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Abstract

According to Heisenberg’s uncertainty principle, measurement of a quantum observable
introduces noise to this observable and thus limits the available precision of measure-
ment. Quantum non-demolition measurements are designed to circumvent this limita-
tion and have been demonstrated in detecting the photon flux of classical light beam.
Quantum non-demolition measurement of a single photon is the ultimate goal because it
is of great interest in fundamental physics and also a powerful tool for applications in
quantum information processing. This chapter presents a brief introduction of the his-
tory and a review of the progress in quantum non-demolition measurement of light. In
particular, a detailed description is presented for two works toward cavity-free schemes
of quantum non-demolition measurement of single photons. Afterward, an outlook of
the future in this direction is given.

Keywords: QND measurement, single photon, four-wave mixing, Rabi oscillation

1. What is quantum non-demolition measurement?

Measurement of observables is at the very heart of quantum measurement. In the classical

macroscopic world, measurement of a classical object can be conducted without introducing

perturbation to the detected object. Repeating measurement of a classical object can improve the

precision to arbitrarily accurate. Counterintuitively, the measurement of an observable of a quan-

tum object cannot be arbitrarily precise in the microscopic world according to the well-known

Heisenberg’s uncertainty principle [1], which roots in the wave nature of quantummechanics. For

non-commuting operators, A and B, described as physical quantities in the quantum formalism, a

very precise measurement of A, resulting in a very small uncertainty ∆A, will be associated with a

large value of uncertainty, ∆B, in B. Measuring a quantum object will inevitably cause perturba-

tion in the measured object. This perturbation due to measurement is called as the “measurement

back action.” This quantum back action, in turn, enlarges uncertainty of the observables. As a

result, it limits the available precision in a series of repeated measurements. Then a natural

question is what is the limitation of sensitivity in measurement set by quantum mechanics.

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



In response to this question, Braginsky and Vorontsov introduced in the 1970s the concept of

“quantum non-demolition measurement” (QND) to evade the unwanted quantum back action

in measurement [2]. Through studying the detectable minimum force on a quantum oscillator,

they concluded that “Nondestructive recording of the n-quantum state of an oscillator is

possible in principle.” Their measurement strategy opened a door for circumventing the issue

of back action in quantum measurement. Thorne, Drever, Caves, Zimmermann, Sandberg,

Unruh, and others developed the concept of QND measurement further [3–5]. The key point

in the QND measurement is to keep the back-action noise confined to the unwanted observ-

able quadrature, without being coupled back onto the quantity to be measured.

Although a great number of efforts have been made in various systems, quantum optics is

particularly well suited for implementing QNDmeasurement. The reason is threefold: (1) there

are optical sources with very good quality; (2) photon detectors can be extremely sensitive,

even being able to detect a single photon; and (3) a quantum system can be initialized with

very high accuracy. The photon number and phase are two complementary observables of

quantum light. They are associated with non-commuting operators. It means that QND mea-

surement of photon number of a quantum field will inevitably add quantum noise to the phase

quadrature. If only, in principle, the photon number of field remains unchanged during

measurement, the measurement is QND. Of course, the real implementation of experiment

may be imperfect, and this imperfection can cause noise to the variable of interest.

Throughout this chapter, we focus on the measurement of light according to the principle of

quantum optics. In particular, we introduce the measurement of photon number of a light

beam. In the conventional “direct” measurement, the light is absorbed. Therefore, the mea-

surement completely changes the observable of photon number and causes a very large back

action onto the light beam. In a QND measurement of photon number, it is required that the

amount of photon number is measured without changing. Of course, the measurement still adds

perturbation to the light. However, the perturbation is only confined to the phase of the photon

but is not added to the photon flux of interest in measurement. In a restricted mathematical

language, the condition for QND measurement is that Ash ii ¼ Ash iiþ1 and ΔAsh ii ¼ ΔAsh iiþ1

for two successive detections of observable As.

2. Classical measurement by absorbing photons

In the classical world, measurement of light always absorbs photons and then gets energy

from them. In this way, the photon carried by a light beam disappears and is destroyed

completely. This type of photon detector includes eyes, photoelectric converter, semiconductor

photon detector, superconducting photon detector, and so on.

