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Abstract

Mitochondria are exceptionally primed to play a key role in neuronal cell survival since 
they are involved in energy production and function as the metabolic center of cells. 
Several findings provide evidence for the role of mitochondria in neurodegeneration 
associated with Alzheimer’s and Parkinson’s diseases (AD and PD). Recent data high-
light the role of mitochondrial proteins and mitochondrial reactive oxygen species in the 
intracellular signaling that regulates innate immunity and inflammation. In this chapter, 
we will discuss the relevance of the interplay between mitochondria and innate immu-
nity, focusing on mitochondrial damage-associated molecular patterns (DAMPs) and 
how they can activate innate immunity and elicit AD and PD neurodegenerative process.

Keywords: mitochondria, neuronal innate immunity, Alzheimer’s disease, Parkinson’s 
disease, damage-associated molecular patterns

1. Introductory remarks

Mitochondria, derived from an ancestral bacterial endosymbiosis, are important cellular 

organelles in all cell types, but particularly important in the nervous system, since they are 

the major source of energy for the brain. Mitochondria are essential for neuronal function and 

neuronal processes, such as calcium (Ca2+) homeostasis, maintenance of plasma membrane 

potential, apoptosis, axonal and dendritic transport, release and re-uptake of neurotrans-

mitters at synapses, among others [1, 2]. The brain is particularly vulnerable to oxidative 

stress due to its high lipid content, its high oxygen demand and its low levels of antioxidant 

defenses. Therefore, any abnormalities in mitochondria function may impact the aging pro-

cess and also potentiate the onset of age-dependent neurodegenerative disorders [3, 4].

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



In Alzheimer’s disease (AD) and Parkinson’s disease (PD), it has been described that mito-

chondrial metabolism and dynamics are affected not only in susceptible brain areas but also in 
peripheral cell models, namely platelets, fibroblasts and lymphocytes. Additionally, it was shown 
in AD and PD cellular and animal models that mitochondrial network is highly fragmented. 

Mitochondrial fission is required to selectively target dysfunctional mitochondria for degrada-

tion by the lysosome in a process called mitophagy [5, 6]. Nevertheless, it was recently proven 

that mitochondrial fission leads to the exposure of the inner membrane phospholipid, cardio-

lipin, which serves an important defensive function for the elimination of damaged mitochondria 

[7]. Since cardiolipin is found only in mitochondrial and bacterial membranes, it is considered 

a mitochondrial-derived damage-associated molecular pattern (DAMP) that is detected by a 
Nod-like receptor (NLR), the nucleotide-binding domain and leucine-rich repeat pyrin domain 

containing 3 (NLRP3) inflammasome Nlrp3 [8]. NLR and toll-like receptors (TLR) are pattern-

recognition receptors that recognize pathogen-associated molecular patterns (PAMPs), such as 
lipopolysaccharide and short-chain fatty acids, and DAMPs that are responsible for the initiation 
of innate immune responses. NLR and TLR activation trigger the production of proinflammatory 
cytokines and antimicrobial peptides (AMPs) [9]. So, it is perceived that also neuronal cells are 

able to mount an innate immune response. Neurons express critical Toll/interleukin-1 receptor 

(TIR) domain-containing adaptors that transduce signals of TLR, regulating the expression of 

various cytokines. Indeed, TLR 3 and 7, localized in the neuronal endosomal compartment, play 

a role in neurite outgrowth. It is assumed that the cytokines produced by neurons may be just 

enough to recruit and activate local microglia and may not cause global brain inflammation [10].

Overall, mitochondria play a central role in metabolism, thus allowing the maintenance of cellu-

lar homeostasis. In this chapter, we will discuss how mitochondria can regulate neuronal innate 

immunity and how this impact age-related neurodegenerative disorders, such as AD and PD.

2. Alzheimer’s disease hallmarks

AD is one of the most frequent age-related neurodegenerative disorder, characterized by 
neuronal loss and gradual cognitive demise. It is the major cause of dementia in the elderly 

[11], predominantly affects more women than men [12], and is expected that the number of 

people with AD will triple by the year 2050 [13]. Patients with AD show an impaired abil-

ity to perform everyday tasks and often experience psychiatric, emotional and personality 

disturbances [14]. Two well-known abnormal protein aggregates in the brain of the patients, 

cerebral cortex and hippocampus, characterize AD pathologically: the neuritic plaques that 
are extracellular and composed of insoluble amyloid β peptides (Aβ) and neurofibrillary tan-

gles that are intracellular aggregates, mostly consisted of phosphorylated tau, a microtubule-

associated protein [15]. It is assumed that oligomers can induce toxicity for neurons causing 

synaptic dysfunction, neuroinflammation and oxidative stress [16, 17].

Several authors have mentioned that mitochondrial dysfunction and oxidative damage occur 

in the AD brain before the onset of Aβ pathology. Mitochondrial dysfunction was reported in 
brain neurons, platelets and fibroblasts from AD patients and in transgenic AD mice models. 
These mitochondrial abnormalities have been reported in neurons and astrocytes, suggesting 

that both types of cell might be affected in brains of AD patients [18]. For example, it has been 
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described in post-mortem AD brains, a deficit of cytochrome c oxidase (COX) in hippocampus, 
frontal, temporal, occipital and parietal lobes [3]. Additionally, it is recognized that mitochon-

drial DNA (mtDNA) is also involved in the mitochondrial dysfunction having a determinant 

role in AD pathogenesis. When patient’s mtDNA is transferred into mtDNA-deficient cell lines, 
the originated ‘cybrids’ reproduce the respiratory enzyme deficiency that occurs in the brain 
and other tissues in AD, suggesting this defect is carried in part by mtDNA abnormalities [19].

Neuroinflammation has been implicated in AD etiology, but its contribution to disease progres-

sion is still not yet understood [20]. Astrocytes and microglial cells are the main type of cells 

involved in inflammatory responses in the central nervous system (CNS) after infection or injury 
occurs. Indeed, in this process, cellular and molecular immune components, such as cytokines, 

are important players, which may lead to the activation of glial cells (microglia and astrocytes) 

[21]. Several studies have described that Aβ, pathogenic infection or cellular debris triggers an 
initial inflammatory stimulus, which activates the microglia, allowing the maintenance of neuro-

nal plasticity and synaptic connectivity [22]. Data suggest that microglia internalize and degrade 

Aβ deposits, helping its clearance from the brain. However, during disease process, microglia 
acquire a ‘toxic’ phenotype due to chronic activation and continue the production of proinflam-

matory mediators [23]. In animal models and human brain tissue, both neuritic plaques and 
neurofibrillary tangles colocalize with activated glial cells. Different studies have reported path-

ological astrogliosis, in both AD patients and transgenic animal models brains, characterized 

by an increased glial fibrillary acidic protein (GFAP) and distinct cellular hypertrophy, which is 
correlated somehow with the severity of cognitive impairment in AD patients [24].

