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Abstract

In the mitochondria, there are ongoing processes essential to the survival of cells associated 
with the production of energy ending in the oxidative phosphorylation and the formation of 
ATP, constituting a form of energy for majority of metabolic processes. Except for nutrient 
oxidation in the citric acid cycle interfacing with the process of oxidative phosphorylation, 
mitochondria are linked to a number of metabolic pathways ongoing directly in mito-
chondria or indirectly in cell compartments by serving substrates. Mitochondrial activities 
maintenance requires continual draw of intermediates from cytosol through the double 
mitochondrial membrane as well as transport in the reverse direction. Interconnection and 
regulation of all the processes are mediated by transporters and carriers, activities of which 
are affected by cell and body requirements. In the chapter, the main transport systems 
localized in membranes of mitochondria, their regulation, affection, and disorders in the 
background of mitochondria aberrant functions are described. Voltage-dependent anion 
channels, translocase of mitochondrial outer membrane, deoxynucleotide carrier, ADP/
ATP nucleotide translocase, and phosphate carrier in mitochondrial inner membrane are 
among them. In more detail, the pyruvate carrier and its abnormal activity, but also others 
as di- and tri-carboxylate, glutamate, and ornithine carriers, are characterized. The uncou-
pling protein, as solute carrier family members, involvement is also mentioned.

Keywords: carrier, mitochondria, mitochondrial inner membrane, mitochondrial outer 
membrane, transporter

1. Introduction

Mitochondria are two membrane organelles present in all cells that have a nucleus. They 

are the energy center of the cells. Their primary role is the production of ATP in oxidative  
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phosphorylation, and the basis of the aerobic oxidation is the citric acid cycle interconnection 

representing the final metabolic pathway of oxidation of all major nutrients to the respiratory 
chain where oxidation of reduced coenzymes results in ATP formation. The nutrient to be 

oxidized must transfer the mitochondria by means of the transporters, as pyruvate produced 

in glycolysis in the cytosol. After fatty acids released by hydrolysis of lipoproteins or triacylg-

lycerols transport across the mitochondrial membranes, acetyl-CoA arising from β-oxidation 
enters the citric acid cycle. Similarly, amino acids or their catalytic products enter the citric 

acid cycle at different sites. The production of energy in mitochondria from various nutrients 
is controlled by the availability of the individual nutrients that a given organ or tissue can use. 

For example, in excess of carbohydrates, the energy is obtained from glycolysis rather than 

from fatty acids and amino acids. The needs for ATP produced in oxidative phosphorylation 
vary in different cell compartments, and therefore it is efficiently transported out of mitochon-

dria. Through the activity of uncoupler proteins, mitochondria also regulate energy produc-

tion in the form of heat. In addition to providing different forms of energy, mitochondria are 
involved in other important metabolic processes. In the excess of saccharides, the acetyl-CoA 

resulting from pyruvate is not used in the citric acid cycle but is transported to the cytosol for 

the synthesis of more energy-efficient reserve, triacylglycerols. When there is a lack of glucose, 
mitochondria provide the intermediates for gluconeogenesis, but also participate in the syn-

thesis of various substances, such as urea, heme, and polyamines. Reactive oxygen and nitro-

gen species production and triggering the intrinsic apoptotic pathway are other significant 
functions. They synthesize proteins from their own DNA, but most mitochondrial proteins are 

encoded by nuclear genes. Mitochondria are the sole site for Fe-S cluster biogenesis, which is 

also the only fully conservative function. The diversity and importance of biochemical path-

ways taking place in the mitochondria require the access of substrates and transport products 

generated outside the mitochondria. In terms of ensuring the normal physiological functions 

of the mitochondria, it is therefore crucial to ensure the transfer of the substances through 

the mitochondrial membranes separating the organelle from the cytoplasm, thus allowing the 

course of these specialized metabolic processes. Therefore, the chapter is focused on the mito-

chondrial transport proteins, transporters of citric acid cycle intermediates, localized in mito-

chondrial outer and inner membrane, since their activities significantly affect the functions of 
mitochondria and subsequently functions of the given organ, tissues, and the whole organism.

2. Mitochondrial outer membrane transport proteins

The mitochondrial outer membrane (MOM) is characterized by higher lipid content than inner 

membrane and is permeable to small molecules such as sucrose, salts, adenine nucleotides, coen-

zyme A, and tRNA. It is not permeable to larger molecules such as inulin, polyglucose, cyto-

chrome c, or albumin [1]. The outer mitochondrial membrane contains three integral membrane 

protein families. The entire translocation and insertion of nearly all newly synthesized proteins 

destined to the mitochondrial organelle is mediated through channels as part of larger protein 

complexes, translocase of the outer membrane (TOM complex), the sorting and assembly machin-

ery (SAM) complex (followed by translocase of the inner membrane of mitochondria (TIM))  [2]. 

Channels, generally, are used to conduct ions and cycle between open and closed states, with 
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some also exhibiting an inactivation step forming a completely continuous tunnel through a 

bilayer that allows for rapid conductance of many ions [3]. The third protein family are voltage-

dependent anion channels (VDAC), which are permanently open under physiological conditions 

with some evidence-based regulations [4]. VDAC is the most abundant protein of outer mito-

chondrial membrane (∼ 10 thousand copies per mitochondrion), whose functions in permeability 

of compounds between cytosol and mitochondria have been shown to be related either to physi-

ological or pathological states [5–7]. Many cases of abnormal manifestations of mitochondria are 

the consequence of this type of regulation of the mitochondrial outer membrane permeability [8].

2.1. Voltage-dependent anion channel

The functions of VDAC related to four main aspects are controlling of transport of metabo-

lites and ATP transport between mitochondria and cytoplasm, forming part of mitochondrial 

permeability transition pore; modulation of inner mitochondrial Ca2+ level through connec-

tion to endoplasmic reticulum calcium release channel IP3R with glucose-related protein 75 

and through phosphorylation cluster sorting protein 2 (PACS2), regulating Bid of Bcl2 pro-

apoptotic factor family-mediated apoptotic pathways; and regulation of intracellular redox 

substances [9]. VDAC is a way of transiting reactive oxygen species (ROS) from mitochondria 

to cytoplasm, though it reacts directly with the NO leading to decrease in permeability and 

inhibition of mitochondrial transition pore [10].

VDAC, mitochondrial porin, forms a barrel comprised of a transmembrane alpha helix and 

13- and more transmembrane beta strands. Beta barrel encloses a channel large in diameter 

(~3 nm), which is permeable to molecules up to ~5 kDa in the open configuration [11]. In vitro 

studies have shown a conserved property of eukaryotic VDAC channels to adopt multiple con-

ductance states [12]. In humans, three isoforms of VDAC (VDAC 1–3) located on chromosome 

5, each of 30 kDa, are known [13]. VDAC1 and 2 have prototypic voltage gating, but VDAC2 

also has a second discrete lower conductance and ion selective state. VDAC3 is not fully volt-

age-dependent [14], and unlike the previous two types, VDAC3 is evenly distributed [15].

The role of membrane potentials (Ψ) in the physiological regulation of VDAC conductance is 
considered with regard to appearance of Donnan potential across the outer membrane [16]. 

However, ambiguity is not confirmed due to the presence of charged macromolecules on both 
sides of outer membrane, and high ionic strength of intracellular environment decreasing 

Donnan potentials and causing closure of channels. Differences in pH across the outer mem-

brane indicate the presence of Donnan potential of ~−40 mV, close to a gating potential for 
VDAC [17]. Positive and negative ΔΨ close VDAC symmetrically with half maximal closure 
at ±50 mV. In the open state, anions are favored over cations, but the selectivity is weak. In the 

closed state, VDAC becomes a cation selective pore of 1.8 nm in diameter that still conducts 

small cations, such as K+, Na+, and Ca2+, as well as Cl−, whose movement through VDAC col-

lapses electrical potentials [16]. In most conductive, open state, VDAC shows significant pref-
erence especially for metabolic anions. The states of lower conductance reduce permeability 

to metabolic anions, thus greatly diminishing metabolite flux across the outer mitochondrial 
membrane [18]. The flux of charged metabolites does not significantly contribute to the mem-

brane potential because it is confined by the internal mitochondrial membrane transport, which 
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is even 2 orders of magnitude less than the flux of small ions through VDAC in the closed state. 
However, when VDAC closes, the transition of major anionic metabolites (as creatine phos-

phate, ATP, ADP, Pi, and respiratory substrates) is prevented [19]. A number of papers have 

been published that confirm the VDAC conductance regulation by several factors contributing 
to the explanation of mitochondria dysfunction and affection by the energy metabolism of cells.