Eyes are photon detectors we use most often (Figure 1). It converts the energy of light into

electric current and stimulates the nerve. Photons of light enter the eye through the cornea, that

is the clear front “window” of the eye. Then light is bent by the cornea, passes freely through

the pupil, the opening in the center of the iris, the eye’s natural crystalline lens, and then is

focused into a sharp point on the retina. The retina is responsible for capturing all of the light

rays, processing them into light impulses through millions of tiny eye nerve endings, and then
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converting these light impulses to signals which can be recognized by the optic nerve. In doing

so, eyes convert light into bioelectric signals.

Semiconductor photon detector is a sensitive man-made photodetector, which is made by

using semiconductor materials. Two principal classes of semiconductor photodetectors are in

common use: thermal detectors and photoelectric detectors. Thermal detectors convert photon

energy into heat. Most thermal detectors are rather inefficient and relatively slow. Therefore,

photoelectric detectors are widely used for optics. The operation of photoelectric detectors is

based on the photoeffect. Similar to eyes, the detector absorbs photons from light, generating

electronic current pulse which can be measured. The semiconductor photon detector is the

most used photodetector in industry. The most common semiconductor-based devices are

single-photon avalanche diode (SPAD) detectors and can reach sensitivity at the single photon

level. The SPAD detector is reversely biased above the avalanche breakdown voltage in the

Geiger mode. When a photon is captured by this SPAD detector, the absorbed photon gener-

ates an electron-hole pair which causes a self-sustaining avalanche, rapidly generating a

measurable current pulse (Figure 2).

Figure 1. Sketch for seeing photons with eyes (from www.nkcf.org).

Figure 2. Schematic diagram for semiconductor photon detectors (from www.single-photon.com).
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Superconducting nanowires have been used to detect single photons. It exploits a different

principle in comparison with eyes and semiconductor photon detectors. It is designed in this

way [6, 7]: a patterned superconducting nanowire is cooled below the transition temperature of

the superconducting material. The superconducting nanowire is biased by an external current

slightly smaller than the critical current at the operating temperature. When a single photon hits

the nanowire, it creates a transient normal spot in the resistive state. As a result of loss of

superconductivity, a nonzero voltage is induced between two terminals of the nanowire. Mea-

suring this induced voltage can tell the arrival of the single photon. To date, superconducting

single photon detectors have achieved a detection efficiency of more than 90% [8, 9].

The abovementioned are three representatives of photon detectors. All of them destroy pho-

tons in signals.

3. Measuring light intensity without absorption

QND measurement of light needs to keep the quantum average of the observable and its

uncertainty unchanged after detection. In general quantum measurement, the observable of a

signal system, As, is measured by detecting the change of observable, Am, of a “meter” system.

The concept can be explained by describing the measurement as a joint Hamiltonian [10]

H ¼ Hs þHM þHI , (1)

where Hs is the unperturbed Hamiltonian of the signal system to be measured, HM is that of

the meter system, and HI describes the way in which the meter measures the signal. The

motion for As and AM under measurement is

�iℏ
dAs

dt
¼ Hs;As½ � þ HI ;As½ �, (2)

�iℏ
dAM

dt
¼ Hs;AM½ � þ HI ;AM½ �: (3)

QND measurement requires (i) Hs;As½ � ¼ 0, which is normally satisfied; (ii) HI ;As½ � ¼ 0; and

(iii) HI ;AM½ � 6¼ 0. The second condition guarantees that the back action is isolated from As. The

third one implies that a measurement can induce change in the meter system.

It is quite straightforward to get the cross-Kerr effect in mind for QNDmeasurement of photon

flux, ns ¼ A
†

sAs, of light beam [10, 11]. The Hamiltonian describing the cross-Kerr interaction is

as follows:

HI ¼ χA
†

sAsA
†

MAM, (4)

where χ is the strength of nonlinear interaction. Obviously, HI ;As½ � ¼ 0 is met.

