-

ease requiring dialysis or kidney transplantation before the age of 60 [8].

3.7.2. Trends in potential therapies and clinical trials

Until now, therapy for ADPKD has been directed toward limiting its complications. Cardiovascular 

complications, related to hypertension, are a major cause of morbidity and mortality. A major 

problem in therapeutic interventions in ADPKD is that this is a very slowly evolving condition, 

and GFR is well maintained until relatively late in the course of the disease at the age of 40. Better 
understanding of signaling pathways and cellular changes associated with ADPKD has suggested 

possible therapies to directly inhibit the development or growth of cysts, some of which are now 

being tested in clinical trials [64]. A stable somatostatin analogue, octreotide, has been shown to 

be effective at limiting progression in liver and kidney cystic disease in a rat model of PKD [65].

Advanced-stage ADPKD patients frequently receive a renal transplant without removal of the 

affected cystic kidneys, without side effects. Rapamycin is often used to prevent transplant 
rejection. The absence of polycystin permits excessive kinase activity in the mTOR pathway 

and the development of renal cysts [66]. Patients treated with rapamycin have been reported 

to show a statistically significant reduction in native polycystic kidney size over a period of 
24 months compared with patients treated with other antirejection drugs. Other targets for 

therapy include triptolide, a compound derived from a traditional Chinese herbal therapy, 

which blocks glycosyl ceramide synthesis [67].
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4. Methodology to be followed for the discovery of single nucleotide 
polymorphism in polycystic kidney disease

Genomic DNA preparation: [68, 69].

Reagents required: phosphate buffer saline (PBS), red blood cell (RBC) lysis buffer, cell lysis 
buffer (CLB), ammonium acetate, isopropyl alcohol, 70% ethanol, TE buffer

Procedure: the blood samples were thawed at room temperature and 300 μl of blood was 

transferred to centrifuge tubes. Equal volume of PBS was added to it and incubated for 20 min 

and centrifuged at 3000 rpm for 5 min. The supernatant was removed and the pellet was 

resuspended in 900 μl of RBC lysis buffer and mixed thoroughly. This was centrifuged at 
3000 rpm for 5 min and the supernatant was discarded. To the pellet 600 μl of ice-cold cell, 

lysis buffer was added and mixed well, and then 200 μl of ammonium acetate was added to 
the mixture to precipitate the proteins and centrifuged at 3000 rpm for 7 min. The supernatant 

was separated and 1000 μl of isopropanol was added and the tube was inverted till the DNA 

was precipitated and centrifuged at 7000 rpm for 2 min. The precipitated genomic DNA was 

washed with 600 μl of 70% ethanol and allowed to air dry. The DNA was resuspended in TE 

buffer and stored at −20°C.

Electrophoretic analysis of genomic DNA: the isolated DNA was confirmed by 0.7% agarose 
gel electrophoresis [68, 69].

Reagents required: Tris-boric acid EDTA buffer (TBE), gel loading dye, ethidium bromide 
(ETBR).

Equipment required: electrophoresis tank, power pack, voltage (100 V), gel documentation 

apparatus, UV-transilluminator.

Principle: electrophoresis refers to the separation of macromolecules of different size by 
application of a constant electric field (100 V) onto the DNA fragments placed in a matrix 
of polymerized agarose. As the DNA molecule is negatively charged and travels toward the 

anode, it is loaded at the cathode end. The speed of migration of the fragments has an inverse 

relation with the size of DNA. The separated fragments are visualized by staining the gels 

with an intercalating dye (ethidium bromide), which fluoresces under UV light. Acrylamide 
gels are used for separation of small fragments of DNA (5–500 bp). Agarose gels can resolve 

DNA fragments varying in size from 200 bp to about 50 kb depending upon the concentration 

of agarose in the gel.

Procedure: electrophoresis tank was filled with the 1× TBE buffer and the gel was immersed 
into the tank containing the buffer. Agarose gel (0.7%) was prepared with ethidium bromide 
and the gel was allowed to run for 1 hour at 80–100 V as pulse voltage. 20 μl of DNA sam-

ple was loaded with loading dye (bromophenol blue) in the wells. When bromophenol blue 

dye reached three fourth of the gel length, the power was shut down, and DNA bands were 

observed using gel documentation apparatus and photographed.
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4.1. Genetic analysis

4.1.1. Polymerase chain reaction (PCR) for PKD1 gene (C/T polymorphism)

Amplification of isolated DNA using the following primers 5′-AGCTGTACGCCCTCACTGG-3′ 
(forward) and 5′-GTGACAGGTGCCAGGACTC-3′-(reverse). PCR was performed using 
genomic DNA (50 ng), Taq polymerase (1 U), dNTPs (10 mM) and each primers (10 μM) 

[37, 69, 70].

PCR condition used:

The PCR product (298 bp) was confirmed by 1.8% of agarose gel electrophoresis. The ampli-
fied product was subjected to RFLP analysis.