3. Physiological implication of VDAC affection by membrane bound 
proteins

It has been shown that the disruption of mitochondrial functions is linked to the occurrence of 

mutations in genes encoding various types of intermediate filament proteins. In humans, the 
different morphology, distribution, and function of mitochondria in patients with neurological 

disorder [20, 21], types of myopathies [22, 23], or epidermolysis bullosa simplex [24] were docu-

mented. The cytoskeleton proteins as tubulin, desmin, vimentin, and plectin have been found 

to interact with mitochondrial outer membrane, where they are involved in the ATP/ADP trans-

mission control through VDAC, thus mediating or influencing mitochondrial functions.

3.1. Tubulin

Tubulin binds with high affinity to cellular membranes, and bound to mitochondrial membranes 

represent ~ 2% of total cellular tubulin [25]. It is important for ensuring intracellular transport 

and DNA segregation in cell division. Rostovtseva et al. [19] have found induction of fast, revers-

ible blockade of VDAC conductance by tubulin at nanomolar concentration in 1–100 ms range. 

Closing occurs in concentration-dependent manner and negative potential as low as 5 mV. The 

type of VDAC, phosphorylation level, and membrane lipid composition have an impact on 

VDAC blocking. Change in channel selectivity in blocked state results in impermeability to ATP 

[26]. The restriction of ATP/ADP and other respiratory substrates fluxes leads to reduction of 
oxidative phosphorylation and promotion of apoptosis. Therefore, signals that enhance VDAC-

tubulin binding by kinase-regulated phosphorylating VDAC or by increasing the concentration 

of available free tubulin in the cytosol would reduce mitochondrial respiration [27].

3.2. Desmin

One other regulating mitochondria affinity to ADP and oxygen consumption through direct 
binding to VDAC is the muscle-specific intermediate filament protein, desmin. The function 
of desmin is to form a three-dimensional scaffold that interconnects the contractile apparatus 
to the nucleus, cellular organelles, and the sarcolemma [28]. Proximity of sarcoplasmic reticu-

lum and mitochondria by desmin scaffold allows facilitation of direct protein and metabolite 
targeting to mitochondria [29–31]. Interaction of desmin with contact sites (VDAC, adenine 

nucleotide translocator (ANT) and mitochondrial contact site complex) affects mitochondrial 
permeability transition pore (mtPTP) behavior and respiratory function [32, 33]. Studies 

on mice have shown that desmin deficiency leads to development of skeletal and myocar-

dial defects associated with a deteriorated structure and function of mitochondria [22, 34].  
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Mitochondrial abnormalities cause cardiomyocyte death and myocardial degeneration, 

accompanied by inflammation and fibrosis, resulting in dilated cardiomyopathy and heart 
failure [35–38]. The cardiac-specific small heat-shock protein, αB-crystallin, was proven to 
rescue desmin-deficient heart failure and maintain mitochondrial functions through inhibi-
tion of mtPTP. In addition, similarly as tubulin, desmin affects mitochondrial bioenergetics 
through interaction with VDAC and ATP synthase [39].

3.3. Vimentin and plectin

Association of vimentin with mitochondria increases mitochondrial membrane potential and 

has an important function in controlling the production of ATP to various sites in the cyto-

plasm [40]. As a possible mechanism of action, the similarity of the mitochondrial binding 

site on vimentin with the domains targeting outer mitochondrial membrane is reported. The 

domains interact with the VDAC, increasing its permeability for several negatively charged 

compounds (such as pyruvate, succinate, ADP, etc.), thus compensating decreasing mem-

brane potential effects of hexokinase [41], or tubulin. A study by Winter et al. [42] suggests 

that plectin 1b also plays an important role in regulating mitochondrial outer membrane per-

meability to ADP and ATP through VDAC.

4. VDAC regulation by mitochondrial kinases

4.1. Hexokinases

Mitochondrial localized kinases, hexokinase, and creatine kinase have been shown to regulate 

outer VDAC conductance [43–45]. There are three isoforms of hexokinases (fourth is gluco-

kinase) known to mammals, whose role is to retain glucose in the cell by phosphorylation at 

position 6, thereby subsequently metabolizing in glycolysis and pentose phosphate pathways. 

Isoenzymes are of different subcellular localization: I and II are localized in the outer mito-

chondrial membrane reflecting controlling glycolysis, and III and IV in the nuclei and cyto-

plasm more reflecting the synthesis of glycogen and the pentose-phosphate pathway. Along 
with highly elevated levels of aerobic glycolysis (and suppression of mitochondrial respiration, 

Warburg effect) when compared to healthy tissue, high expression of hexokinase and more 
than doubled activity concurrently with VDAC closure were found in cancer cells [8, 46–48].

Both glucose phosphorylation reaction and hexokinase binding to VDAC have been found 

to pronounce protective effects against cell death [49]. A study by Azouylay-Zohar et al. [41] 

shows hexokinase-I acting through its N-terminal mitochondrial binding domain block con-

ductance of rat liver mitochondrial VDAC and block opening of mtPTPs. An outer membrane 

potential generation (OMP) by hexokinase bound to VDAC allows electrical suppression 

of mitochondria and calcium extrusion from mitochondrial intermembrane space (IMS). 

Interestingly, a significant limitation on the permeability of the MOM is the reaction velocity 
of hexokinase binding to VDAC that is only mild per se but the OMP becomes high enough 

to prevent release of ADP from mitochondrial inner membrane (MIM), which should lead to 

inhibition of the hexokinase reaction. Yet, OMP values directly depend on percentage bounds 
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formed, glucose concentration, metabolic conditions, and the presence of tubulin-like effec-

tors increasing VDAC voltage sensitivity [4]. Prevention of ATP production together with 

higher hexokinase activity favors glycolysis. Research has shown that cancer cells respire in 

the absence of glucose, suggesting that VDAC blocking is not absolute, and the respiration 

increases with the addition of glucose. Increase in respiration is attributed to the formation 
of ADP in the hexokinase-catalyzed reaction and subsequent stimulation of oxidative phos-

phorylation. Since not all VDACs are closed, preferential access to mitochondrial ATP may 

be allowed for the hexokinase reaction [8]. Another principle applies if ATP from cytosol is 

readily available for hexokinase, leading to so-called turbo effect of uncontrolled glycolysis 
activation and development of metabolic burst [4].

The product hexokinase-catalyzed reaction, glucose-6-phosphate, was found to potentiate ATP 

release from mitochondria with the recovery of normal metabolism, and substrate replace-

ment, even increased by induction of release of hexokinase and glucokinase from bound to 

VDAC [4, 41, 50]. Therefore, the effect of hexokinase dissociation from VDAC is the subject of 
many studies dealing with the development of potent chemotherapy of cancer diseases.

Most interestingly, there is a view of influencing metabolism of the mitochondria by blocking 
VDAC after binding of glucokinase in pancreatic beta cells. The glucokinase acts as a glucose 

sensor to maintain glucose homeostasis also in neurons, pituitary, and endocrine K and L cells 

[51], as its K
m

 of approximately 5 mM matches the set point of blood glucose [52]. An alterna-

tively spliced glucokinase with an additional N-terminal sequence that promotes glucokinase 

binding to both mitochondria and secretory granules is expressed in pancreatic beta cells [53]. 

Glucose-6-phosphate formed after glucose enters beta cells acts to dissociate glucokinase from 

mitochondria and open VDAC permitting mitochondrial uptake of ADP, Pi and respiratory 
substrates, formation of ATP, and release of ATP into the cytosol. Increased cytosolic ATP/ADP 

then inhibits K
ATP

 channels, which causes plasmalemmal depolarization, activation of Ca2+ 

channels, and Ca2+-dependent exocytosis of insulin granules [8]. Then, respiratory substrates 

that require the passage through VDAC, such as pyruvate, lactate, and long-chain fatty acids, 
do not trigger insulin synthesis directly. But their permeable substrates without the need for 

VDAC transport such as short-chain fatty acids or methylpyruvate are capable of insulin syn-

thesis induction [54]. Ahmed et al. [55] found that under glucotoxic conditions upregulation of 

VDAC1 expression occurs initiating a mitochondrial death cascade and beta cell dysfunction.