2.1. The role of mitochondrial dysfunction in Alzheimer’s disease etiology

Despite its elusive origin, mitochondrial dysfunction is long recognized as a striking feature of 

sporadic AD, mediating cell pathways that sustain the disorder progression. Brain bioenergetic 

function is compromised in AD. Images from fluorodeoxyglucose positron emission tomogra-

phy (FDG-PET) scan show that glucose utilization is significantly lower in AD subjects as com-

pared to age-matched controls in the cortex and the posterior cingulate brain regions [25]. This 

bioenergetic compromise correlates with decreased COX activities measured in post-mortem 
brain tissue from AD patients [26]. Mitochondrial deficits in AD have been described not only 
in the brain but also in peripheral tissues. COX activity was found decreased in platelets and 
lymphocytes from AD subjects [27–30]. This COX deficiency correlates with decreased oxygen 
consumption first described in AD subject’s brain, where PET scans showed decreased cere-

bral metabolic rate of oxygen (CMRO2) [31]. Mitochondrial respiration is also compromised 

in peripheral blood mononuclear cells [32], and in cytoplasmic hybrid (cybrid) cell lines [33], 

generated by the fusion of mitochondrial DNA (mtDNA) depleted cells with platelets from AD 

subjects [34]. These cell lines elucidated on the relevance of mtDNA in AD pathology, since the 

main features of the disease are recapitulated [33, 35, 36]. The same observation was made in 

a number of transgenic mice models that carry mutations linked to AD familial forms [37–39].

Along with impaired mitochondrial function, it has been widely demonstrated that mitochon-

dria from AD tissues and models have decreased mitochondrial membrane potential (∆Ψmit) 
[40]. Cumulative evidence consistently showed a positive correlation between ∆Ψmit and reac-

tive oxygen species (ROS) production [41]. In the case of neurodegenerative disorders, such 

as AD, associated with dysfunctions of the respiratory chain components, lower ∆Ψmit and 
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decreased activity of the respiratory chain are observed with a simultaneous increase in ROS 

production [42]. The primary ROS in mitochondria is the superoxide radical anion O
2
–., mainly 

produced at complexes I and III [43], which is rapidly converted to H
2
O

2
 by mitochondrial dis-

mutases, superoxide dismutase (SOD). Regardless the contradictory data on the contribution 

of COX deficiency to ROS production [44, 45], oxidative damage is an utterly feature of AD, 
from human samples to cellular and animal models [36, 46–48]. Evidence show that mitochon-

drial dysfunction and ROS production are accentuated by Aβ, a 4 kDa protein, derived from a 
larger protein, amyloid β-protein precursor (βAPP), that is overproduced during AD progres-

sion. Aβ interacts with mitochondrial proteins, namely ABAD, causing increased ROS produc-

tion, mitochondrial dysfunction and neuronal death [49, 50]. These changes in mitochondrial 

metabolism seem to be related with morphological alteration of mitochondria of AD tissues and 

models. Electron microscopy images from AD brain tissue show mitochondria with reduced 
dimensions and disrupted cristae [51]. Similarly, mitochondria from AD subjects transferred to 

mtDNA depleted cell into cybrids at an ultrastructural level are small and have a swollen-like 

structure [52], with a fragmented mitochondrial network that correlates with increased mito-

chondrial content of dynamin-related protein 1 (DRP1) [53] a key protein for mitochondrial divi-

sion [54]. Concerning mitochondrial content/mass in AD neurons, the matter is not as straight 
forward [55]. Vulnerable neurons have a decrease in functional mitochondria, but mtDNA is 

increased [51]. In accordance it was observed, in AD cybrids, an increase in mtDNA content 

[33]. This increment was first explained as a compensatory response to counteract the loss of 
mtDNA transcription efficiency [51], but data gathered on the subject point to decreased mito-

chondria degradation through autophagy (mitophagy), with imprisoned mitochondria within 

autophagic vacuoles that are accessible for mtDNA detection [53]. A number of studies have 

shown autophagy dysfunction as a driving force of AD progression, with important impact on 

Aβ deposition and plaque formation [56–60]. In human brain samples, it could be observed a 

massive accumulation of autophagic vacuoles and lysosome-related vesicles, which led to the 

conclusion of simultaneous induction and impairment of autophagy [56, 61]. Purified autopha-

gic vesicles contain βAPP and the proteases responsible for its cleavage [56]. Aβ peptides are 
produced by sequential proteolytic processing of βAPP by β-secretase (BACE) and γ-secretase 
complex (presenilin and nicastrin) [62, 63]. These accumulated vacuoles cause swellings along 

dystrophic neurites and potentiate Aβ production and aggregation [64], which gradually form 

the extracellular amyloid plaques, one of the most prominent brain pathological hallmarks of 
AD. It is reasonable to argue that stimulating autophagy would clear the cell waste materials. 

Although some contradictory data were published, in opposition of ameliorating Aβ pathology, 
stimulating autophagy, either chemically or starvation-induced, fails to degrade accumulating 

Aβ and worsens cell function in in vivo models [65]. The driver of such failure is the microtubule 

network, along which autophagic vesicles are transported towards lysosomes, for degradation 

of cell waste. Mitochondrial metabolism failure compromises microtubule proper dynam-

ics. Destabilized microtubule cytoskeleton negatively impacts autophagic vesicles retrograde 

transport towards lysosomes and promotes microtubule-associated protein Tau to detach and 

undergo phosphorylation [5]. Tau is the main component of paired helical filaments (PHF) that 
form neurofibrillary tangles found in AD brains [66] and is a microtubule-associated protein 

(MAP) that promotes microtubule assembly and stabilization [67–69]. Ultrastructural analysis 

performed in AD neurons found that the number and total length of microtubules are decreased 

in AD subjects [70]. In AD cybrids, microtubule network is disrupted with increased free tubulin 
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content, and this correlates with increased Tau phosphorylation, comparing with control cybrids 

[53]. Targeting microtubule stability is able to protect cells from Tau and Aβ-induced toxicity and 
restores autophagy function in a variety of AD models [71, 72].