4.1.1.1. Restriction fragment length polymorphism (RFLP)

Amplified PCR product is digested with restriction enzyme AvaII, incubated the reaction mix-

ture at 37°C for 3 hours and inactivated by incubation at 64°C for 15 min. The enzyme cuts 
the sequence if “T” was at position 4058. The digested fragments (298, 225 and 73bp) were 

confirmed by 1.2% agarose gel [37, 69, 70].

Restriction fragment length polymorphism (RFLP)

4.1.2. Polymerase chain reaction (PCR) for PKD2 gene (G/C polymorphism)

Amplification of PKD2 gene using the following primers 5′-CGCGCCGGACGCCAGTGACC-3′ 
(forward) and 5′-GCCGGCCGTTCTGGTTCGT-3′ (reverse). PCR was performed using 
genomic DNA (50ng), Taq polymerase (1U) and dNTPs (10mM) [69, 71].

Initial denaturation 94°C 5 min

Denaturation 94°C 30 s

Annealing 61°C 30 s 35 cycles

Extension 72°C 30 s

Final extension 72°C 7 min

Restriction site for AvaII 5′….G↓GWCG ….3′

3′….CCWG↑G….5′

Source: E. coli strain that carries the AvaII gene from Anabaena variabilis
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PCR condition used:

The PCR product (279 bp) is confirmed by 1.8% of agarose gel electrophoresis. The amplified 
product was subjected to RFLP analysis.

4.1.2.1. Restriction fragment length polymorphism (RFLP)

Amplified product is digested with restriction enzyme BanII, incubated the reaction mixture 

at 37oC for 2 hours and inactivated by incubation at 65oC for 20 min. The enzyme cuts the 

sequence if “C” was at position 28. The digested segments were confirmed by 1.2% agarose 
gel [69–71]).

Sequencing: PKD1 gene (C/T) and PKD2 gene (G/C) single nucleotide polymorphism was 

sequenced by automated sequencer (Chromous Biotech, Chennai).

Allelic frequency calculation: allelic frequency was calculated by using Hardy-Weinberg 

Equilibrium. The phenotype and genotypic frequencies in sexually reproducing, diploid 

organisms could be determined by applying simple algebraic expression.

  p + q = 1  (1)

where p is the frequency of dominant allele and q is the frequency of recessive allele.

Statistical analysis:

• Pearson Chi-square (χ2) test was performed to find the statistical significance of genotypes 
and the gene frequency between the control group and ADPKD patients.

• Odds ratio (OR) was calculated for allelic frequency.

• Heterozygosity was calculated for the control subject and PKD patients.

Restriction site for BanII: 5′ G RGCY↓ C 3′

5′ C↑YCGR G 5′

Source: E. coli strain that carries the cloned BanII gene from Bacillus aneurinolyticus.

Initial denaturation 94°C 5 min

Denaturation 94°C 30 s

Annealing 61°C 30 s 35 cycles

Extension 72°C 30 s

Final extension 72°C 7 min
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5. Identifications of single nucleotide and polymorphisms and 
discussions

5.1. Genetic analysis

ADPKD is one of the most common genetic diseases in humans, affecting all ethnic groups 
with a prevalence of 1 in 500 to 1000 individuals [9, 18, 19, 72]. The disease is characterized 

by the progressive formation and enlargement of fluid-filled cysts in both kidneys due to 
mutations in PKD1 (85%), PKD2 (15%) and PKD3 (rare) that leads to renal failure [73]. Cyst 

development involves impairments in a wide range of cellular processes including increased 

proliferation of the renal epithelial cells, fluid transport defects, alterations in tubular base-

ment membrane, altered cell polarity and increased apoptosis [9, 74].

Genomic DNA was isolated from frozen blood of control and ADPKD patients; it was con-

firmed by agarose gel electrophoresis (0.7%). After confirming the presence of genomic DNA, 
most of the prepared gDNA of the 260/280 ratio was found to be 1.8 or 1.9; in a few subjects, the 
DNA showed 2.0, which might be RNA or protein contamination. To avoid that, RNase, prote-

ase was added. Then, it was confirmed and used for PCRanalysis.

5.1.1. Analysis of C/T polymorphism in PKD1 gene

Prepared gDNA when subjected to polymerase chain reaction (PCR), 298bp fragment was 

obtained. The amplified PCR product was subjected to RFLP analysis using AvaII enzyme. 

When “T” allele was present at position 4058, 225bp and 73bp (homozygous mutant -TT), 

heterozygous mutant (CT) 298bp, 225bp and 73bp was obtained, and for homozygous normal 

allele (CC), 298bp fragments were identified (Figure 5). The PCR and RLFP products were 

detected and confirmed by 1.2% agarose gel electrophoresis.