The condition HI ;AM½ � 6¼ 0 holds if the phase of probe field is measured. The intuitive picture

of QND measurement of photon flux, ns, with the cross-Kerr effect can be well explained in

Figure 3. The signal and probe laser fields co-propagate in a Kerr nonlinear medium with
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length L. Due to the cross-Kerr optical nonlinearity, the refractive index of medium is depen-

dent on the intensity, Is ∝ ns, of the signal field. Its change is proportional to ns and subse-

quently causes a phase shift, ΔfM ¼ f0

M
� fM, to the probe field. Obviously, this phase shift

ΔfM is proportional to the photon number of signal field. Measuring ΔfM can determine the

intensity of the signal field without absorbing its photon.

The concept of QND measurement based on the cross-Kerr effect has been demonstrated in

experiments for classical light including many photons [12]. However, QND measurement at

the single photon level is still a challenging problem. The difficulty is twofold. Technically, the

nonlinearity of normal materials is too weak to induce a large phase shift per photon.

Although the cross-Kerr nonlinearity can be improved by orders by using atom system,

typically, a single photon can only cause an mrad scale phase shift [13]. It is worth noting two

recent experiments in cross-phase modulation [14, 15], which demonstrated the pi phase shift

at the single photon level via the cross-Kerr nonlinearity of atoms. At first sight, the methods

may be able to apply to QND measurement of single photons. Actually, they are yet to meet

the criteria of QND measurement.

In the first work [14], by storing a single photon in a cloud of Rydberg atoms, Tiarks et al.

achieved a π phase shift imprinted onto a probe field including only 0.9 photon. However, the

efficiency of storing and retrieving signal photon is very low, that is only 0.2. The signal photon

suffers a big loss and has a small possibility to survive after inducing the phase shift. In this,

this scheme cannot be used for QND measurement of single photons.

Alternatively, Liu et al. used a double-Λ system to induce a giant cross-Kerr nonlinearity to

achieve the π phase shift per photon [15]. In their configuration, the signal and the probe fields,

each including eight photons, share a common ground state, while they couple to their

individual dark states created by other two control fields. As a result, a giant cross-Kerr

nonlinearity between them is created. A π cross-phase shift is induced at the single photon

level. However, the reported scheme is still classical but has yet to reach the quantum regime

Figure 3. Configuration for the QND measurement of the signal photon number via cross-Kerr nonlinearity [10].
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for detecting a single photon in a QND way. There are two prerequisites in this scheme. First,

to ensure the atoms are transparent, the probe field needs to be known. Other than the optimal

phase, the absorption is considerable. But this phase is unknown for a signal photon to be

detected. It means a large loss for the signal photon to be detected. Second, the phase shift is

obtained in the steady state where the probe field is classically treated as a constant field. This

is not the case for a single photon as it is a quantum field. Therefore, it is hard to do genuine

QND measurement at the single photon level.

At the fundamental level, the cross-Kerr-based QND measurement is found invalid when a

continuous spatiotemporal multimode model [16] or a finite response time [17–19] is consid-

ered. In this sense, although many important progresses have been achieved, QND detection

of a moving single photon still needs proposals.

4. Non-demolition measurement of photons with cavities

With the progress of cavity electrodynamics, in particular the ultrastrong coupling between a

microwave cavity and an artificial atom, QND measurement of single mw photons have been

realized via qubit-photon CNOT gate [20], ac Stark effect [21–23], and the intrinsic phase shift

in Rabi oscillation [24]. Photon blockade has been demonstrated as a new effect to implement

QND measurement of a single optical photon trapped in a high-quality optical cavity [25].

The first breakthrough of QND measurement of single photons was accomplished by Haroche

et al. exploiting the intrinsic π phase shift after a full Rabi oscillation of an atom [24]. The

principle can be understood using the schematic diagram as shown in Figure 4. The atom is

first prepared in Rydberg state with the ground state gij , the excited state eij , and an auxiliary

state iij by B. R1 and R2 conduct the Ramsey interferometer measurement. R1 drives the

Rydberg atom into a superposition state of Cg gi þ Ci iijj . The mw cavity C induces a phase

shift dependent on the photon number in it. It is off resonance with gi $ iijj , but on resonance

Figure 4. Schematic diagram for QND measurement of a single microwave photon via the intrinsic phase shift of a full

Rabi oscillation [24].
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with gi $ eijj . It is designed to cause a full Rabi oscillation if the cavity includes one photon

and results in a π phase shift to gij yielding �Cg gi þ Ci iijj . While in the empty-cavity case, the

atomic state is unchanged. In short, the atomic coherent changes its phase by π if there is one

photon in C. R2 mixes the atomic state again, probing after C the superposition phase shift.