2.2. Immune response in Alzheimer’s disease

The role of neuroinflammation in AD dates back to 1907, to the original report of Alois Alzheimer, 
with microglia surrounding Aβ plaques, thus showing a close relation between the pathway and 
the disease [73]. Twenty-five years after the postulation of Selkoe and Hardy, the amyloid cas-

cade hypothesis is still the main hypothesis for AD pathogenesis. It is a fact that all AD patients 

undergo progressive Aβ deposition, and moreover, the sequence of major pathogenic events 
leading to AD proposed by the amyloid cascade hypothesis is perfectly aligned with the domi-

nantly inherited forms of AD. However, different mechanisms have to be considered to explain 
the development of AD in sporadic cases, which constitute the vast majority of the cases [74]. Even 
though Aβ peptide and tau protein oligomers are considered the major contributors to disease 
progression and the deposition of Aβ occurs decades before any other alterations, there are some 
missing links between the accumulation and oligomerization of Aβ and tau pathology, synaptic 
dysfunction and cognitive decline [15, 75]. In this follow-up, neuroinflammation is consistently 
reported to be deregulated in AD and to facilitate disease progression [76, 77]. Indeed, various 

forms of Aβ oligomers and aggregates are detected by numerous receptors (TLRs), receptor for 
advanced glycated end-products (RAGE), CD14, CD36, CD47, α6β1 integrin, class A scavenger 
receptor and NOD-like receptor family pyrin domains (NLRP) that activate innate immunity 

response (mainly via MAPK/Erk and NF-κB-mediated signaling) [22, 78–80]. In neurodegenera-

tive diseases, such as AD, the inflammatory response starts by innate immune system activating 
monocytes (in periphery) and microglial cells, astrocytes and perivascular cells (in the CNS) [81].

Microglia, the resident macrophages of the CNS, play an active role surveying the brain for 

pathogens and maintaining neuronal plasticity and synaptic connectivity [82]. In AD, stimu-

lation of microglia involves the microglial polarization to a M1 phenotype that triggers the 

production of proinflammatory cytokines (TNF-α, IL-1, IL-6, IL-12 and IL-18) [83, 84] and che-

mokines (CCL2, CCR3, CCR5) [85, 86] and is accompanied by impaired phagocytic capacity 

[87]. Interestingly, deregulation of Aβ clearance from the CNS is a key pathogenic mechanism 
in pathology progression, whereas microglial phagocytosis activation plays a crucial role (in 

combination with the endolysosomal pathway, being Aβ enzymatically digested by neprily-

sin, insulin-degrading enzyme and matrix metalloprotease proteases) and is controlled by 

two microglial cell surface receptors: TREM2 (positive regulator) and CD33 (negative regula-

tor) [88, 89]. Moreover, caspases are known mediators of apoptosis, but they also regulate 

inflammation. Upon binding of Aβ to NLRP, there is an inflammasome-dependent activation 
of caspase-1 that mediates the production of mature IL-1β by cleavage of an inactive pro-IL-1β 
peptide [90, 91]. Therefore, elevated concentrations of active caspase 1 detected in the brains 

of patients with AD [92] are in accordance with the increased NLRP3 activation observed in 

monocytes from AD patients [93]. In addition, mitochondrial DAMPs were shown to increase 

AD-associated biomarkers, such as App mRNA, APP protein and Aβ
1–42

 levels, in SH-SY5Y 
and mice brains [94, 95]. Together, these studies suggest that mitochondria and mitochon-

drial DAMPs have the potential to promote inflammation in the brain, with important conse-

quences relevant for neurodegenerative disorders such as AD.
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Pathological responses of astrocytes include reactive astrogliosis directed at recovery of injured 

neural tissue and neuroprotection [96]. In AD, astrocytes, like microglia, are a major source 

of cytokines (TNF-α and IL-1β are readily released upon astrocytic Aβ detection) [97, 98] and 

chemokines. Indeed CCL4 has been detected in reactive astrocytes near Aβ plaques [99] and 

has a high capacity to degrade Aβ
1–42

 in a more efficient way than their microglial counter-

parts [100]. In addition, post-mortem brains from AD patients are characterized by hyper-

trophic reactive astrocytes, elevated GFAP and S100B expression surrounding senile plaques 
[101]. Interestingly, studies have shown that reactive astrogliosis occurs early in the course of 

pathogenesis and correlates with the severity of cognitive impairment in AD patients [102]. 

Furthermore, resident microglia and astrocytes in AD have been shown to stimulate induc-

ible nitric oxide synthase (iNOS) and NADPH oxidase [103]. These upregulations lead to the 

production of high concentrations of ROS (such as nitric oxide, superoxide, hydrogen perox-

ide, peroxynitrite), which not only further promote microglia activation but also lead to post-

translational modifications (nitration, S-nitrosylation, and dityrosine formation), including Aβ 
nitration leading to a higher propensity to aggregate and seriously suppress hippocampal LTP 

[103–105]. Likewise, the complement system is another major constituent of the innate immune 

system that shows enhanced levels in disease settings. In the brain, activated microglia and 
astrocytes are responsible for the production of proteins of the complement system, which in 

turn are associated with Aβ deposits [106]. Additionally, complement receptor 1 (CR1) modu-

lates the impact of the APOE ε4 allele on brain fibrillar amyloid burden [107]. Furthermore, 

there are other players with neuroinflammatory actions in AD, such as perivascular macro-

phages promoting Aβ clearance [108], endothelial cells contributing to the transport of Aβ spe-

cies between the brain and the periphery [109, 110], oligodendrocytes [111] and neurons [112] 

that contribute to neuroinflammation by expressing complement components.

In the end, the recruited microglia and astrocytes fail to resolve the Aβ insult effectively, 
resulting in an excessive proinflammatory cytokine and chemokine production, as well as 
enhancing DAMPs secretion, ultimately leading to deleterious microglial and astrocytic reac-

tivity [113]. This chronic neuroinflammatory environment thus starts a vicious cycle altering 
APP processing towards a further increase in Aβ production, culminating in neuronal loss and 
perpetuating inflammation, which with the advance of the disease compromises blood-brain 
barrier (BBB) permeability, allowing the invasion of peripheral inflammatory cells that exac-

erbate the deleterious neuroinflammation and facilitate neurodegeneration [114]. Therefore, 

neuroinflammation in AD was firstly attributed exclusively to these innate immune sensors 
of Aβ, contributing to the exacerbation of the disease and viewed only as a response, but in 
reality the pathway is much more complex.