5.2. Genotype and allelic frequency analysis of PKD1 (C/T) gene

The study group comprised 300 ADPKD patients and an equal number of age- and sex-

matched control group. Among them, the C/C genotype was observed in 131 (43.67%) control 

group and in 58 (19.33%) ADPKD patients; C/T genotype in 82 (27.33%) control group and 
in 99 (33%) ADPKD patients; T/T genotype was found in 87 (29%) control group and in 143 
(47.67%) ADPKD patients. The allelic frequency was calculated by using Hardy-Weinberg equa-

tion (p + q = 1) and the study group showed the mutant “T” allele frequency (0.642) to be signif-

icantly higher in ADPKD patients than in the control group (0.425) and the normal “C” allele 

frequency was observed to be significantly decreased in ADPKD patients (0.358) than in the 
control group (0.575). The significant difference (P < 0.05, 9.488, χ2 calculated value = 14.048) 

(Table 3) was noted both in genotype and in allelic frequency between the ADPKD patients 

and control group among South Indian (Madurai) population by using chi-square (χ2) test. 

This work, which coincides with the work done by Constantinides [70] among Caucasian 

and Japanese population, also has revealed the association of C/T4058 polymorphism with 

ADPKD. The PKD1 gene is responsible for causing autosomal dominant polycystic kidney 

disease and it has been recently cloned and sequenced [75]. ADPKD is reported to be a very 
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frequent disorder among Caucasian population with an estimated incidence of approximately 

1:100. It has been shown to be characterized by genetic heterogeneity and three genes have 

been implicated in its pathogenesis called PKD1, PKD2 and PKD3 [76, 77].

The study found that the identification of DNA variation at nucleotide position at 12173 of PKD1 
gene and C or T allele variation in the second position of amino acid codon at 4058 of polycys-

tin-1 observed in 44 Japanese subjects, leading to suggest that these polymorphic alleles would 

be useful for linkage analysis only in specific ethnic groups [41]. It has been also reported that 

the PKD2 gene provides instructions for making a protein called polycystin-2, which is found 

in the kidneys before birth and in many adult tissues. It is also stated that the polycystin could 

be regulated by a larger and somewhat similar protein called polycystin-1, which is encoded by 

PKD1 gene [78].

5.2.1. Analysis of G/C polymorphism in PKD2 gene

Prepared gDNA was subjected to polymerase chain reaction (PCR) and 279bp fragment was 

amplified. The amplified PCR product is digested with the enzyme Ban II. The enzyme acts 

on the “C” variation but not on the “G” variation. If a “C” allele was present at position 83, 

170bp and 109bp were obtained. If it was a homozygous mutant (CC), 170bp and 109bp; 
heterozygous mutant (GC), 279bp, 170bp and 109bp and homozygous normal (GG), 279bp 

fragments were identified. One such variation was at position 83 of PKD2, which was occu-

pied by either G or C at exon 1. Hence, the amino acid residue was changed from arginine 

to proline.

The study also found that BSP12861 restriction enzyme also acts on the “C” variation. This 

enzyme was added to 10 ADPKD patients of amplified PKD2 gene product (279bp). The 

Figure 5. Confirmation of PKD 1 gene polymorphism using 1.2% agarose gel electrophoresis. T/T: homozygous mutant 
(225, 73 bp); C/T: heterozygous mutant (298bp, 225bp, 73bp) ; C/C: homozygous normal (298bp).
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results showed to be like Ban II restriction digestion gene products. If a “C” allele was pres-

ent at position 83, 170bp and 109bp were obtained. If it was homozygous mutant (CC), 170bp 

and 109bp; heterozygous mutant (GC), 279bp, 170bp and 109bp and homozygous normal 
(GG), 279bp fragments were identified (Figure 6). The study was supported by the work of 

Koptides et al., [30]. Koptides et al. demonstrated that both G/C transversion mutation and 

six ‘Cs” insertion mutation in exon 1 of the PKD2 gene of three separate cysts. This mutation 

is expected to cause a translation frameshift, leading to the incorporation of 20 novel amino 

acids before a new stop codon is encountered.

5.3. Genotype and allelic frequency analysis of PKD2 (G/C) gene

The G/G genotype was observed in 137 (45.67%) control group and in 55 (18.33%) ADPKD 

patients, G/C genotype in 84 (28%) control group and in 93 (31%) ADPKD patients and C/C 

genotype in 79 (26.33%) control group and in 152 (50.67%) ADPKD patients. The allelic 

frequency was calculated by using Hardy-Weinberg equation (p + q = 1) and the study group 

showed the mutant “C” allele frequency (0.662) to be significantly higher in ADPKD patients 
than in the control group (0.403) and the normal “G” allele frequency to be significantly 
decreased in ADPKD patients (0.338) than in the control group (0.597). Significant difference 
(P < 0.005, 14.860, χ2 calculated value = 20.451) (Table 4) was noted in genotype and allelic 

frequency between the ADPKD patients. G/C polymorphism at position 83 in exon 1 of PKD2 

gene among South Indian (Madurai) population with ADPKD revealed the “CC” and “GC” 

genotype and the frequency of “C” allele was found to be significantly higher in the ADPKD 
patients compared to the control group. The study has revealed higher frequency of “C” allele 

and lower frequency of “G” allele in ADPKD patients. These results coincide with the work 

of Koptides et al., [30], who identified a polymorphism at position 83, which was occupied by 
either G or C encoding either arginine or proline (R28P).