4.2. Creatine kinases

Two creatine kinase (CK) isoforms are expressed in vertebrate tissues, namely dimeric cyto-

solic and octameric mitochondrial located in the peripheral intermembrane space and the 

cristae MIM (MtCK) [56]. In addition, there are tissue-specific mitochondrial isoforms in the 
sarcomers of striated muscles (sMtCK), and in most other tissues, they are present as ubiq-

uitous MtCK (uMtCK) [57]. Similar to hexokinase, creatine kinase acts as energy sensor and 

mediates antiapoptotic effect through VDAC-ANT complexes with preferential use of mito-

chondrial ATP [41, 58].

Isoenzymes are associated to subcellular structures, forming microcompartments that facilitate 

a functional coupling, e.g., a direct exchange of ADP and ATP between the association partners 
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without mixing with bulk [59]. In IMS, MtCK renders a high affinity to cardiolipin and other 
anionic phospholipids forming a cross-link of two peripheral mitochondrial membranes [60] 

and to ANT, thus forming a complex of MtCK-VDAC-ANT and cardiolipin. The MtCK-VDAC 

association is enhanced at physiological calcium concentrations [61]. MtCK associates only 

with inner membrane and ANT in the cristae space. MtCK preferentially uses mitochondrial 

ATP that is exported via ANT to phosphorylate creatine, which has a higher diffusion rate in 
comparison to ATP, thus providing spatial energy shuttle. The locally produced ADP is imme-

diately reimported into the mitochondrial matrix space via ANT, and phosphocreatine is then 

released into the cytosol via VDAC [62]. It keeps maintaining a relatively low [ATP]/[ADP] 

ratio in the mitochondrial matrix to stimulate oxidative phosphorylation. The degree of such 

metabolite channeling varies among different tissues, species, and developmental states [63].

Changed functionality of the CK essentially leads to changes in energy flows as well as cal-
cium homeostasis, leading in particular to changes in muscle activity. Up to 40% of the cel-

lular volume of the heart consists of mitochondria, with sMtCK activity being the highest 

among all tissues and representing up to 25% of CK activities [64]. Reducing its activity is the 

cause of congestive heart failure [65]. As is well reviewed in Schlattner et al. [62] with impair-

ment of the CK system, dilated cardiomyopathy, hypertrophy, and heart failure were found 

in animal models. In addition, the protective effect of creatine supplementation and hence the 
enhancement of the CK system have been found to be beneficial in human Duchenne muscu-

lar dystrophy, mitochondrial cytopathies, and phosphorylase deficiency and in animal mod-

els of amyotrophic lateral sclerosis, Huntington’s disease, Parkinsonism, and brain ischemia. 

However, as found in the study by Qian et al. [66], overexpression of uMtCK increased sur-

vival ability of cancer cells and downregulation of mitochondrial apoptotic pathway proteins.

5. Some other factors affecting VDAC conductance

Besides the aforementioned intermediate filament proteins and mitochondrial kinases, the 
conductivity of VDAC as described by Lemasters et al. [67] is regulated by a number of other 

factors, for example, Bcl-2 family members, protein kinase A, glycogen synthase 3β, protein C 
kinase ε, NADH, Ca2+, ATP, and glutamate [68].

Protein kinase A phosphorylates VDAC and thus increases its sensitivity to tubulin and 

decreases VDAC conductance [69]. Glycogen synthase 3β–mediated VDAC phosphorylation 
promotes VDAC opening [70].

The Bcl-2 protein family belongs to the key factors in the regulation of apoptosis , modulation 

of Ca2+ and signal transduction pathway. The Bcl-2 protein as anti-apoptotic protein prevents 

the release of cytochrome c and the activity of caspase. Bax, the main regulator of Bcl-2 activ-

ity, can interact with VDAC to increase VDAC aperture and increases mitochondrial perme-

ability, promoting apoptosis [71]. The proper proportion of Bax and Bcl-2 maintains the cell 

homeostasis to ensure cell survival [72].

Lemasters et al. [67] introduced a concept of aldehyde-dependent VDAC closure, mitochon-

drial uncoupling, and disruption of normal mitochondria functioning resulting from ethanol 
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metabolism effects. Aldehydes derivation during lipid peroxidation, VDAC closure is probably 

a common feature leading to liver pathologies as was pointed out on almost indistinguishable 

histopathological manifestations in alcoholic liver disease, nonalcoholic fatty liver disease, non-

alcoholic steatohepatitis, and toxicant-associated steatohepatitis. Ethanol is metabolized pre-

dominantly by the liver in two-step oxidation: first to acetaldehyde (AcAld) by catalytic action 
of alcohol dehydrogenase (ALD) followed by oxidation to acetate by aldehyde dehydrogenase 

(ALDH). The first step undergoes in cytosol and peroxisomes by effect of cytochrome P4502E1 

and catalase. Although the oxidation is prevalent over ALD, the consequence of cytochrome 

P450 metabolism is overwhelmingly negative due to the formation of ROS, e.g., hydroxyethyl 

radicals. Of the 19 known mammalian ALDH genes, mitochondrial ALDH2 with high affin-

ity for AcAld (K
m

 < 1 μM) is the most important for AcAld oxidation (and detoxification) to 
acetate [73]. In both reactions, by oxidation of 1 mole of ethanol, 2 moles of NADH are formed, 

further requiring oxidation in the respiratory chain. As little as 2.5 h after a single bolus dose 
of ethanol ingestion a swift increase of alcohol metabolism (SIAM), an adaptive increase of 

hepatic ethanol metabolism occurs [74]. Mitochondrial respiration causing NADH oxidation 

nearly doubles, but it does not lead to increased ATP generation. To the contrary, hepatic ATP 

decreases, glycolysis is stimulated, and glycogen stores are depleted. Furthermore, mitochon-

drial β-oxidation of fatty acids becomes inhibited, promoting fat accumulation within hepato-

cytes (steatosis) [75]. This is probably the result of decrease in MOM permeability most likely by 

VDAC closure, promoting selective oxidation of AcAld, since VDAC closure blocks mitochon-

drial ATP release, respiratory substrates uptake, and uptake of fatty acids for β-oxidation [67]. 

Adrenergic hormones release free fatty acids from adipose tissue, which serve as substrates for 
long-chain fatty acid peroxisomal β-oxidation. The ensuing peroxisomal H

2
O

2
 formation then 

can promote catalase-dependent alcohol metabolism [67]. AcAld is toxic to mitochondria and 

aggravates oxidative stress by binding to GSH and promoting GSH leakage [76]. Moreover, 

as mentioned before, ethanol metabolism and also NADH overproduction cause formation of 

ROS, lipid peroxidation, onset of the mitochondrial permeability transition, and apoptosis [77]. 

However, as has been showed, short- and medium-chain fatty acids can cross mitochondrial 
membrane freely using carnitine shuttle or other transport system [78] and therefore are pre-

sented in diet capable to prevent steatosis development.

5.1. Translocase of the MOM

The endosymbiotic relationship of α-proteobacteria and archaic eukaryotic cell results in 
massive loss and transfer of coding sequences from mtDNA to the nucleus and only less than 

1% is retained in today’s mtDNA. Thus, most mitochondrial proteins (1000–1500) undergo 

cytosol translation and are subsequently transferred to mitochondria, requiring membrane 

complexes of protein translocators, translocases, or translocons. They include TOM and TIM 

for large conductance channels with almost identical properties [79]. In addition, other mito-

chondria protein translocators like TOB/SAM complex in MOM and Mia40/Tim401-Erv1 

redox translocator in MIM have been identified [80, 81].