A decade ago, a significant change in this thought was brought by Wyss-Coray who reviewed 
the hypothesis that inflammation may serve as a cause and driving force for AD [115]. As seen 

by the significant immune response later on in the disease and as a response to the Aβ accumu-

lation, it is accurate to state that inflammatory pathways are a driving force in AD. However, 
for a causative role, inflammation should have an early impact or precede the pathogenesis 
of the disease [81]. In support of inflammation as a primary contributor for the disease, recent 
genome-wide association studies (GWASs) of sporadic AD cases (or LOAD—late-onset AD) 
have found associations between AD and genes that are involved in cholesterol metabolism and 

in innate immunity [116]. Surprisingly, even Selkoe and Hardy drew attention to the importance 
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of the innate immune system in AD on their update on the status of the amyloid hypothesis 

[74]. Accordingly, three risk genes have been highlighted: TREM2, CD33 and CR1, and all are 
involved in some way in microglial response, being upregulated during Aβ plaque development 
[117–119]. Another important aspect is the timeline involvement of the immune system response 

in AD’s development. Analyses from both patients with early AD and mild cognitive impair-

ment (MCI), which precedes AD stage, have identified a correlation between clinical symptoms 
and the presence of inflammatory markers in the cerebrospinal fluid (CSF), suggesting a much 
early involvement of the immune system in the disease [120, 121]. Noteworthy, a study in wild-

type mice found that chronic inflammatory conditions triggered the development of AD-like 
neuropathology during aging, demonstrating a case where immune response not only precedes 

fibrillary Aβ plaque deposition and neurofibrillary tangle formations but also is responsible 
for their induction [122]. Thus, the possibility to manipulate inflammatory pathways, thereby 
changing the course of the disease, is yet another indication of the role of inflammation as a driv-

ing force of AD pathology. The questions we should make previously of that said manipulation 
are: Which cells and immune molecules should be modulated? And when should modulation 

occur? As the activation of microglia and the neuroinflammatory environment are constantly 
changing depending on the stage of the disease, the time window for modulation and for thera-

peutically potential is very important [81]. Inefficiency in clinical trials with nonsteroidal anti-
inflammatory drugs  (NSAIDs) in AD could be largely due to wrong timing of intervention [123], 
since epidemiological and preclinical studies show a reduction up to 80% in the risk of AD onset 

and decrease in microglial activation and amyloid burden with NSAID use [124, 125].

As aforementioned, there is an uncontrolled production of cytokines and chemokines that may 

be used as effective tools for inflammatory biomarkers in AD. Early assessment of neuroin-

flammation in the AD patients may be an important preventive strategy to act before the det-
rimental aspects of neuroinflammation, thus averting or delaying any cognitive decline [126]. 

Several studies have investigated the levels of proinflammatory and anti-inflammatory mark-

ers in the CSF, plasma and serum of AD patients. IL-1β, TNF-α and IL-6 have been observed to 
be altered in the three types of samples in AD, although the results vary according to the time 

point of sampling [126]. Once again, the stage of the disease is a crucial factor for any thera-

peutic intervention. Moreover, an increase in TGF-β [127] and S100B [128] levels in the CSF 

from AD compared to controls has also been reported. Regarding blood-based biomarkers of 

inflammation, α-1-antichymotrypsin (ACT) [129] and C-reactive protein (CRP) [130] have been 

shown to be increased in AD. Noteworthy, α-2-macroglobulin (α-2 M) [131] and clusterin (or 

apolipoprotein J) [132] have been implicated in the pathology of AD, with significant increases 
in patients, showing promising results as potential plasma biomarkers of AD. Interestingly, 

many of these inflammatory mediators are also altered in MCI subjects. The levels of IL-8, 
monocyte chemoattractant protein-1 and interferon-γ-inducible protein 10 are found to be 
increased in CSF, while IL-1β and TNF-α are increased and apolipoprotein A-1 and comple-

ment C1 inhibitor are decreased in blood [126]. Besides the detection of neuroinflammatory 
markers, inflammation may be also monitored through imaging methods. In patients with AD 
or MCI subjects, increased microglia activation has been detected by PET scans [133].

The induction of neuroinflammatory effects is not restricted to factors of the CNS and can result 
from systemic influences [125]. On the one hand, traumatic brain injury is an example of a CNS-

intrinsic neuroinflammatory condition that facilitates the development of AD pathology [134]; on 
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the other hand,systemic inflammation may be induced from several chronic diseases [135], such 

as obesity and T2D, all characterized by CNS inflammation and microglia activation [136, 137]. 

Therefore, in AD, neuroinflammation can cause and drive pathogenesis [22].

3. Parkinson’s disease hallmarks

PD is the most common movement neurodegenerative disorder characterized by numerous 

motor symptoms, including tremor, bradykinesia, rigidity and postural instability [138]. PD is 

twice as common in men than in women, and about 2% of the population above the age of 60 is 

affected by the disease [139]. PD is characterized by the severe loss of dopaminergic neurons in 

the substantia nigra pars compacta (SNpc) and by the presence of intracytoplasmatic protein-

aceous inclusions called Lewy bodies, which are primarily composed of fibrillary α-synuclein 
(SNCA), and ubiquitinated proteins within some remaining nigral neurons [140, 141].

Several evidences from autopsy studies showed that multiple processes are involved in cell 

death, including oxidative stress, mitochondrial dysfunction, neuroinflammation, excitotoxicity 
and accumulation of misfolded proteins due to proteasomal and autophagic impairment [142].

Data show that mitochondrial deficits occur in PD patient’s brain neurons, platelets and lym-

phocytes [139],which play a critical role in the loss of dopaminergic neurons [143]. Furthermore, 

data suggest that mitochondrial dysfunction can be potentiated by defects in mitochondrial 

biogenesis caused by the deregulation of transcription factors, such as peroxisome proliferator-

activated receptor gamma coactivator1-alpha (PGC-1α) [144], which levels are decreased in post-

mortem brains of PD and in white blood cells [139]. Recent studies in post-mortem PD brain 

tissue showed that nigrostriatal axon terminals are dysfunctional, which can alter normal axonal 

transport. Also, the generation of ROS induces the damage of complexes I and III and protein oxi-

dation in mitochondria and in cytoplasmic proteins, leading to mitochondrial dysfunction [145].

Several studies obtained in post-mortem PD brain tissue, human clinical imaging and fluid 
biomarker have demonstrated that neuroinflammation is a salient feature and probably an 
essential contributor to PD pathogenesis [145]. Inflammation associated with oxidative stress 
and cytokine-dependent toxicity has been described and can lead to both innate and adap-

tive immune responses. Immune responses can act a secondary response to cellular damage 

and/ or neuronal loss in the affected regions of the nervous system. These mechanisms imply 
not only a complex crosstalk between the CNS and the peripheral immune system but also 

interactions between the brain resident immune cells (microglial cells) and other brain cells 

(neurons, astrocytes, endothelial cells) [146]. Indeed, it has been described that PD brains 

show microglial activation and lymphocyte infiltration in the areas of degeneration and an 
increased expression of inflammatory cytokines with alterations in the composition of periph-

eral immune cells, suggesting the key role of neuroinflammation in PD.