Figure 6. Confirmation of PKD 2 gene polymorphism using 1.2% agarose gel electrophoresis. C/C: homozygous mutant 
(170 bp, 109 bp); G/C: heterozygous mutant (279 bp, 170, 109); G/G: homozygous normal (279 bp); Lane 1: ladder (100 bp).
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5.4. PKD1 (C/T) and PKD2 (G/C) SNP sequencing

The PKD1 (C/T) and PKD2 (G/C) single nucleotide polymorphism was also confirmed by 
sequencing the PCR amplified gene products of PKD1 and PKD2.

PKD1 (C/T) – Ala/Val. 4058 in Exon 45:

PKD2 (G/C) – Arg/Pro.28 in Exon 1

Genotype Allele frequency χ2 value p value

C/C G/C G/G C G

Control group 

N = 300
79 (26.33%) 84 (28%) 137 

(45.67%)

0.403 0.662 20.79 P < 0.005, 14.860

ADPKD patients 

N = 300
152 (50.67%) 93 (31%) 55 

(18.33%)

0.597 0.338 20.10

C/C: homozygous mutant; G/C: heterozygous mutant; G/G–homozygous normal.

Table 4. Comparison of genotype and allelic frequency of PKD2 gene in control group and ADPKD patients among 

South Indian (Madurai) population.

Ala

A. 5′-AAG CTG TAC GCC CTC ACT GG-3′—Wild type Allele

Val

5′-AAG CTG TAC GTC CTC ACT GG-3′—Mutant Allele

Arg

B. 5′-CG CGC CGG ACG CCA CTG ACC-3′—Wild type Allele

Pro

5′-CG CGC CCG ACG CCA CTG ACC-3′—Mutant Allele

Underlined sequence denotes change in allele leads to new amino acid formation, which is known to be polymorphism.

Genotype Allele frequency χ2 value p value

T/T C/T C/C T C

Control group 

N = 300
87 (29%) 82 (27.33%) 131 

(43.67%)

0.425 0.575 14.16 P < 0.05 9.488

ADPKD patients 

N = 300
143 (47.67%) 99 (33%) 58 

(19.33%)

0.642 0.358 13.93

T/T: homozygous mutant; /T: heterozygous mutant; C/C: homozygous normal.

Table 3. Comparison of genotype and allelic frequency of PKD1 gene in control group and ADPKD patients among 

South Indian (Madurai) population.
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The study coincides with the work of Constantinides et al. [70], Watnick et al. [79] and 

Koptides et al., [30] in Caucasians, Greek-Cypriot populations. The present study reveals that 

these mutation/polymorphism leads to evolution of new alleles and formation of new amino 

acids among South Indian population.

6. Conclusion

Polymorphic DNA markers could be used for presymptomatic and prenatal diagnosis of 

ADPKD. Breuning et al. [80] and Balcells and Criach [81] recommended that prenatal diag-

nosis of PKD by chorionic villi sampling and linkage phase of the DNA markers has been 

established by haplotyping the index family. This testing offers the chance of performing pre-

natal or preimplantation testing in families with severe cases of the disease. Hence the current 

study suggests that genetic testing is very important in determining the severity and progres-

sion of the disease and could possibly be treated with effective drug and delay the end-stage 
renal disease (ESRD). Further research of this study is on DNA based on drug design using 

bioinformatics databases that might help the physicians in providing better treatment for 
polycystic kidney disease patients.

Author details

Pandiaraj Veeramuthumari1* and William Isabel2

*Address all correspondence to: muthusdream@gmail.com

1 Department of Zoology, V.V. Vanniaperumal College for Women, Virudhunagar,  

Tamil Nadu, India

2 Lady Doak College (affiliated by Madurai Kamaraj University), Madurai, India

References

[1] Glodny B, Unterholzner V, Taferner B. Normal kidney size and its influencing factors–A 
64-slice MDCT study of 1.040 asymptomatic patients. BMC Urology. 2009;9:13-19

[2] Available from: http://www.sugarbp.org/kidneystucture_diabetes.htm

[3] Kriz W, Kaissing B. Structural and Functional Organization of the Kidney. Academic 

Press; 2008. p. 479-564

[4] Jameson JL, Loscalzo J. Harrison's Nephrology and Acid-Base Disorders. 17th ed. McGraw-

Hill Professional; 2010. p. 3

[5] de Hoog JP, Murray S, Chou W. Horseshoe kidney and primary renal carcinoid tumour: 

A case report of a rare entity. Grand Rounds. 2010;10:46-50

Chronic Kidney Disease - from Pathophysiology to Clinical Improvements254



[6] Oktem H, Gozil R, Calguner E, et al. Morphometric study of a horseshoe kidney. Medical 

Principles and Practice. 2008;17(1):80-83

[7] Grantham JJ. Polycystic kidney disease: From the bedside to the gene and back. Current 

Opinion in Nephrology and Hypertension. 2003;10:533-542

[8] Harris PC, Torres VE. Autosomal dominant polycystic kidney disease. GeneReviews. 