The final atomic population can be detected with a state-selective detector. The probability of

finding the atom in gij is a cosine function of the phase shift and thus gives information about

the phase shift. In this way, Haroche et al. implemented the QNDmeasurement of a single mw

photon.

5. Cavity-free schemes for non-demolition measurement of single photons

The concept of QND measurement and its realization in measuring classical light intensity

have been introduced earlier. QND measurement of single photons is the ultimate goal. Single

“static” photon in cavity has been detected nondestructively. Measuring “moving” single

photons without destroying it is still far to be achieved. Two important progresses toward this

direction are presented in the following.

5.1. QND measurement via Rabi-type photon-photon interaction

As mentioned earlier, although the optical cross-Kerr effect has been proposed for implementing

intensity QND measurement of light, detection of light at the single photon level in a QND way

is still a challenging task. In the cross-Kerr-based proposals [10], the signal photon changes the

refractive index nI of medium. The change of nI causes a phase shift of the co-propagating probe

photon. The interaction between the signal and probe photons is “Ising” type. Its application for

single-photon QND measurement is questionable at the fundamental level [16–19]. A “Rabi”

type photon-photon interaction created from four-wave mixing (FWM) was proposed for a

photon-photon controlled quantum phase gate [24]. The proposal treated the moving fields as a

single mode and suggested equal group velocity for both the signal and probe pulses. The work

did not circumvent the issues raised in [16–19]. Instead, Xia and his coworker studied this type of

photon-photon interaction for QND measurement of a single photon taking into account the

quantum nonlocality [26]. In the proposal, the four-wave mixing occurs in an optical nonlinear

medium. One of the light modes in four-wave mixing is a strong coherent laser. This coherent

laser is used to coherent pump the nonlinear process and perform an effective three-wave mixing

process involving the signal mode, as, the probe mode, ap, and an auxiliary mode, aa. The

Hamiltonian describing the interaction among these three modes takes the form

HI ¼
g Ecð Þ

2
aaa

†

pa
†

s þ
g Ecð Þ

2
a†aapas, (5)

where g Ecð Þ indicates the nonlinear coupling strength that can be tuned by the intensity of the

pump field Ec.

To induce a Rabi-type interaction, the auxiliary mode is initially in a vacuum state. The signal

field has at most one photon. The probe field is assumed to be weak that, to a good approxi-

mation, it can be considered as the superposition state of αp

�

≈ 0p
�

þ αp 1p
�

�

�

�

�

�

� with αp ∨ ≪ 1.
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Here, the probe field is truncated up to 1p
��

� . Focusing on the space spanned by the associated

state of the probe and auxiliary modes, as shown in Figure 5(a), these two modes form a ladder-

type quantum system. The ground state is 0p; 0a
�

�

� , and the first and second excited states are

1p; 0a
�

�

� and 0p; 1a
�

�

� , respectively. The incoming signal photon will drive the transition between

1p; 0a
�

�

� and 0p; 1a
�

�

� . This photon-driven transition between photonic states is a photonic coun-

terpart of atomic Rabi oscillation. For a weak probe field αp

��

� , the initial state is

0p; 0a
�

þ αp 1p; 0a
��

�

�

� . Similar to the Rabi oscillation in atoms, the state 1p; 0a
��

� will suffer a π phase

shift after a full Rabi oscillation. As a result, the probe field passing through the medium

becomes 0p
�

� αp 1p
�

≈ �αp

�
�

�

�

�

�

� . Effectively, the probe field is shifted by phase of π. The concept

is depicted in Figure 5(b). Such full Rabi oscillation can be conducted by controlling the pump

field intensity or the length of nonlinear medium.