3.1. The role of mitochondrial dysfunction in Parkinson’s disease etiology

Mitochondrial dysfunction relevance in PD was first documented when 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) was associated with parkinsonian syndrome in humans [147]. 
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MPTP is able to cross the blood-brain barrier, is metabolized to 1-methyl-4-phenylpyridinium 

(MPP+) and is uptaken by dopaminergic neurons, inhibiting mitochondrial respiration at complex 

I [148]. Complex I activity was shown to be decreased in PD brain samples [149], in peripheral 

tissues namely platelets and lymphocytes [150] and in PD cybrids [151]. The inhibition of complex 

I, with MPTP and rotenone, is widely used as in vitro and in vivo models of PD since these reca-

pitulate the main features of the disease [152–154]. Mitochondrial dysfunction in PD tissues and 

models is also characterized by a decrease in ∆Ψmit [52, 155, 156]. Accordingly, at a functional 

level, brain bioenergetics is compromised in PD where PET scans showed glucose utilization are 
decreased in PD individuals in the occipital cortex compared to control individuals [157].

Oxidative damage driven by mitochondria malfunctioning is a prominent aspect in PD [158]. 

Mitochondrial complex I is one of the most important sites of ROS production in the cell, pri-

marily O
2
– [159]. The consequences of oxidative damage are such in PD that oxidative stress was 

proposed as the cause for dopaminergic neurons death in the SNpc [160, 161]. The same authors 

found in post-mortem samples from PD subjects increased lipid peroxidation whereas glutathi-

one pathway, an antioxidant defense, is impaired [160]. Mitochondria are the main producers 

and are also the primary targets of ROS. PD brain biopsies revealed complex I itself is oxida-

tively damaged, which prevents its proper assembly and function [149]. Although it is incon-

testable that oxidative stress contributes to PD pathology, it is now generally accepted that ROS 

are a by-product of mitochondrial dysfunction that contributes to worsen cell demise [162].

Familial forms of PD bearing mutations in mitochondrial proteins reinforced the involve-

ment of mitochondrial dysfunction in PD etiology and shed light into the mechanisms lead-

ing to neuronal death, unifying both familial and sporadic cases. Rare mutations causing 

juvenile PD are related to mitochondrial degradation by mitophagy created an opportunity 

for clarification of the disease mechanisms. The first identified mutation in PARK2 (Parkin), 

an E3 ubiquitin ligase, cause early onset PD [163]. The second mutation was identified in 
PARK6, PTEN-induced kinase 1 (PINK1) and a mitochondrial kinase [164]. PINK1 and Parkin 

act together in a tightly regulated process to target dysfunctional mitochondria for degra-

dation, named mitophagy. This process is crucial for the maintenance of a healthy pool of 

mitochondria, potentially protecting cells in early stages of mitochondrial dysfunction [165].

In healthy mitochondria, PINK1 levels are maintained low as this protein is degraded within 

mitochondrial matrix after its import from cytosol [166]. When mitochondria lose their mem-

brane potential, PINK1 is stabilized at their surface recruiting Parkin that, in turn, ubiquiti-
nates and targets mitochondria to undergo mitophagy [167–169]. PD caused by PINK1 and 

Parkin mutations is not clinically differentiated from idiopathic PD [170]. Morphologically, 

PINK1 mutations have drastic repercussions in mitochondria from Drosophila melanogaster to 

mouse models, with larger, swollen and disrupted cristae [171, 172]. In cybrids from sporadic 

PD subjects, mitochondria also present abnormal structure with enlarged and scarce cristae 

[52, 173]. Mitochondrial network images show that in PD models it presents a fragmented 

structure. From PD cybrids [174] to dopaminergic neurons treated with MPTP [175], a num-

ber of models show early mitochondrial fragmentation that precedes cell death. Although 

DRP1 has been implicated in the fragmentation of mitochondria in PD [174], studies point 

to SNCA directly interacting with mitochondria inducing fragmentation, in a process that 

does not require DRP1 [176]. Recently, it was found a common mechanism for mitophagy 

failure, besides Pink1-Parkin axis, that is shared by familial and sporadic PD, with potential 
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of an early biomarker [177]. In fibroblasts isolated from patients that carry PD mutations and 
idiopathic PD subjects, it was found an impairment in RHOT1 degradation that in turn delays 
mitochondria immobilization and consequent degradation [178]. RHOT1 is a mitochondrial 
kinesin adaptor protein that, upon mitochondrial damage, interacts with PINK1 and Parkin 

to target mitochondria for proteasomal degradation [179]. Consequently, abnormal levels of 
autophagy markers were found in brain tissue preparations from PD patients, both sporadic 

and early onset [180, 181]. This impairment in autophagy has been related to the decreased 

transport along microtubules and fusion of autophagic vesicles with the lysosomes rather 

than a defect in cell waste recognition by autophagy machinery [173]. Mitochondrial dysfunc-

tion is intimately connected to microtubule instability and, thus, autophagy impairment in PD 

models. In PD cybrids, intracellular transport of autophagosomes and mitochondria is com-

promised [173]. Accordingly, MPP+-treated cells have disrupted microtubule network and 

a decrease in mitochondrial trafficking [182]. Also, there are some data pointing that Parkin 

can bind to microtubules contributing to their stabilization, whereas ablation of Parkin causes 

reduced microtubule mass [183, 184]. Accumulation of non-degraded mitochondria and other 

autophagic substrates, such as SNCA aggregates, increments cell demise and contributes to 

Lewy body-like structure formation. Oxidative stress provoked by mitochondrial malfunc-

tioning is able to induce proteasomal subunit disassembly, leading to the accumulation of 

degrading substrates, such as ubiquitin [185], contributing to Lewy body formation and cell 

death. In fact, ubiquitin accumulation, impaired ubiquitin proteasome system (UPS) function 
and mitochondrial dysfunction have been proposed to be intimately associated [186].

3.2. Immune response in Parkinson’s disease

Despite PD is characterized by a slow and progressive degeneration of dopaminergic neu-

rons in the SNpc, the cause of this neuronal loss is still poorly understood. Nevertheless, 

neuroinflammatory mechanisms, such as microglial activation, astrogliosis and lymphocytic 
infiltration have been postulated to contribute to the cascade of events leading to neuronal 
degeneration [187].

A growing body of evidence suggests a role of autoimmune and neuroinflammatory mecha-

nisms in the etiopathogenesis of PD [188]. Peripheral immune responses can trigger inflam-

mation and exacerbate neurodegeneration in several neurodegenerative disorders including 

PD. Indeed, peripheral inflammation in early stages of disease appears to accompany the 
development of preclinical non-motor symptoms, including olfactory and gastrointesti-

nal dysfunction, providing a possible association between autoimmunity and PD [189]. 

Strikingly, chronic constipation, which occurs many years before the first motor symptoms of 
PD, is casually linked to peripheral inflammation [190].