2006;4:326-329

[9] Igarashi P, Somlo S. Genetics and pathogenesis of polycystic kidney disease. Journal of 

the American Society of Nephrology. 2002;13:2384-2398

[10] Khonsari RH, Ohazama A, Raouf R, Kawasaki M, Kawasaki K, Porntaveetus T, Ghafoor S, 

Hammond P, Suttie M, Odri GA, Sandford RN, Wood JN, Sharpe PT. Multiple postnatal 
craniofacial anomalies are characterized by conditional loss ofpolycystic kidney disease 2 

(Pkd2). Human Molecular Genetics. 2013;22:1873-1885

[11] Liao M-T, Sung C-C, Hung K-C, C-C W, Lo L, K-C L. Insulin resistance in patients with 

chronic kidney disease. Journal of Biomedicine & Biotechnology. 2012:1-5

[12] Longo D, Fauci A, Kasper D, Hauser S, Jameson J, Loscalzo J. Harrison's Principles of 

Internal Medicine. 18th ed. McGraw-Hill Professional; 2011

[13] Webb S, Dobb G. ARF, ATN or AKI? It's now acute kidney injury. Anaesthesia and 

Intensive Care. 2007;35(6):843-844

[14] Available from: http://en.wikipedia.org/wiki/Chronic_kidney_disease; “Chronic Kidney 
Disease”. Medscape

[15] Bacchetta J, Sea JL, Chun RF, Lisse TS. FGF23 inhibits extra-renal synthesis of 1,25-dihy-

droxyvitamin D in human monocytes. Journal of Bone and Mineral Research. 2012; 
28(1):46-55

[16] Chauhan V, Vaid M. Dyslipidemia in chronic kidney disease: Managing a high-risk com-

bination. Postgraduate Medicine. 2009;121(6):54-61

[17] Grantham JJ, Calvet PJ. Polycystein-2, the protein mutated in autosomal dominant 

polycystic kidney disease (ADPKD), is a Ca2+–Permeable nonselective cation chennel. 

Proceedings of the National Academy of Sciences of the United States of America. 2001; 
98(3):790-792

[18] Persu A, Stoenoiu T, Messiaen S. Modifier effect of ENOS in autosomal dominant poly-

cystic kidney disease. Human Molecular Genetics. 2002;11:229-241

[19] Hoefele J, Mayer K, Scholz M, Klein HG. Novel PKD1 and PKD2 mutations in autosomal 

dominant polycystic kidney disease (ADPKD). Nephrology, Dialysis, Transplantation. 

2011;26:2181-2188

[20] Ravind D, Walker R, Gibson R, Forrest S, Richerd R, Friend K, Sheffied L, Kincaid-Smith A, 
Danks D. Phenotype and genotypes heterogenicity in autosomal dominant polycystic 

kidney disease. Lancet. 1992;340:1330-1333

Discovery of Single Nucleotide Polymorphism in Polycystic Kidney Disease among South Indian…
http://dx.doi.org/10.5772/intechopen.71201

255



[21] Onuchic LF, Furu L, Nagasawa Y. PKHD1, the polycystic kidney and hepatic disease 1 
gene, encodes a novel large protein containing multiple immunoglobulin-like plexin-

transcription-factor domains and parallel beta-helix 1 repeats. American Journal of 

Human Genetics. 2002;70:1305-1317

[22] Ward C, Hogan M, Rossetti S, Walker D, Sneddon T, Wang X, Kubly V, Cunningham J, 
Bacallao R, Ishibashi M, Milliner D, Torres V, Harris P. The gene mutated in autosomal 

recessive polycystic kidney disease encodes a large, receptor-like protein. Nature Genetics. 

2002;30:259-269

[23] Ahmad S, Choi R, Roberts Q, Simpson B, Wallace J. Polycystic kidney disease: The cyst-

ematic destruction of renal function. Eukaryon Editor’s Corner. 2009. p. 5

[24] Sumathy VJH. Pathogenetic and molecular study of human polycystic kidney population. 

International Journal of Engineering and Innovative Technology (IJEIT). 2013;3(3):20-27

[25] Nair S, Kolla PK, Desai M, Mohan PR, Ramalingam K, Aruna R. Angiotensin-converting 

enzyme gene polymorphism in autosomal dominant polycystic kidney disease. NJCA. 

2014;3(2):57-63

[26] Elumalai R, Periasamy S, Ramanathan G, Lakkakula BVKS. Role of endothelial nitric 

oxide synthase VNTR (intron 4 a/b) polymorphism on the progression of renal disease 

in autosomal dominant polycystic kidney disease. Journal of Renal Injury Prevention. 