The general entry gate for mitochondrial proteins is thought to be TOM40 complex in MOM 

consisting of core sequence Tom40, Tom22, Tom7, Tom6, Tom5, peripheral associated recep-

tors Tom20, Tom70, and a minor component Tom71. Among them, only Tom40, Tom22, and 
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Tom7 commonly occur in eukaryotic organisms [82]. To prevent misfolding and aggregation, 

hydrophobic segments of mitochondrial precursor proteins are shielded in cytosol by chap-

erones that escort them to the mitochondria surface [83]. These chaperones are Hsp70 (and its 

partner J proteins), Hsp90, and mitochondrial import stimulation factor (MSF) [84]. MSF with 

precursor proteins loaded was suggested to bind to Tom70 and forward proteins to Tom20, 

with ATP consumption, while Hsp70 transfers proteins to Tom70 without ATP hydrolysis 

[85]. In addition, it was found that mitochondrial proteins are also allowed to bind Tom20 

directly without Hsp70 [86]. Except for some α-helical outer membrane proteins, virtually 
all precursors initially enter mitochondria by passing a TOM complex. As also discussed by 

Dudek et al. [2], many IMS proteins are imported by the mitochondrial intermembrane space 

import and assembly (MIA) machinery, which couples sorting of client proteins to their oxi-

dative folding through a disulfide bridge formation. Small Tim chaperones of IMS bound to 
outer membrane β-barrel proteins transfer preproteins to the sorting and assembly machinery 
(SAM), allowing their integration into the MOM. Tim chaperones also convoy mitochondrial 

metabolite carrier proteins through the IMS, which are then integrated into the MIM by trans-

locase of the inner membrane 22 (TIM22) complex in a membrane potential–driven manner. 

Preproteins of matrix-targeted proteins are directly transferred from TOM to TIM23 (pre-

sequence translocase) without IMS chaperones, ensuring their translocation into the matrix 

or later sorting into the MIM. The only source of energy for lateral membrane integration 

is membrane potential. Complete import of preproteins into the matrix requires the ATP-

dependent presequence translocase-associated import motor (PAM).

Affection by the TOM40 complex functions leads to dysfunction of mitochondria and oxida-

tive damage and is in the background of misfolding protein diseases. Bender et al. [87] found 

a significantly reduced TOM40 in the brain of Parkinson’s disease patients in connection with 
increased mtDNA damage and α-synuclein transgenic mice together with altered levels of 
complex I proteins. The stable complexes of accumulated truncated amyloid precursor pro-

tein and TOM40 cause mitochondrial dysfunction in brains of Alzheimer disease patients [88]. 

Other diseases in humans associated with abnormal mitochondrial transport of proteins, as 

reviewed in MacKenzie and Payne [89], are primary hyperoxaluria type I (caused by alanine/

glyoxylate aminotransferase 1 deficiency), pyruvate dehydrogenase deficiency, susceptibility 
to severe alcoholic liver disease (caused by increased Ala-MnSOD activity due to inability 

to transfer Val-MnSOD through MIM), deafness dystonia syndrome (caused by mutations 

in IMS protein deafness dystonia peptide 1), dilated cardiomyopathy with ataxia (caused 

by dysfunctional import of matrix proteins through the TIM23 complex), spastic paraple-

gia (dysfunction of Hsp60), and atypical mitochondria disease involving multisystem failure 

(deficiency in Hsp60 causing decrease in mitochondrial metabolic pathways).

6. Mitochondrial inner membrane carriers

The inner mitochondrial membrane is relatively low permeable to ions in order to minimize 

energy dissipation formed on complexes through generation of electrochemical proton gra-

dient, in its direct link with ADP phosphorylation. Random flow of charged metabolites 
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via MIM would lead to a reduction in the membrane potential and ATP formation [1]. The 

relative impermeability of the MIM is the basis of chemiosmotic hypothesis proposed by 

Mitchell. As discussed in O’Rourke [90], Mitchell recognized three modes of ion transport. 

Symporters cotransport multiple ions (or an ion and a metabolite) in the same direction across 

the membrane often utilizing the asymmetric electrochemical ion gradient to drive the trans-

port in a thermodynamically favorable direction, as for example mitochondrial P
i
/H+carrier. 

Antiporters exchange ions on different sides of the membrane. Antiporters can be electro-

neutral (the Na+/H+ antiporter of the mitochondrial or plasma membrane) or electrogenic. 

For electrogenic transporters, ion flux is driven by both the electrochemical gradients of the 
transported ions and the membrane potential. For uniporters, the transport rates are in the 

range of 104–106 ions s−1, based on ions flowing down their electrochemical gradient.

Mitchell and Moyle [91] reported that anions, including P
i
, succinate, and malonate, accelerated 

the rate of decay of the pH gradient induced by a pulse of oxygen. This suggested the presence 

of anion transport systems coupled to proton movement, leading to the identification of the 
anion/metabolite-coupled cotransporter family. Inner membrane anion uniporters have been 

less well studied, but in the 1980s, an inner membrane anion channel was postulated to account 

for anion-selective mitochondrial swelling responses [92]. Moreover, some mitochondrial mem-

brane proteins (e.g., mitochondrial uncoupling protein) were identified to display anion chan-

nel activity [90]. Based on the research, seven metabolite-specific mitochondrial transporters or 
carriers were proposed. Studies of amino acid sequence composition showed that the carriers 

form a well-defined family (in humans known as the solute carrier 25 family (SLC25)), with 
the one defining feature, a tripartite structure of three homologous sequence repeats of about 
100 amino acid residues each, which was first noted in the published sequence of the bovine 
ADP/ATP carrier [93]. A signature motif containing P-X-[D/E]-X-X-[R/K] sequence is conserved 

in all members and in all three sequence repeats [94]. According to typical sequence repeats 

and signature motif, eukaryotic mitochondria were found to contain 35–55 different carriers 
when compared to genomic DNA database [95]. The human genome encodes 48 members of 

the SLC25 family, of which 30 are identified [96]. The isoforms of carrier members are encoded 

by different genes, and only the phosphate carrier has two alternatively spliced isoforms [97].

6.1. Mitochondrial nucleotide transporter

Several proteins have been identified as carriers for purine nucleotides, their analogues, as 
well as pyrimidine nucleotides. The ANT was identified by Kramer and Klingenberg [98]. 

Other specific proteins as GTP/GDP carriers, peroxisomal adenine nucleotide transporter, 
CoA and S-adenosylmethionine transporters belong in [99–102].

6.1.1. ADP/ATP translocase

Deoxynucleotide carrier ((DNC) SLC25A19) transports all dNDPs in exchange for ATP or 

ADP [103]. The protein was later identified as thiamine pyrophosphate carrier (TPC) [104], 

transporting thiamine pyrophosphate, thiamine monophosphate, and deoxynucleotides in 

descending order of potency dNDP > dNTP > dNMP. The protein is also capable of nucleotide 

transport, though less efficiently. The protein in ubiquitously expressed within tissues, with 
the highest levels in the kidney and lung [103].
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The mutation in gene-encoded DNC (chromosomal localization 17q25.1) is known to be asso-

ciated with Amish microcephaly. Amish microcephaly has only been observed in Old Order 

Amish community in Pennsylvania, U.S.A, with a high prevalence of about 1:500. The dis-

ease is characterized by severe congenital microcephaly, elevated levels of α-ketoglutarate in 
urine, and premature death. The only non-CNS physical anomaly is moderate micrognathia. 

Patients manifest no orientation to sight or sound and no fine or gross motor development 
and have metabolic acidosis enhanced by episodic viral illnesses, and in some cases patients 

have mild hepatomegaly and difficulty maintaining normal body temperature and develop 
increasing irritability [97]. Study on SLC25A19 knock-out mice has shown that metabolic 

abnormalities in humans are due to absent TPC activity [104].

6.1.2. Deoxynucleotide carrier

Four ANT isoforms are encoded in human genome on the chromosome X. ANT1–3 are struc-

turally similar and proteins are about 90% identical, and ANT4 only shares 66–68% consis-

tency in the amino acid composition with other isoforms. Isoforms are specifically expressed 
in different types of cells and tissues. ANT1 (SLC25A4) is expressed in the skeletal muscle, 
brain, and heart. ANT2 (SLC25A5) is expressed in the liver and proliferating cells and is over-

expressed in various types of cancer cell lines. ANT3 (SLC25A6) is ubiquitous in all tissues, 

and ANT4 (SLC25A31) is specific to the testis and germ cells [105]. The translocase is highly 

selective of the adenine nucleotide and provides a continuous shift of ADP to the mitochon-

dria required to maintain oxidative phosphorylation and membrane potential. ANT is also 

implicated in leakage of protons and inducible proton leakage [106, 107].