Inflammation is a defense mechanism aimed at counteracting with diverse insults. In neu-

rodegenerative disorders, such as PD, inflammation could results from the activation of 
innate immunity by PAMPs; DAMPs or protein aggregates. Other than the activation of 

inflammatory responses, there is also the ability of the immune system to detect harmful 
agents. Mounting evidence indicates that dopaminergic cell death is influenced by the innate 
immune system and neuroinflammatory processes in PD. Soreq and coworkers described an 
altered expression of neuroimmune signaling-related transcripts in early stages of PD [191]. 
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Remarkably, epidemiological studies showed that non-steroidal anti-inflammatory drugs, 
such as ibuprofen lowers the risk of PD further supporting the contribution of inflammation 
to disease process [192–194]. Interestingly, the SNpc (main area affected in PD) exhibit high 
sensitivity to proinflammatory compounds, whereas the hippocampus appears to be more 
resistant, which can be explained due to the differences in the number of microglial cells 
between both areas [195]. In fact, numerous evidences that came from experimental PD mod-

els suggest that dopaminergic neurons are extremely vulnerable to inflammatory challenge 
[196, 197]. Moreover, stereotaxic injection of lipopolysaccharide (LPS, a Gram-negative bacte-

riotoxin that activates microglial cells) into the SNpc induced degeneration of dopaminergic 

neurons while sparing GABAergic and serotonergic neurons, suggesting selective dopami-
nergic neurons vulnerability to PAMPs [198].

There are several factors that may be underlying this selectivity. Dying neurons release sub-

stances that are recognized by glial cells, activating them, such as dopamine, neuromelanin 

and SNCA [199]. Dopamine seems to play a role in the inflammatory response induced by 
LPS, since depletion of this neurotransmitter prevents gliosis and reduces peripheral mac-

rophages infiltration and dopaminergic neuronal death induced by 6-hydroxydopamine 
(6-OHDA) [200]. Recently, Dominguez-Meijide and colleagues observed that the decrease in 

dopamine levels observed in early stages of PD promotes neuroinflammation and disease 
progression via glial renin-angiotensin system exacerbation [201]. Neuromelanin is able to 

activate microglia cells leading to neuroinflammatory processes and degeneration of dopa-

minergic neurons [202, 203]. Extracellular and misfolded SNCA prompts microglia activation 
and production of proinflammatory molecules [204–206].

Further support for a role of innate immunity activation in PD pathogenesis come from 

genetic studies showing that polymorphisms in some proinflammatory cytokines may influ-

ence the risk of developing PD. Indeed, there is an association between genetic variations in 

the human leukocyte antigen (HLA) region and sporadic PD [207, 208]. HLA isalso called 
human MHC molecules, which presentation activates CD+4 T cells and CD+8 cytotoxic 
lymphocytes. Remarkably, in a GWA study, several susceptibility loci have been identified 
as strong risk factors that are related to both innate and adaptive immune functions [209]. 

Moreover, PD-linked genes such as LRRK2 and SNCA are also known to stimulate inflamma-

tory responses and immunological regulation [210]. In fact, Harms and colleagues reported 
that accumulation of pathological SNCA in PD brain leads to T cell infiltration, microg-

lial activation and increased production of inflammatory cytokines and chemokines [211]. 

Furthermore, transgenic mice with overexpression of wild-type or mutated SNCA showed 

an early microglial activation [212, 213]. Beraud and colleagues demonstrated that misfolded 

SNCA directly activates microglia, inducing production and release of TNFα and increasing 
expression of Nfr2-dependent antioxidant enzymes [214]. Aggregated and nitrated SNCA 

also stimulates microglia activation triggering innate and adaptive immune responses [215]. 

Intranigral injection of SNCA resulted in the upregulation of mRNA expression of proinflam-

matory cytokines and the expression of endothelial markers of inflammation and microglial 
activation [216, 217]. Multiple immune cells show high levels of LRRK2 expression [218, 219]. 

R1441G LRRK2 mutation was shown to increase proinflammatory cytokine release from acti-
vated microglial cells [220, 221]. Moreover, LPS-mediated neuroinflammation is attenuated 
in murine lrrk2-knockdown brain microglia [222].
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The first evidence for a neuroinflammatory processes in PD came in 1988 when McGeer and 
co-workers observed the presence of activated microglial cells and inflammatory macrophages, 
as well as, proinflammatory cytokines in post-mortem brain samples of the SNpc of PD patients 
[223]. Similarly, Langston and coworkers reported an accumulation of activated microglia around 

dopaminergic neurons in post-mortem human brains with MPTP-induced parkinsonism [224]. 

Later, several authors corroborated this result and further observed the presence of other markers 

such as HLA-DP, HLA-DQ, HLADR (CR3/43), CD68 (EBM11, a low-density lipoprotein binding 
glycoprotein, equivalent to macrosialin in mice) and ferritin in the SNpc and putamen [225–227]. 

In addition, intercellularadhesion molecule-1-positive glia levels are also increased in the SNpc of 

PD brains, indicating activation of cells of the innate immune system, in particular, in areas with 

neuronal loss and extracellular melanin accumulation [228]. Furthermore, Damien and colleagues 

used glutathione peroxidase as an astrocytic marker and observed that the density of astrocytes in 

the SNpc is low when compared to the ventral tegmental area. This indicates that vulnerable neu-

rons in patients with PD have less surrounding astroglial cells and as a result reduced detoxifica-

tion of oxygen-free radicals by glutathione peroxidase [229]. McGeer and colleagues described 
for the first time the presence of cytotoxic T lymphocytes (CD8+) in the substantia nigra from one 
patient with PD [223]. Moreover, several reports found alterations in the population of blood T 

lymphocytes in PD patients [230–232]. In addition, cytotoxic infiltration of CD8+ and CD4+ T cells 
into the brain parenchyma of both post-mortem human PD specimens and in the MPTP mouse 

model of PD was described during the course of neuronal degeneration [233, 234]. Interestingly, 

these markers were not detected in the red nucleus suggesting that this infiltration is selective 
for the injured brain areas. Furthermore, these cells were in close contact with blood vessels and 

near to melanized dopaminergic neurons. These data indicate that cells migrate from the blood-

stream and suggest an interaction between the lymphocytes and the dopaminergic neurons dur-

ing the neurodegenerative process. Hence, alterations in the BBB might occur in the brains of PD 
patients. Not only during aging but also in PD, a BBB disruption can occur, leading to an invasion 

of immune cells, peripheral mediators, toxins and elements of adaptive immunity to the brain 

parenchyma potentiating the degenerative process [235]. Additionally, PD patients have increased 

permeability of the intestinal epithelial barrier and a chronic gut inflammation characterized by 
increased expression levels of proinflammatory cytokines and inflammatory markers [236, 237]. 