2014;3(3):69-73

[27] Veeramuthumari P, Isabel W. Identification of C/T genetic marker in autosomal domi-
nant polycystic kidney disease among South Indian population (Madurai). International 

Journal of Pharma and Bio Sciences. 2013;2(6):628-639

[28] Veeramuthumari P, Srividhya K, Isabel W. Evaluation of PKD2 gene (G/C) polymor-

phism in patients with autosomal dominant polycystic kidney disease among South 

Indians (Madurai). Journal of Drug Discovery and Therapeutics. 2013;1(5):37-41

[29] Hateboer N, Veldhusen B, Peters D, Breuning MH, Dijk MA, Afzal AR, Jeffery S, Saggar 
AK, Torra R, Dimitrakov D, Matinez I, Sanz S, Krawczak M, Ravine D. Location of muta-

tions within the PKD2 gene influences clinical outcome. Kidney International. 2000;57: 
1444-1451

[30] Koptides M, Mean R, Demetriou K, Pierides A, Deltas CC. Genetic evidence for a trans-

heterozygous model for cystogenesis in autosomal dominant polycystic kidney disease. 

Human Molecular Genetics. 2000;9:447-452

[31] Son D, Kojima I, Inagi R, Matsumoto M, Fujita T, Nangaku M. Chronic hypoxia aggra-

vates injury via suppression of Cu/Zn-SOD: A proteomic analysis. American Journal of 

Physiology. Renal Physiology. 2008;294:F62-F72

[32] Lee Y-J, Chen H-Y, Wong M-L, Hsu W-L, C-M O, Wong M-L. Diagnosis of feline poly-

cystic kidney disease by a combination of ultrasonographic examination and PKD1 gene 

analysis. Veterinary Record. 2010;167:614-617

Chronic Kidney Disease - from Pathophysiology to Clinical Improvements256



[33] Galeano CH, Cortes AC, Fernansez A, Soler A, Franco-Herrera N, Makunde G, Vanderleyden J, 

Blair MW. Gene-based single nucleotide polymorphism markers for genetic and associa-

tion mapping in common bean. BMC Genetics. 2012;13(48):1-11

[34] Grantham JJ, Cook LT, Torres VE, Bost JE, Chapman AB, Harris PC, Guay-Woodford LM, 

Bae KT, Grantham J, Cook L, Wetzel L, et al. Evidence of extraordinary growth in the pro-

gressive enlargement of renal cysts. Clinical Journal of the American Society of Nephrology. 

2010;5(5):889-896

[35] Murcia NS, Richards WG, Yoder BK, Mucenski ML, Dunlap JR, Woychik RP. The Oak 
Ridge Polycystic Kidney (orpk) disease gene is required for left-right axis determination. 

Development. 1999;127:2347-2355

[36] Wilson PD. Epithelial cell polarity and disease. The American Journal of Physiology. 

1997;272:434-442

[37] Pei Y, Wang K, Kasenda M, Paterson AD, Chan G, Liang Y, Roscoe J, Brissenden J, 
Hefferton D, Parfrey P, Somlo S, George Hyslop P. A spectrum of mutation in polycystic 
kidney disease-2 (PKD2) genes from eight Canadian kindred. Journal of the American 

Society of Nephrology. 1998;9:1853-1860

[38] Tazon-Vega Mireia V. Study of candidate genes affecting the progression of renal dis-

ease in autosomal dominant polycystic kidney disease type 1. Nephrology, Dialysis, 

Transplantation. 2007;22:1567-1577

[39] Torra R, Viribay M, Tellaria D, Badenas C, Watson M, Harris P, Darnell A, San Millan JL. 

Seven novel mutations of the PKD2 gene families with autosomal dominant polycyctic 

kidney disease. Kidney International. 1999;56:28-33

[40] Koptides M, Hadjimichael C, Koupepidou P, Pierides A, Constantinou Deltas C. Germinal 

and somatic mutations in the PKD2 gene of renal cysts in abnormal dominant polycystic 

kidney disease. Human Molecular Genetics. 1999;8(3):509-513

[41] Hughes J, Ward CJ, Peral B, Aspinwall R, Clark K, San MJ, Gamble V, Harris PC. The 

polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell rec-

ognition domains. Nature Genetics. 1995;10:151-160

[42] Bogdanova N, Markoff A, Gerke V, McCluskey M, Horst J, Dworniczak B. Homologues 
to the first gene for autosomal dominant polycystic kidney disease are pseudogenes. 
Genomics. 2002;74:333-341

[43] Avialable from: http://ghr.nlm.nih.gov/gene/PKD1

[44] Available from: http://ghr.nlm.nih.gov/gene/PKD2

[45] Torres VE, Harris PC. Autosomal dominant polycystic kidney disease: The last 3 years. 