Impaired translocase activity affects the energy metabolism of the cell by decreasing mito-

chondrial ATP synthesis and increasing mitochondrial membrane potential [108], thus 

contributing to the promotion of apoptosis. The rate-limiting factor of apoptosis is mtPTP 

formation, which is actually increased permeabilization of the mitochondrial membrane for 

all the solvents up to 1.5 kDa. It is a nonspecific pore, where ANT, VDAC, cyclophilin D, 
hexokinase, creatine kinase, and peripheral benzodiazepine receptor are effective but not as 
direct components or core structures. Moreover, there is an evidence for apoptosis regulators 

of the Bcl-2 family, Bak and Bax, requirement for mtPTP-dependent MOM permeabilization 

[109]. PTP opening is linked to mitochondrial dysfunction because its occurrence leads to the 

set of consequences that will arise, as mitochondrial depolarization, cessation of ATP synthe-

sis, Ca2+ release, pyridine nucleotide depletion, inhibition of respiration and matrix swelling, 

MOM rupture, and release of pro-apoptotic proteins such as cytochrome c, endonuclease G, 

and AIF [110, 111]. Detrimental effects are seen for long-lasting mtPTP opening, while short-
term effects are involved in physiological regulation of Ca2+ and ROS homeostasis [112, 113].

Cancer cells are able to survive suppression of mitochondrial oxidative phosphorylation under 

hypoxic conditions through higher rate of glycolysis; however, it depends on ATP uptake espe-

cially for mitochondrial potential generation and Ca2+ exchange [114]. The expression of ANT 

isoforms is related to the adaptation of metabolic properties of cancer cells. ANT2 is overex-

pressed in various types of human cancer cells and in several hormone-dependent cancers [115, 

116]. It was found that ANT2 proves properties allowing the import of ATP into mitochondria 

(in coexpression with hexokinase II and a subunit of mitochondrial F0F1-ATPase, ATPsynβ), 
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increased glycolysis, maintaining mitochondrial membrane potential, and finally prevention 
of apoptosis [115]. The effect of hexokinase has been described in Section 4.1. Similarly, the 

ATP synthasome, a complex of ANT, F0F1-ATPase, and phosphate carrier (PiC), facilitates a 

mechanism for adenine nucleotide and pyrophosphate release. Under pathological conditions, 

the imported ATP may also be hydrolyzed by F0F1-ATPase to maintain mitochondrial mem-

brane potential [115]. This type of hydrolysis has also been reported in order to prevent neuro-

degeneration [117] and in activated macrophages [118].

Roussel et al. [119] found isoforms ANT1 and 2 to mediate uncoupling by fatty acids and to 
lower mitochondrial membrane potential in heart and skeletal muscle in rats. ANT is inhib-

ited by competitive displacement of the nucleotide by long-chain acyl-carnitines (LCAC) 

[120]. LCAC may accumulate under pathological conditions with excess lipid supply, obe-

sity, and mitochondrial β-oxidation defects [121]. ANT inhibition is thought to contribute to 

mitochondrial defects in metabolic syndrome [122].

The ANT function in subcellular compartment energy supply is important and therefore it 

is not surprising that the altered structure and subsequently properties of this solute car-

rier protein associated with DNA mutations are also associated with serious clinical con-

ditions. Mutations linked to mitochondrial disorders with autosomal recessive inheritance 

cause mitochondrial myopathy and cardiomyopathy presented in childhood or early adult-

hood. It is characterized by lactic acidosis, fatigue, proximal muscle weakness, and exercise 

intolerance [123, 124]. Several different autosomal-dominant mutations in ANT1 gene have 
been associated with an adulthood-onset disorder, autosomal-dominant progressive exter-

nal ophthalmoplegia, characterized by ptosis, restriction of eye movement, and accumula-

tion of clonally expanded mtDNA deletions in postmitotic tissues [125, 126]. Thompson et al. 

[127] have recently described recurrent de novo–dominant mutation with severe early-onset 

of mitochondrial disease. Mutations in the gene encoding ANT1 are associated with the pres-

ence of mtDNA deletions. The most likely mechanism of how the defective carrier affects the 
appearance of mtDNA mutations is the unsufficient adenine nucleotide availability for dATP 
synthesis and consequent imbalance in dNTP pools [127].

6.2. Mitochondrial phosphate carrier

The role of mitochondrial phosphate carrier (PiC, SLC25A3) is importing inorganic phos-

phate into the mitochondrial matrix. A part of ATP synthasome enables efficient energy 
production, since Pi is essential for F

1
F

0
-ATP synthase to catalyze formation of ATP from 

ADP. For PiC, two isoforms differing in alternative splicing of mutually exclusive exon are 
documented in tissue-specific expression pattern. PiC-A is expressed in heart and skeletal 
muscle, while PiC-B is expressed in liver, kidney, and other tissues [128]. The PiC gene is 

located on chromosome 12q23.1. In 2007, the presence of a homozygous mutation in PiC-A 

was found in two siblings of nonconsanguineous Turkish parents. Given the role of PiC in 

energy production, the clinical manifestation of PiC deficiency is associated with multisys-

temic disorder characterized by muscle hypotonia, lactic acidosis, severe hypertrophic car-

diomyopathy, and shortened lifespan [129, 130]. Besides that, PiC has been suggested to 

impact mtPTP opening [131].
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6.3. Mitochondrial pyruvate carrier

Important one is another of the mentioned carriers. Pyruvate is the end product of glycolysis 

in the cytosol. In mitochondria, pyruvate entering the tricarboxylic acid cycle supports the ATP 

generation but also serves as a link to anabolic pathways for lipid, amino acid biosynthesis, 

and gluconeogenesis. The main sources of pyruvate in the cytoplasm are reactions catalyzed by 

pyruvate kinase. Two more sources are lactate dehydrogenase (LDH) and alanine aminotrans-

ferase (ALT), which are important to mention in terms of linking metabolic pathways between 

tissues. Reversible transamination of pyruvate and glutamate to alanine and α-ketoglutarate 
catalyzed by ALT converts the pyruvate from muscles into a transport form, alanine, which is 

reused in the liver for gluconeogenesis. LDH reversibly catalyzes reduction of pyruvate to lactate 

concurrently with oxidation of NADH to NAD+. Enzyme gains importance especially in muscle 

tissue in conditions requiring excessive energy production and in cancer cells. During increased 

need for ATP for muscle activity, the energy requirements to support continued muscle activity 

exceed mitochondrial capacity for ATP production. As glycolysis requires NAD+, ATP produc-

tion is limited when NAD+ depletes and NADH accumulates. In this case, LDH ensures ATP 

production in glycolysis by regenerating NAD+. With a steady supply of NAD+, and until aci-

dosis becomes limiting, glycolysis can produce ATP to support work rates exceeding those that 

could be supported by oxidative phosphorylation alone [132]. The lactate is transported to the 

circulatory system from where it is taken up by the liver and converted back into pyruvate.

The cross-connection of pyruvate with catabolic and anabolic pathway in mitochondria 

depends on its passage through mitochondrial membranes. Pyruvates cross MOM through 

VDAC; however, transport through MIM requires specific carrier. Although the existence of 
carrier was known earlier, the existence of genes on chromosome 6q27 encoding of mitochon-

drial pyruvate carrier (MPC) formed by hetero-oligomeric complex of two proteins, MPC1 

and MPC2, has been revealed recently. Both proteins are needed for sufficient activity [133, 

134]. Proteins do not contain any sequence homology to other mitochondrial carriers. Instead, 

they have been proposed to belong to the PQ-loop/MtN3/MPC superfamily [135]. Members 

of PQ-loop family are located in a variety of organelles performing diverse functions. They 

combine common characteristic features that are seven transmembrane domains and two 

conserved glutamine motifs. Subunits MPC1 and 2 contain three of seven transmembrane 

domains and are only half size of other PQ-loop family members [136]. Pyruvate uptake has 

been proposed to be coupled with the electrochemical gradient, occurring with the symport 

of one proton, or exchange with one hydroxide ion [137].

MPC activity increases in response to glucagon and decreases in response to insulin. 