To determine the phase shift of the probe field, a strong local bias is overlapped on the

transmitted probe field via a highly reflective beam splitter. By properly choosing the bias

field, the transmitted probe field presented to the detector is displaced by �αp

�
�

� , yielding

�2αp

�
�

� in the presence of a single signal photon or 0ij in the absence of signal field. Simply

observing the photon “click” on the single-photon detector can determine whether a single

signal photon passes through the medium without destroying it. This accomplishes the QND

measurement of a single signal photon. Of course, this measurement will cause disturbance in

the phase of signal field. However, the photon flux is concerned, and the noise added to the

phase quadrature is not unwanted.

To evaluate the performance of the QND measurement, only one investigates the response of

system to the initial case of a single signal photon input, 1sij , and a weak probe field, αp

��

� .

Numerical simulation of corresponding quantum Langevin equation shows the transmitted

signal and probe fields, and the displaced field presented to the detector for the input 1sij and

αp

�
�

� , as shown in Figure 6. It is found that the transmitted signal field keeps its initial state

with a very high fidelity, while the transmitted probe field on the detector, shifted by a phase of

π due to the presence of signal photon, can be well distinguished from the transmission

without phase shift in the absence of signal photon.

Figure 5. Schematic for detection of a single moving photon. (a) Configuration for QND detection of a single moving

photon via four-wave mixing in a nonlinear medium. (b) Level diagram describing the interaction between the signal,

auxiliary, and probe photons [26].
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In the presence of a single signal photon, the field presented to the detector is �2αp

��

� . In this

case, even an ideal photon detector can have a “dark count,” that is, no detection, because the

state �2αp

�
�

� includes a small occupation in vacuum state 0ij . This dark count causes error in

detection of signal photon. The resulted error probability is given by Perr αp

� �

≈ e�4 αpj j
2

. It

decreases exponentially as the intensity of probe field increases. However, the fidelity of

transmitted signal field decreases as well. Therefore, a weak probe field is preferable for

achieving a high fidelity, while a relative strong probe field is required to reduce the detection

error. An optimal trade-off is αp

�

�

�

�

2
¼ 0:6, yielding Perr ¼ 0:09 and a fidelity of 0.9 (Figure 7). To

reduce the error probability and improve the fidelity, a cascade configuration is needed. In

such configuration, the transmitted signal field of the former QNDmeasurement is fed into the

latter. The transmitted probe field is detected in each measurement. For an N-cascade config-

uration, the error probability decreases exponentially as a function of N, but the fidelity

Figure 6. Wigner functions of the transmitted and detected states for a probe field with αp

�

�

�

�

2
¼ 0:6. In (a) [(b)] transmitted

signal (probe) state after interacting (a Full Rabi oscillation) for the length of the media; (c) detected state of probe field

presented to detector. The concentric circles show the Wigner function contours of the detection field in the absence of

signal input [26].

Figure 7. Evolution of the occupation (a), the fidelity (b) and the detection error probability (c) for different probe field,

αp

�

�

�

�

2
. The black dashed lines at gz ¼ 2π are the guides to eye [26].
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decreases linearly. A four-cascade detection unit can already achieve F4

P4
err

> 23:75 for a very

weak probe field of αp

�

�

�

�

2 ¼ 0:2.

The measured photon and the probe photon are “moving” pulse-shaped wavefunctions. The

quantum Langevin equation describes the motion of system in the single mode regime, in

which both the signal and the probe photons are treated as a single mode. In the real experi-

ment, they are moving pulse including continuous spatiotemporal modes and can be confined

in a one-dimensional (1D) waveguide. Therefore, a model accounting for the interaction of

continuous spatiotemporal modes is required. The method developed by Fan et al. can model

the interaction of the signal and probe photons in 1D real space [27]. In the Fan’s method, the

photons are the wavefunctions of quantum fields propagating in 1D real space. The probabil-

ity density of photon appearing at certain time (position) is the squared absolute value of

wavefunctions. For the purpose of single-photon QND measurement, only one needs the

fidelity and phase shift of a photon-pair input state 1p; 1s
��

� after propagating a certain distance.