Kidney International. 2009;76:149-168

[46] Charron A, Nakamura S, Bacallao R, Wandinger-Ness A. Compermised cytoarchitecture 

and polarised trafficking in autosomal dominant polycystic kidney disease cells. The 
Journal of Cell Biology. 2000;149:111-124

Discovery of Single Nucleotide Polymorphism in Polycystic Kidney Disease among South Indian…
http://dx.doi.org/10.5772/intechopen.71201

257



[47] Geng L, Segal Pavlova A, Barros EJ, Lohing C, Lu W, Nigam SK, Frischauf AM, Reeders ST, 

Zhou J. Distribution and developmentally regulated expression of murine polycystine. The 

American Journal of Physiology. 1997;272:451-459

[48] Foggensteiner L, Beven AP, Thomos R, Coleman R, Boulter C, Bradely J, Klinger K, 

Sandford R. Cellular and subcellular distribution of polycystin-2, the protein product of 

PKD gene. American Society of Nephrology. 2009;11:814-827

[49] Boletta A, Quian F, Onuchic LF, Cortese M, Courtoy PJ, Soria MR, Devuyst O, Monaco L. 
Biochemical characterization of bonafied polycystine-1 in vitro and in vivo. American 
Journal of Kidney Diseases. 2002;38:1421-1429

[50] Brasier J, Henske EP. Loss of the polycystic kidney disease (PKD1) region of chromo-

some 16p13 in renal cyst cells supports a loss of function model for cyst pathogenesis. 

The Journal of Clinical Investigation. 1997;99:194-199

[51] Qian F, Watnick TJ, Onuchic LF, Germino GG. The molecular basis of focal cyst formation 

in human autosomal dominant polycystic kidney disease type I. Cell. 1996;87:979-987

[52] Chapin HC, Caplan MJ. The cell biology of polycystic kidney disease. JCB. 2010;191(4): 

701-710

[53] Harris PC, Bae KT, Rossetti S. Cyst number but not the rate of cystic growth is associated 
with the mutated gene in autosomal dominant polycystic kidney disease. Journal of the 

American Society of Nephrology. 2006;11:3013-3019

[54] Hebert DN, Nadasd T, Nadasdy G, Agarwal G, Mauer M, Agarwal AK, Khabiri H, 

Nagaraja HN. Proposed pathogenesis of idiopathic loin pain-hematuria syndrome. 

American Journal of Kidney Diseases. 2006;47(3):419-427

[55] Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori LM, Zelmanovitz T. Diabetic 
nephropathy: Diagnosis, prevention, and treatment. Diabetes Care. 2005;28(1):164-176

[56] Hannah CC, Caplan MJ. The cell biology of polycystic kidney disease. The Journal of 

Cell Biology. 2010;191:701-710

[57] Brisman JL, Song JK, Newell DW. Cerebral aneurysms. The New England Journal of 

Medicine. 2006;355(9):928-939

[58] Fick GM, Johnson AM, Strain JD, Kimberling WJ, Kumar S, Manco-Johnson ML, Duley IT, 

Gabow PA. Characteristics of very early onset autosomal dominant polycystic kidney dis-

ease. Journal of the American Society of Nephrology. 1994;3:1863-1870

[59] Luft FC. Hypertensive nephrosclerosis—A cause of end-stage renal disease? Nephrology, 
Dialysis, Transplantation. 2000;15(10):1515-1517

[60] Tylicki L, Rutkowski B. Hypertensive nephropathy: Pathogenesis, diagnosis and treat-

ment. Polski Merkuriusz Lekarsk (in Polish). 2003;14(80):168-173

[61] Torres VE, Cai Y, Chen X, GQ W, Geng L, Cleghorn KA, Johnson CM, Somlo S. Vascular 
expression of polycystin-2. Journal of the American Society of Nephrology. 2001;12:1-9

Chronic Kidney Disease - from Pathophysiology to Clinical Improvements258



[62] Grantham JJ, Chapman AB, Torres VE. Volume progression in autosomal dominant 

polycystic kidney disease: The major factor determining clinical outcomes. Clinical 

Journal of the American Society of Nephrology. 2006;1:148-157

[63] Cotran RS, Vinay K, Nelson F, Stanley L, Abbas K. Robbins and Cotran Pathologic Basis 

of Disease. 2005;72(1):16, 187-190

[64] Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Grantham JJ, Higashihara E, 

Perrone RD, Krasa HB, Ouyang J, Czerwiec FS, For the TEMPO 3:4 Trial Investigators. 

Tolvaptan in patients with autosomal dominant polycystic kidney disease. The New 

England Journal of Medicine. 2012;367:2407-2418

[65] Masyuk TV, Masyuk AI, Torre VE, et al. Octreotide inhibits hepatic cystogenesis in a 

rodent model of polycystic liver disease by reducing cholangiocyte adenosine 3′,5′-cyclic 
monophosphate. Gastroenterology. 2007;132:1104-1116

[66] Shillingford JM, Murcia NS, Larson CH, Low SH, Hedgepeth R, Brown N, Flask CA, 

Novick AC, Goldfarb DA, Kramer-Zucker A, Walz G, Piontek KB, Germino GG, Weimbs T. 

The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cysto-

genesis in polycystic kidney disease. Proceedings of the National Academy of Sciences. 