Adrenaline and cortisol also have been found to increase pyruvate carboxylation by increas-

ing mitochondrial pyruvate import [138]. The MPC2 transcript levels have been found to 

increase up to 1.5-fold under fasting conditions. In a physiological response to fasting (e.g., 

excessive exercise or prolonged food deprivation), hepatic mitochondrial ketone export and 

pyruvate import through MPC allows to enhance hepatic gluconeogenesis and maintains 

membrane potential [132]. Conversely, unregulated rate of gluconeogenesis contributes to 

chronic hyperglycemia in diabetes. Except for some substances (e.g., α-cyano-4-hydroxy cin-

namate, UK-5099, and several thiazolidinediones) acting as specific MPC inhibitors, inhibitory  
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effects of α-ketoacids and phenylpyruvate were found [139, 140]. The accumulation of phe-

nylpyruvate in phenylketonuria prevents pyruvate transfer to mitochondria. Malate was 

shown to significantly increase mitochondrial pyruvate uptake while not affecting affinity. A 
genetic background of diminished pyruvate utilization due to pyruvate transport deficiency 
accompanied by lactic acidosis resulting also from the described metabolic possibilities of 

pyruvate are the mutations in MPC1 and/or MPC2 genomic loci [133, 141].

A 13C metabolic flux analysis of cells after transcriptional or pharmacological inhibition of MPC, 
published by Vacanti et al. [142], revealed that inhibition of MPC activity leads to shift from glucose 

to amino acid and fatty acid oxidation. Citric acid cycle and fatty acid synthesis were maintained 
due to malic enzyme flux, glutaminolysis, fatty acid, and branched chain amino acid oxidation. 
Alternatively, pyruvate interconversion into gluconeogenic substrates (e.g., alanine) that can enter 

mitochondria independently of the MPC could compensate for loss of the MPC [143].

7. Aberrant pyruvate transfer

Altered metabolism of pyruvate resulting from the inability to transfer pyruvate is present in 

cancer and other metabolic diseases. Pyruvate metabolism and carbon flux are altered in many 
cancer cells. Metabolic switch to enhanced glycolysis and decreased oxidative phosphoryla-

tion (Warburg effect) leads to elevated lactate production, which is advantageous for cancer 
cells. The first advantage is regeneration of NAD+ for the continuation of glycolysis. Another 

is proton-linked transport of lactate out of the cell, increasing the acidity of the extracellular 

space. Acidification of the extracellular environment provides protection from the immune 
system [144]. Furthermore, lactic acid appears to influence the activity of matrix metallopro-

teinases breaking down the extracellular matrix aiding in tumor proliferation and metastasis 

[145] and can be utilized as fuel source by cancer cells located at the surface of the tumor [146]. 

Schell et al. [147] found MPC1 genomic locus as the most frequently deleted region across 

cancer cells, while MPC2 locus does not appear to be frequently lost. MPC1 underexpression 

correlates with poor survival in almost all cancers examined, including colon, kidney, lung, 

bladder, and brain [147]. The correlation of survival with MPC2 expression is more variable, 

but associated with poor prognosis in kidney and colon cancer [147].

Increased pyruvate levels in cerebrospinal fluid reflecting an impaired metabolism of pyruvate 
have been detected in neurodegenerative disorders including Leigh’s syndrome, Alzheimer’s 

disease, and Parkinson’s disease [148, 149]. Neuronal metabolism depends upon the uptake 

of lactate produced by astrocytes (astrocyte-neuron lactate shuttle), its conversion to pyruvate 
by LDH, and subsequent oxidation in mitochondria to form energy. Glucose is shifted into the 

pentose phosphate pathway for the NADPH generation to maintain reduced glutathione levels 

[150]. Due to the lack of pyruvate metabolism in neurodegenerative diseases, synthesis of ace-

tylcholine is also insufficient because it requires acetyl-CoA [143]. To the present, there are not 

many findings available about MPC inhibition in neuronal cells except for α-cyano-4-hydroxy 
cinnamate or phenylpyruvate effects. Most likely, MPC efficacy and susceptibility to disease pro-

gression are also related to genetic predisposition. Mitochondrial pyruvate supply restriction can 

also display a neuroprotective effect by increase in glutamate oxidation. Maintaining the levels 
of synaptic glutamate during glutamatergic neurotransmission comes at energetic cost leading 
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to periods of increased levels of glutamate. High levels of glutamate cause complex I inhibition 

through receptor-stimulated Ca2+ overload, which is an attribute of acute neuropathologies [151].

MPC1 and MPC2 are highly expressed in brown adipose tissue compared with other tissues 

[152]. Brown adipocytes use predominantly fatty acids as an energy source for uncoupled res-

piration and thermogenesis, which requires replenishment of oxaloacetate through pyruvate 

carboxylation to enter citric acid cycle. MPC is supposed to be important in shifting between 

formation and oxidation of fatty acids in fat cell metabolism.

Alteration in pyruvate metabolism plays a conspicuous role in heart disease. Heart muscle 

predominantly metabolizes fatty acids, ketone bodies, lactate, and glucose depending on their 
availability and neurohormonal signaling. Up to 95% of the heart’s ATP generation comes from 

mitochondrial oxidation, and typically approximately 60–90% of this mitochondrial ATP pro-

duction comes from fatty acids, whereas 10–40% is from pyruvate oxidation. The myocardium 
is a significant consumer of lactate even at the maximum load, because of specific expression 
of LDH-B isoform preferring reaction catalysis toward pyruvate [153]. It was found that acute 

stress (such as ischemia) and chronic stress (hypertrophy and heart failure) change substrate 

availability and metabolism [143]. Reduction in pyruvate oxidation leads to increased anaerobic 

glycolysis and lactate formation. However, age-related decrease in MPC activity was observed 

[154]. Shift in substrate utilization in order to maintain citric acid cycle can lead to serious states 

of energy deficiency called “starved heart.“ The effect was observed in cancer treatment with 
doxorubicin reducing carnitine transport followed by reduced fatty acid oxidation [155].

7.1. Mitochondrial di- and tricarboxylic acid transport

7.1.1. Tricarboxylate carrier

The tricarboxylate carrier (SLC25A1) catalyzes an electroneutral exchange of the dibasic form 

of a tricarboxylic acid (citrate, isocitrate, and cis-aconitate) with proton for another tricarbox-

ylate-H+, dicarboxylate (malate and succinate), or phosphoenolpyruvate [156]. An importance 

of the citrate carrier (CiC) results from formation of a link between carbohydrate catabolism 

and lipogenesis. The CiC overlaps with oxoglutarate carrier ((OGC) SLC25A11) by transport-

ing the 2-oxoglutarate in exchange for malate and malonate [157]. CiC facilitates transport of 

citrate across MIM, followed by passive diffusion through VDAC in MOM into the cytosol. In 
the cytosol, fatty acids and cholesterol are synthesized from citrate. Citrate also acts as inhibitor 
of phosphofructokinase 1, thus affecting the rate of glycolysis, positive allosteric modulator of 
acetyl-CoA carboxylase in fatty acid synthesis pathway, and serves as a substrate for the forma-

tion of malate, the conversion of which into pyruvate facilitates NADPH production necessary 

for lipogenesis [158]. High CiC mRNA levels in liver, kidney, and pancreas; lower levels in 

heart, skeletal muscle, and placenta; and no detectable mRNA in brain and lung were detected 

[128]. High liver and kidney CiC mRNA levels are supposed to be due to gluconeogenesis and 

lipogenesis. Moreover, CiC plays a role in gluconeogenesis from lactate where phosphoenol-

pyruvate carboxykinase is located in mitochondria. Similarly as in other animals, mitochon-

drial phosphoenolpyruvate isoforms are present mainly in the liver, kidney, and adipose tissue 

[159]. The relatively high CiC mRNA level in pancreas could be explained with the role of 

CiC in regulation of insulin secretion. On the other hand, the low CiC mRNA level in skeletal 

muscle correlates to the very low activity of gluconeogenesis and fatty acid synthesis [160]. 
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Except for decisive interconnection between lipogenesis, gluconeogenesis, and glycolysis, CiC 

has been proposed to play a role in the maintenance of chromosome integrity and in the regula-

tion of autophagy [161]. A particularly important role played by the CiC is in the regulation of 

insulin secretion by providing isocitrate for NADP-dependent isocitrate dehydrogenase [162].

The studies have shown that the CiC activity and properties could be changed under spe-

cific conditions: starvation-induced decrease of CiC activity and considerable reduction 
of CiC mRNA in starved rats. The reduced CiC mRNA levels were ascribed to shortened 

half-life and accelerated degradation of CiC mRNA. Refeeding, however, leads to renewal 

of mRNA and increased activity of CiC [163]. The polyunsaturated fatty acid (PUFA) admin-

istration also dramatically affects CiC gene expression by transcriptional and posttranscrip-

tional mechanisms. Rat liver mitochondria showed more decreased CiC activity and reduced 

transcriptional rate of CiC mRNA when affected by n-3 PUFA than by n-6 [164]. During the 

inflammation, CiC gene expression is activated by NF-κB, which causes an increased avail-
ability of cytosolic acetyl-CoA and NADPH + H+ for synthesis and activity of compounds and 

enzymes involved in inflammatory response (e.g., COX2, iNOS, and NADPH oxidase) [156].