Moreover, several studies reported increase in TNFα, β2-microglobulin, epidermal growth fac-

tor (EGF), transforming growth factor α (TGFα), TGFβ1 and interleukins 1β, 6 and 2 levels in the 
striatum of PD patients and increasein TNFα, interleukin 1β and interferon γ levels in the SN of 
PD patients [238–243]. Interestingly, dopaminergic neurons express the receptors for these cyto-

kines, suggesting that they are sensitive to these cytokines [244, 245]. Proinflammatory cytokines, 
such as TNFα, interleukin 1β, and interferon γ, can induce the expression of the inducible form 
of nitric oxide synthase (iNOS) or cyclo-oxygenase 2 (COX2), which are known to produce toxic 
reactive species. To corroborate the previous studies, a CD23-mediated increase in iNOS in the 

SN of PD patients was found. Furthermore, enzymes that are involved in neuroinflammatory 
processes mediated by oxidative stress, such as NADPH oxidase, COX2 and myeloperoxidase, 
are also increased in PD patients [239, 246, 247]. This may indicate that the inflammation-derived 
oxidative stress could contribute to dopaminergic neuronal degeneration.

The results obtained in post-mortem studies were further corroborated by studies carried out in 

biological fluids (serum or CSF) of patients suffering from PD. Serum samples from PD patients 
indicated that the expression of certain cytokines such as IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, 
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TNFα, TNFR1 and RANTES is increased [248–254]. Interestingly, RANTES levels were corre-

lated with the severity and duration of the disease [255]. Additionally, studies analyzing CSF 

from PD patients reported proinflammatory changes such as the presence of TNFα [238] and 

interleukin 1β [225, 256, 257] and osteopontin (a member of the integrins family) [258]. Moreover, 

PET scan analysis also reported the presence of PK-11195 in PD samples, which is indicative of 
microglia activation [259, 260]. PET analysis using radioligand 11C-PK-11195 corroborated these 

results in the SNpc of sporadic PD patients within a year from clinical onset [261]. More recently, 

microglial activation in PD has been observed with PET by using [18F]-FEPPA [262]. Moreover, 

it was found a significantly increase numbers of T-helper 17 cells and myeloid-derived suppres-

sor cells in peripheral circulation in PD patients compared with controls [263]. This suggests that 

a microglial-mediated inflammatory process occurs early in PD process.

It has also been demonstrated that mitochondrial toxins, such as 6-OHDA, MPTP and rote-

none, trigger an immune reaction in the striatum and SNpc suggesting that a primary damage 

to the mitochondrial respiratory chain represents, per se, a trigger for microglial activation 

and neuroinflammatory processes [264–267]. This reaction includes activation of microglia 

and infiltration of CD4+ and CD8+ T cells. Rotenone administration was shown to cause 
microglial activation not only in rodent models [268] but also in human microglial cell lines 

[269]. Similarly, a significant increase in the number of activated microglial cells was detected 
in the brain of 6-OHDA rats, at both nigral and striatal areas [233, 270]. Moreover, in the same 

model CD+3, CD+4 and CD+8 T cells were abundant and migrated from blood vessels into 

the SNpc [271]. Additionally, in the brains of both monkeys and mice after systemic injection 

of MPTP, an activated microglia and infiltration of T-lymphocytes has been observed [197]. 

Microglial activation was also observed in mice that overexpress SNCA [213], in the SNpc and 

striatum of rats exposed to 6-OHDA [272, 273] and to MPTP [274].

Interestingly, intranigral or systemic injection of LPS in animals can selectively kill dopami-

nergic neurons [200, 275–279]. Furthermore, injection of LPS into pregnant female rats led to 

offspring with less and abnormal dopaminergic neurons and increased levels of TNFα in the 
striatum when compared to the controls [280]. Remarkably, the offspring in adulthood were 
also more susceptible to the effects of parkinsonian toxins than were the controls [281, 282]. 

Furthermore, the injection of other proinflammatory compounds such as thrombin within the 
SNpc also induced the death of dopaminergic neurons [283, 284]. These studies suggest that 

microglia-mediated inflammation underlies the neuronal cell death in the SNpc.

As previously mentioned, microglial cells when activated produce and release toxic oxygen-

derived and nitrogen-derived products, which rely on the regulated induction of several enzy-

matic systems such as NADPH oxidase and iNOS.Indeed, the expression of these biocatalytic 
systems within the SNpc is significantly increased in PD patient’s post-mortem samples as well 
as in PD animal models [239, 247]. Oxygen and nitrogen-derived products such as NO, O

2
− and 

ONOO− can directly cross membranes and enter dopaminergic neurons, which can cause oxida-

tive damage in tyrosine hydroxylase decreasing its enzymatic activity and in SNCA promoting its 

aggregation [285, 286]. Additionally, activated microglia can release inflammatory cytokines and 
chemokines, such as TNFα, interleukin 1β and interferon,whichcan induce neurotoxicity via a 
direct mechanism through receptor binding on dopaminergic neurons or an indirect mechanism 

through glial-cell activation and expression of inflammatory factors. In fact, chronic adenoviral 
expression of TNFα in the SNpc of rats can cause time-dependent dopaminergic cell death [287].
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4. The interplay between mitochondria and innate immunity

In response to microbial infection, the mammalian innate immune system recognizes invad-

ing microorganisms and orchestrates a proinflammatory immune response to eliminate the 
undesired pathogens and infected cells. The sensing of the infection by the innate immune 

system is mediated by a variety of pattern recognition receptors (PRRs), which recognize 
molecular patterns conserved among microbial species known as PAMPs. For detailed infor-

mation regarding the different families of receptors, respective PAMPs recognition, and 
the intracellular signaling cascades triggered, see reference [288]. Interestingly, even in the 

absence of microbial infection, PRRs sense and orchestrate inflammatory responses through 
recognition of intracellular molecules known as DAMPs. DAMPs are endogenous molecules 

sequestered within cellular compartments of healthy cells, which, upon injury or stress, are 
released to trigger sterile proinflammatory immune responses.

Recent insights revealed that mitochondria are an important source of DAMPs. Interestingly, 

upon injury, both mtDNA and N-formylated peptides can act as DAMPs. This is due to the 

fact that mitochondria and bacteria display some similarities in that both possess circular 

DNA, N-formylated proteins and are double-membrane structures—evidence used in sup-

port of the endosymbiotic theory. mtDNA is similar to bacterial DNA in that it contains 

CpG motifs, which activate the TLR9 [289, 290]. Moreover, mitochondrial protein synthe-

sis is initiated with the residue N-formyl methionine, similar to bacterial protein synthesis 

[291]. The resulting bacterial N-formylated peptides are known to act as PAMPs by binding 

and activating G protein-coupled formyl peptide receptors (FPRs) [292], while the mitochon-

drial N-formylated peptides act as DAMPs through activation of the formyl peptide receptor 

1 [290]. Therefore, upon injury, release of these mitochondrial DAMPs activates the innate 

immune system, much like bacterial PAMPs, to promote sterile inflammatory responses [290].