2006;103:5466-5471

[67] Natoli TA, Smith LA, Rogers KA, Wang B, Komarnitsky B, Budman Y, Belenky A, 
Bukanov NO, Dackowski WR, Husson H. Inhibition of glucosylceramide accumula-

tion results in effective blockade of polycystic kidney disease in mouse models. Nature 
Medicine. 2010;16:788-792

[68] Sambrooke J, Russel DW. Molecular Cloning, A Laboratory Manual. 3rd ed. New York: 
Cold Spring Horbor Laboratory Press, Cold Spring Horbor; 2001

[69] Veeramuthumari P, Isabel W, Kannan K. A study on the level of T3, T4, TSH and the 

association of A/G polymorphism with CTLA-4 gene in Graves’ hyperthyroidism among 
South Indian population. Indian Journal of Clinical Biochemistry. 2011;26(1):66-69

[70] Constantinides R, Xenophontos S, Neophytou P, Nomura S, Pierides A, Constantinou C. 
New amino acid polymorphism, Ala/Val4058, in exon 45 of the polycystic kidney disease 

1 gene: Evolution of alleles. Human Genetics. 1997;99:644-647

[71] Reynolds D, Hayashi T, Cai YQ, Veldhuisen B, Watnick T, Lens X, Mochizuki T, Qian F, 
Maeda Y, Li L, Fossdal R, Coto E, GQ W, Breuning M, Germino G, Peters D, Somlo S. Aberrant 
splicing in the PKD2 gene as a cause of polycystic kidney disease. Journal of the American 

Society of Nephrology. 1999;10:2342-2351

[72] Hogan MC, Masyuk TV, Page LJ, Kubly VJ, Bergstralh EJ, Li X, Kim B, King BF, Glockner J, 
Holmes DR III, Rossetti S, Harris PC, Nicholas F, La Russo NF, Torres VE. Randomized 
clinical trial of long-acting somatostatin for autosomal dominant polycystic kidney and 

liver disease. Journal of the American Society of Nephrology. 2010;21:1052-1061

Discovery of Single Nucleotide Polymorphism in Polycystic Kidney Disease among South Indian…
http://dx.doi.org/10.5772/intechopen.71201

259



[73] Brown BJ, Bihoreau MT, Sigrid BK, Iulia T, Obermiller N, Podich D, Suzanna NB, Pamela J, 

Kaisaki MN, Danoy P, Richard R, Jhon CB, Witzgall R, Lathrep M, Getz N, Dominique. 
Missense mutation in sterile α motif of novel protein Sam cystin is associated with poly-

cystic kidney in (cyl +) rat. American Society of Nephrology. 2005;16:3517-3526

[74] Harris PC, Torres VE. Genetics disease online reviews at gene-test polycystic kidney 

disease. Annual Review of Medicine. 2009;60:321-337

[75] Obeidova L, Elisakova V, Stekrova J, Reiterova J, Merta M, Tesar V, Losan F, Kohoutova M. 

Novel mutations of PKD genes in the Czech population with autosomal dominant poly-

cystic kidney disease. BMC Medical Genetics. 2014;15(41):1-12

[76] Kimberling WJ, Fain PR, Kenyon JB, Goldgar D, Sujansky E, Gabow PA. Linkage hetero-

geneity of autosomal dominant polycystic kidney disease. The New England Journal of 

Medicine. 1993;319:913-918

[77] Peters DJM, Spruit L, Saris JJ, Ravine D, Sandkuijl LA, Fossdal R, Boersma J, van Eijk R, 

Norby S, Constantinou-Deltas CD, Pierides A, Brissenden JE, Frants RR, van Ommen 

GJB and Breuning MH. Chromosome 4 localization of a second gene forautosomal dom-

inant polycystic kidney disease. Nature Genetics. 1993;5:359-362

[78] Chang M-Y, Chen HM, Jenq CC, Lee SY, Chen YM, Tian YC, Chen YC, Hung CC, Fang 
JT, Yang CW, Wu-Chou YH. Novel PKD1 and PKD2 mutations in Taiwanese patients 
with autosomal dominant polycystic kidney disease. Journal of Human Genetics. 2013;58: 
720-727

[79] Watnick T, Phakdeekitcharoen B, Johnson A, Gandolph MA, Wang M, Briefel G, Klinger KW, 

Kimberling W, Gabow P, Germino GG. Mutation detection of PKD1 identifies a novel muta-

tion common to three families with aneurysms and/or very-early-onset disease. American 

Journal of Human Genetics. 1999;65:1561-1571

[80] Breuning MH, Snijdewin FG, Brunner H, Verwest A, Ijdo JW, Saris JJ, Dauwerse JG, 

Blonden L, Keith T, Callen DF. Map of 16 polymorphic loci on the short arm of chromo-

some 16 close to the polycystic kidney disease gene (PKD1). Journal of Medical Genetics. 

1990;27:603-613

[81] Balcells RT, Criach EA. Molecular diagnosis of autosomal dominant polycystic kidney 

disease. Nefrología. 2011;31(1):35-43

Chronic Kidney Disease - from Pathophysiology to Clinical Improvements260