The human SLC25A1 gene is localized on chromosome 22, within the region associated with allelic 

losses in DiGeorge/22q11 syndrome, velo-cardio-facial syndrome, and a subtype of schizofrenia 

[165]. To date, recessive mutations of CiC gene in 20 persons with combined D,L-hydroxyglutaric 

aciduria were described. The clinical phenotype of disorder is characterized by severe develop-

mental delay, hypotonia, seizures, secondary microcephaly, hypoplasia or agenesis of the corpus 

callosum, optic nerve hypoplasia, dysmorphic feature, lactic acidosis, and recurrent apneic crises 

[166]. CIC has also been reported to be upregulated in ovarian and colon cancer [167].

7.2. Dicarboxylate carrier

Dicarboxylate carrier protein ((DIC) SLC25A10) transporting malate and succinate out of 

mitochondria in exchange for P
i
 is ubiquitously expressed in mammalian mitochondria. The 

carrier is inhibited by P
i
 and other phosphate and substrate analogues. Malate exchange for P

i
 

provides a cytosolic source of malate for CiC and therefore plays a significant role in fatty acid 
synthesis [168]. DIC interacts with malate dehydrogenase by acting as an oxaloacetate shuttle, 
thus improving functional coupling of citric acid cycle with shuttle. In the cytosol, malate is 
converted into oxaloacetate following conversion into phosphoenolpyruvate by carboxyki-

nase-catalyzed reaction. The reaction is rate-limiting for gluconeogenesis. No less important 

role of the carrier is the transport of reduced glutathione into the mitochondria shared with 

OGC. Therefore, limiting protein expression results in significantly reduced levels of glutathi-
one in the mitochondria and subsequent altered redox conditions [169]. It was found that the 

activity of DIC is increased in type I diabetes, in contrast to decreased activities of CiC [170].

8. Oxoglutarate carrier

The OGC mediates transfer of oxoglutarate across MIM in exchange for dicarboxylate. OGC is a 

component of malate-aspartate shuttle; thus, dicarboxylate is usually malate. After export, malate 
is converted into oxaloacetate, which is in transamination reaction with glutamate converted into 
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oxoglutarate and aspartate. The oxoglutarate is then transported by OGC. Binding the succinate 

to the matrix side of the carrier increases the affinity for malate, while phenylsuccinate, pyridox-

alphosphate, retinoic acid, or alcohol was found to inhibit OGC [171, 172]. The OGC inhibition 

causes a decrease in mitochondrial reduced glutathione levels by 40–50% [138]. The carrier has 

also been proposed as a porphyrin transporter, and its inhibition blocks porphyrin conversion 

to heme in mitochondria. The downregulation of OGC has been reported in horse muscle with 

recurrent exertional rhabdomyolysis [173].

8.1. Mitochondrial glutamate carriers

8.1.1. Glutamate carrier

Another one from SLC25 family is a glutamate carrier. Two glutamate-transfer isoforms are 

known for the glutamate carrier: GC1 (SLC25A22) and GC2 (SLC25A18). They transport glu-

tamate across the MIM in symport with a proton or in exchange for hydroxyl ions. In mito-

chondria, glutamate is converted by glutamate dehydrogenase into α-ketoglutarate while 
reducing NAD (P)+. Ammonia is released and reduced coenzyme enters the complex I of 

respiratory chain. The mRNAs of GC1 have been found to be highly expressed than that of 

GC2 in liver, pancreas, and kidney but are similar in the brain. Moreover, the K
m

 and V
max

 

values are higher than those of GC2 (5.2 vs. 0.26 mM; 12.2 vs. 3.9 μmol/min/g of proteins). 

Therefore, an acceptable explanation, for the expression pattern is that GC2 is responsible for 
the basic function, whereas GC1 functions in tissues with increased demands [174].

GC1 has been demonstrated to have an important physiological function in the control of glu-

cose-stimulated insulin secretion in pancreatic β cells [96]. The signaling mechanism leads to 

adjustment of insulin release to levels greater than the sole contribution of Ca2+-induced trig-

gering pathway in rats. Stimulation of β cells with high glucose might result in rapid satura-

tion of the respiratory chain [175], favored by glucokinase properties (as mentioned in Section 

4.1.) and low lactate release. Saturated electron transport chain would then promote export 

of metabolites (GTP, citrate, NADH, and glutamate) out of the mitochondria compensated by 

activity of anaplerotic pathways [176]. Energetic sufficiency favors the glutamate dehydro-

genase reaction from α-ketoglutarate toward glutamate formation. Glutamate is taken up by 
secretory granules, which are consistent with the expression of vesicular glutamate transport-

ers (VGLUT1 and 2) in insulin-secreting cells [177]. Inside the secretory granule, glutamate 

could induce pH changes and activate metabotropic receptors mGlu5, thereby mediating 

insulin release [178]. Alternative mechanisms include activation of acetyl-CoA carboxylase 

and inhibition of phosphatase activities involved in insulin exocytosis [179].

GC1 is highly expressed in astrocytes from different structures (retina, spinal cord, and cor-

tex) [180] and represents the principal gate for glutamate entry into the mitochondria of astro-

cytes. Restricting glutamate access to mitochondria results in reduced ATP and NAD(P)H 

formation. A defective glutamate carrier may lead to glutamate accumulation in the astro-

cytes cytosol and then to glutamate liberation in the synaptic cleft. The release could result in 

neuronal synchronicity, which may contribute to the generation of epileptic-like discharges 

in the brain [181]. Mutations in the human GC1 gene (localized on chromosome 11p15.5) 

are responsible for the autosomal recessive form of early infantile epileptic encephalopathy 
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caused by complete loss of transport and uniport activity of the protein [182–184]. Clinical 

manifestations are similar to epileptic spasms and focal seizures associated with suppres-

sion bursts beginning in the first days of life, microcephaly, hypotonia, abnormal retinogram 
recording, and psychomotor retardation [183].

9. Aspartate/glutamate carrier

Glutamate can also enter mitochondria through aspartate/glutamate carrier (AGC1 and 2 iso-

forms, known as aralar and citrin) combining the input of glutamate to the release of aspartate 

[185]. The export of aspartate is favored in energized mitochondria. Moreover, in increased 

cytosolic calcium concentration, respiration is strongly increased associated with the reduc-

tion of mitochondrial membrane potential [185]. A decrease in ROS production could be 

expected given the opposite relationship between the mitochondrial membrane potential 

and ROS production [186]. Another attribute contributing to this effect is glutamate entry 
through AGC1 (SLC25A12) in cotransport with proton. The loss of membrane potential is 

compensated by the extrusion of four protons by the respiratory chain when one molecule 

of glutamate is processed through the citric acid cycle generating two molecules of NADH 

[187]. AGC together with the OGC plays a crucial role in the transport of NADH from cytosol 

to the mitochondria as a part of malate-aspartate shuttle [188]. Therefore, AGC1 and AGC2 

(SLC25A13) are expressed in tissues differently according to their demands for maintenance 
of the redox balance between anaerobic and aerobic glycolysis. An interesting finding is that 
expression of AGC1 and AGC2 is almost completely restricted to neurons and photoreceptor 

cells [180, 189], in contrast to GC1 expressed in astrocytes. Cytosolic Ca2+ has a direct role in 

the regulation of AGC1 gene expression via cAMP response element-binding protein in neu-

ronal cells, underlining the key role of AGC1 in the central nervous system by upregulation 

in neuronal differentiation and downregulation in neuroinflammation [190]. AGC1 is also 

highly expressed in skeletal and heart muscle [191]. Upregulation of both isoforms was found 

in several cancers, which is also related to the change in glycolytic metabolism [187].