Several studies have now described a crucial role for mitochondria in the regulation and activa-

tion of the inflammasome, specifically the NLRP3 inflammasome [293]. The inflammasomes 
are intracellular molecular platforms activated upon cellular infection or sterile stressors, which 

activate the proinflammatory cytokines, interleukin-1β (IL-1β) and IL-18, to trigger pyroptotic 
cell death (reviewed in [294, 295]). A variety of insults, resulting from cellular infection or stress, 

can promote mitochondrial dysfunction and activate the NLRP3 inflammasome [293]; however, 

the molecular mechanisms underlying the contribution of mitochondria to the activation of the 

NLRP3 inflammasome have only recently been described. While initial studies showed that 
mitochondrial dysfunction and mtROS production are required for NLRP3 inflammasome acti-
vation [296, 297], further evidence has shown that mtDNA translocation to the cytosol plays an 

active role in this process [297, 298], where it can directly bind to and activate the NRLP3 inflam-

masome [298]. In addition, the mitochondrial lipid cardiolipin—a phospholipid located exclu-

sively in mitochondrial inner and bacterial membranes, regarded as evidence for symbiogenesis 

[299, 300]—is also required for NLRP3 inflammasome activation, by directly binding to NLRP3, 
downstream of mitochondrial dysfunction [301]. Altogether, mitochondria and mitochondrial 

DAMPs (such as mtDNA and cardiolipin) play a critical role in NLRP3 inflammasome activa-

tion and regulation. Moreover, by sensing mitochondrial DAMPs, the NLRP3 inflammasome 
plays a critical role in integrating mitochondrial dysfunction in a proinflammatory signaling 
response, thus explaining the association of mitochondrial damage with inflammatory diseases.
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Despite the great number of studies describing mitochondria as a source of DAMPs during 

inflammation in the periphery, the potential for mitochondrial DAMPs to trigger, or exacer-

bate, inflammation in the brain is now being explored. In recent studies, this potential was 
tested by treating different brain cell types with mitochondrial components and measuring 
markers of inflammation afterwards. Neuronal and microglial cell lines exposed to mito-

chondrial lysates displayed increased markers of inflammation, with mtDNA being identi-
fied as the candidate DAMP responsible for the inflammatory changes [95]. While SH-SY5Y 
neuronal cells treated with mitochondrial lysates showed increased TNFα mRNA, decreased 
IκBα protein and increased NF-κB protein, microglial cells treated with mitochondrial lysates 
showed increased TNFα mRNA, increased IL-8 mRNA and redistribution of NF-κB to the 
nucleus [95]. In a different study, extracellular recombinant Tfam treatment of different mod-

els of human microglia, in combination with IFN-ϒ, was shown to induce secretions that 

were toxic to SH-SY5Y neuronal cells [302]. Recombinant Tfam treatment induced the expres-

sion of proinflammatory cytokines, such as IL-1β, IL-6 and IL-18, supporting the hypothesis 
that Tfam may also act as a proinflammatory intercellular signaling molecule recognized by 
brain microglia [302]. Moreover, mice injected with isolated mitochondria into the brain also 

revealed increased markers of inflammation such as increased Tnfα, increased NF-κB phos-

phorylation, increased GFAP protein and decreased Trem2 mRNA [94]. Despite these novel 

findings describing a role for extracellular mitochondrial DAMPs as proinflammatory signal-
ing molecules in the brain, little is known about the mechanisms by which mitochondria act 
as a transcellular signaling platforms in the CNS. Recent research revealed that neurons and 

astrocytes can exchange mitochondria as a potential mode of cell-to-cell signaling [303, 304]. 

Whilean initial study showed that retinal ganglion cell axons can transfer mitochondria to 

adjacent astrocytes for degradation [303], mitochondria can also be transferred from astrocytes 

to adjacent neurons during ischemia to amplify cell survival signals [304], thus representing 

a neuroprotective strategy or a more efficient way to dispose/recycle mitochondria. However, 
during neurodegeneration, increased disposal of damaged mitochondria by compromised 

neurons (e.g. due to compromised mitochondrial quality control mechanisms) or its inefficient 
uptake by the recipient astrocytes (e.g. due to the presence of extracellular protein aggregates) 

might result in extracellular accumulation of mitochondrial DAMPs and, as a result, exacer-

bating neuroinflammation. Further research is necessary to test this hypothesis and identify 
the PRRs in the brain that are responsible for recognizing extracellular mitochondrial DAMPs; 

nevertheless, these studies suggest that mitochondria play an active role in neuroglial cross-

talk during cellular homeostasis and stress.

5. Concluding comments

Although the innate immune system has specialized in the recognition of molecular pat-

terns foreign to the host cells, cellular injury or stress may result in the release of endogenous 

molecular patterns, which trigger sterile inflammatory responses. Given its bacterial origin, 
mitochondria display some similarities with bacteria and represent an important source of 

DAMPs (including lipids, nucleic acids and proteins) with immunostimulatory potential. 

While under healthy conditions these DAMPs are sequestered within mitochondria, patho-

logical insults resulting in mitochondrial and cellular damage promote the release of these 
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danger signals to cause inflammation mediated by the innate immune system. Recent studies 
have shown that mitochondrial DAMPs have the potential to mediate inflammatory signaling 
in the brain; therefore, its contribution to the neuroinflammatory process in neurodegenera-

tive disorders characterized by impaired mitochondrial function represents an emerging and 

promising field of research (Figure 1).

Further understanding of neuronal innate immunity-induced chronic mild neuroinflamma-

tion and its impact on age-related neurodegenerative disorders should focus on new studies 

addressing not only mitochondrial dysfunction and protein oligomerization but also mild 

inflammation, nutritional states, among others. The development of new biomarkers focus-

ing on the inflammatory process and the identification of protective inflammatory processes 
should be pursuit. Additionally, exploiting the effect of mutations, epigenetic and the micro-

biome on immune-related modifications affecting the AD and PD phenotypes will be of para-

mount relevance to understand etiology of both diseases.

Figure 1. Mitochondria are primary targets of cellular peptides, such as Aβ, tau and SNCA, overproduced during AD 
and PD pathogenesis. Damaged mitochondria are a source of DAMPs that activate the NLRP3 inflammasome and TLRs 
leading to the intraneuronal production of cytokines. These proinflammatory cytokines are released and activate innate 
immune response through microglia and astrocytes. This chronic inflammation impacts neurons exacerbating peptides 
formation and mitochondrial damage.
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