9.1. Ornithine carriers

Translocation of the ornithine and related substrates is mediated by mitochondrial ornithine 

carrier (ORC). The physiological importance of this carrier reclines on urea production, deliv-

ery-rate control of arginine, and interferential formation of NO, agmatine, creatine, glutamine, 

glutamate polyamines, and proline [192]. The human isoforms ORC1 (SLC25A15), ORC2 

(SLC25A2), and ORC3 (SLC25A29) [193, 194] provide transport by exchange or by exchange 

for H+ but differ in substrate transport rates, substrate specificity, and tissue expression. They 
all facilitate passage of L-ornithine, L-lysine, and L-arginine. The ORC1 prefers transport of 

amino acid substrates with shorter and noncyclized side chains. It does not enable trans-

port of L-homoarginine, D-ornithine, D-histidine, and D-arginine. The ORC2 transports all 

substrates with the same efficiency (L,D-forms of ornithine, lysine, histidine, arginine, and 
L-citrulline, L-homoarginine). The ORC3 enables transport of L-forms with longer side chains 

across MIM, e.g., lysine, arginine, and histidine [192]. The isoform expresses lower affinity to 
ornithine and does not transport citrulline [194].
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Activity of ORC1 and 2 is enhanced by P
i
, malate, and dicarboxylates and inhibited by pyr-

idoxal 5′-phosphate (PLP), mercurials, spermine, and spermidine. The affinity of ORC2 to 
lysine and arginine is lower and to ornithine and citrulline is higher in comparison to ORC1. 

Moreover, ORC2 has been reported to be about three times less active than ORC1. The dis-

positions are also related to protein expression. The ORC1 is expressed in most tissues, with 

the highest levels in the liver, pancreas, lungs, kidney, and testis, unlike the ORC2 being more 

restricted to these organs [193]. ORC3 is expressed in heart, brain, liver, and kidney and is 

induced after partial hepatectomy or fasting [195, 196]. The import of arginine, lysine, and 

histidine allows for protein synthesis in mitochondria and that for ornithine enables degrada-

tion of arginine surplus. Transfer of ornithine out of the mitochondria allows for synthesis 

of polyamines reversibly inhibiting ORC activity. Ornithine is synthesized in mitochondria 

from glutamate in tissues with low arginase activity (except for the liver), from glutamine in 

intestinal mitochondria or when deficient in the diet [193]. Considering ornithine and citrul-

line transport efficiency and level of protein expression in the liver, the ORC1 isoform is of 
highest importance in urea cycle continuance [193].

Mutation in the gene encoding ORC1 isoform (localized on 13q14.1 chromosome) causes 

hyperornithinemia-hyperammonemia-homocitrullinuria (HHH syndrome), characterized by 

early-onset neurological deficits. Hyperammonemia results from impaired urea cycle due to 
ORC1 malfunction. Ornithine accumulates in the cytosol leading to hyperornithinemia and 

increases polyamine synthesis. Carbamoyl phosphate condensates with lysine in the absence 

of ornithine inside the mitochondria, leading to homocitrullinuria, or enters pyrimidine syn-

thesis, thus increasing excretion of orotic acid and uracil [97, 197]. Overexpression of ORC2 

might only partially compensate defective function of ORC1 due to lower affinity for orni-
thine and citrulline [196, 198]. ORC3 has not been found to compensate lack of ORC1 function 

but is probably responsible for lysine transport in patients with HHH syndrome [194].

9.2. Mitochondrial uncoupling proteins

Uncoupling proteins (UCP) sharing the same tripartite structure belongs to the family of 

the mitochondrial anion carriers. Six families of UCP members encoding by 45 genes have 

been described [199]. In mammals, UCPs consist of five homologs: UCP1 (SLC25A7), UCP2 
(SLC25A8), UCP3 (SLC25A9), UCP4 (SLC25A27), and UCP5 (SLC25A14, BMCP1). UCP1 genes 

are localized on human chromosome 4. The human and mouse UCP2 genes are located 7–20 kb 

downstream of the UCP3 stop codon, as the result of a duplication; the UCP3-UCP2 locus is 

located on human chromosome 11q13 (between the genetic markers D11S916 and D11S911). 

The UCP5 homolog Bmcp1 is located on Xq25–26 chromosome (between the markers DXS1206 

and DXS1047), and UCP4 on 6p11.2-q12 (close to the genetic marker SHGC-34952) [200].

UCPs are ubiquitous, except for UCP2 [201], however, exhibiting tissue-specific expression 
pattern. As reviewed in Gutérrez-Aquilar and Baines [202], UCP1 is unique to brown adi-

pose tissue, UCP3 to heart and skeletal muscle, and UCP4 and 5 are typical to the brain. The 

general designation of this carrier family is derived from observed function of the first mem-

ber, UCP1 in brown fat tissue—the heat production in the nonshivering thermogenesis [199]. 

According to Mitchell’s theory, any proton leak not coupled with ATP synthesis would pro-

voke uncoupling of respiration and thermogenesis. The discharge of proton gradient formed 
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in respiratory chain causes dissipation of energy of oxidation as heat. Besides adaptive ther-

mogenesis, uncoupling of respiration allows continuous reoxidation of coenzymes that are 

essential to metabolic pathways [203], prevents inhibition of mitochondrial respiration from 

excessive ATP production, and decreases ROS formation [204].

The activity of UCPs requires ubiquinone as a cofactor [205] and is regulated by two ligands. 

UCP1 is activated by fatty acids and inhibited by purine nucleoside di- and triphosphates. 
UCP2 and 3 can be activated by fatty acid and are less sensitive to purine inhibition. There 
are not many findings about UCP4 and 5 regulation; however, they were reported to be GDP-
sensitive [206]. The mechanism of proton transport is still controversial. The UCP is referred 

to act as a pure proton transporter activated by fatty acids, while by other mechanism, UCP 
facilitates protonated fatty acid transbilayer movements, flip-flop, to the matrix where they 
release the proton and are then transported back to the IMS by UCP [199, 206]. Consistently 

with transport of fatty acid anion, UCP1 was shown to transport a variety of ions, suggesting 
that UCP1 is a hydroxyl anion transporter rather than a proton carrier [207].

As has already been mentioned, the physiological function of UCP1 is the production of heat 

in brown adipocytes. The UCP1 induction is influenced by thyroid hormones and sympa-

thetic nerves and therefore also by drugs activating adrenoceptors [203]. Capsaicin was found 

to increase levels of all UCPs [206]. A mutation in gene encoding UCP1 is associated to dia-

betic retinopathy [208].

Although, UCP2 and 3 are not involved in thermogenesis, polymorphisms in the coding 

region of the UCP2 gene are associated with the level of energy expenditure during sleep [209]. 

These two members reduce ROS formation by mild uncoupling [208] and related to function 

to decrease mitochondrial oxidative stress load and transport fatty acid peroxides to MOM 
[210]. Cytokines and thyroid hormone upregulate UCP2 and UCP3 [211]. Thus, physiologi-

cal response of macrophages is lowering the UCP levels and enhancing the ROS production. 

Moreover, UCP2 was proposed to act as carrier for the superoxide anion [205]. The expres-

sion of UCP2 is induced under starvation when there are elevated levels of fatty acid in the 
circulation. The expression of UCP3 increases during fasting [212]. In leptin-induced lipolysis, 

fatty acids are not exported to the liver but are oxidized in adipocytes, where UCP2 initiates 
fat oxidation that is not associated with energy-requiring processes [213]. Pharmacological 

inhibition and genetic mutations in UCP2 and UCP3 have been shown to reverse damaging 

consequences of obesity and diabetes-induced pancreatic β-cell dysfunction [214, 215].

UCP4 and 5 have been shown to be upregulated by oxidative stress, while insulin downregu-

lates their levels [216]. Mutations in UCP4 gene have been linked to schizophrenia [217]. For 

all UCPs, a continuity of upregulation of the expression and incidence of tumor diseases has 

been described [202].

10. Conclusion

As it follows from this review, the proper course of metabolic processes in the mitochondria 

requires direction of transport systems to the needs of the organism. The activities of trans-

porters can be regulated differently by hormones, phosphorylation and dephosphorylation, 
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cytokines, concentration of metabolites, and individual nutrition components, which can alter 
their amount and activity. Most metabolites or their precursors can be mutually transported 
by different transport systems to provide the desired concentrations on both sides of the mito-
chondrial membranes. The specificity of transport and regulation of compounds in differ-
ent organs and tissues provide various isoforms encoded by different nuclear genes. More 
detailed knowledge of transport mechanisms can contribute to better diagnosis and treatment 
of metabolic disorders.
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