Starting from the vacuum auxiliary field, it can be excited during the propagation of the probe

and signal fields. One can define an associate wavefunction ∅ps t; zp; zs
� �

for the state 1p; 1s
�

�

� ,

and the wavefunction ∅a t; zað Þ for the state 1aij . These wavefunctions imply that the photons

1p
�

�

� and 1sij ( 1aij ) appear(s) at zp and zs (za) at time t with probability density of ∅ps t; zp; zs
� �

�

�

�

�

2

( ∅a t; zað Þj j2). The nonlinear medium can be assumed to possess a spatial nonlocal response

distribution with an interaction length of σ that f g za; zp; zs
� �

¼ 1
ffiffiffiffiffiffi

πσ
3

p e� za�zpð Þ2=2σ2
� �

e� za�zsð Þ2=2σ2½ �.
Following Fan’s treatment, the evolution of the photonic wavefunctions is governed by the

partial differential equations [27, 28]

∂∅ps

∂t
¼ �vp

∂∅ps

∂zp
� vs

∂∅ps

∂zs
� ig0

2

ðL

0

f g za; zp; zs
� �

∅adza, (6)

∂∅a

∂t
¼ �va

∂∅a

∂zp
� ig0

2

ðL

0

f g za; zp; zs
� �

∅psdzpdzs, (7)

where g0 is the coupling amplitude, va(vp, vs) is the group velocity of the auxiliary (probe,

signal) field in the 1D waveguide. g0 is not important because the coupling strength in exper-

iment can be tuned via the pump laser intensity. The photon pulses are assumed to be long

enough that the group velocity of each mode is constant in time, and the perfect phase and

energy matching are satisfied.

Solving Eqs. (2) and (3)) can simulate the evolution of the fields in medium. Without loss of

generality, a Gaussian input is applied. For a single-photon pulse which is a quantum field, the

photon can appear everywhere within the pulse with a probability density determined by the

wave packet. This is the nonlocal nature of a single photon pulse. When the probe and signal

fields propagate at the same group velocity in the medium as previous schemes, they have no

necessity to interact with each other. Actually, with a large probability, they propagate indepen-

dently as they never meet each other. The signal photon couples the probe photon only if they

appear at the same position. As a result, only the central part of ∅ps reverses its sign, implying a
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pi phase shift, see Figure 8(a). To circumvent this issue raised by the nonlocality of single photon

pulse, the probe field pulse is delayed with respect to the signal field pulse but propagates at a

higher velocity. To do so, the signal mode can be slowed down via the electromagnetically

induced transparency (EIT) technique. In such an arrangement, the probe field pulse scans over

the signal field pulse. No matter where the probe and signal photons appear within the pulses,

they will interact with each other once. It can be seen from Figure 8(b) that a π phase shift can be

clearly induced after the probe pulse passes through the entire signal pulse. The fidelity is very

high about unity. Another advantage of this arrangement over the former is that the phase shift

will not change once the probe field passes the signal field, see Figure 8(b).

By comparing two models, it can be seen that when the probe field has at most one photon, a

unit fidelity for the transmitted signal mode is achieved. If the probe contains higher Fock

states, then interaction with these high Fock states of probe mode prevents to achieve perfect

non-demolition of the signal mode.

Rubidium vapor embedded in a hollow-core photonic crystal fiber [12] or a hollow antiresonant

reflecting optical waveguide [29] can be a good experimental implementation for this QND

measurement scheme. This setup, to a good approximation, can be modeled as a 1D nonlinear

medium. The four-wave mixing can be effectively conducted using a diamond-level configura-

tion as shown in Figure 9. The signal field can be slowed via EITwith the fifth level, 4d3=2.

Figure 8. Evolution of the wave function ∅ps for (a) the same propagating speeds vp ¼ vs ¼ 1 and delay and (b) different

speeds vp > vs and different delays [26].

Figure 9. Configuration for four-wave mixing realized in Rb atomic vapor in hollow waveguides. The signal field is

slowed via EIT by a strong coupling between levels of 5P1=2 and 4d3=2.
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5.2. QND measurement with single emitters

Alternatively, Witthaut et al. proposed another scheme for QND measurement of single pho-

tons by using a single V-type emitter coupling to a 1D waveguide [30]. The configuration is

depicted in Figure 10.

A V-type three-level emitter strongly couples to one end of semi-infinite waveguide. The signal

photon drives the transition between gij and eij . The coupling to the waveguide causes an

external decay rate, Γ, of state eij . The metastable state sij is decoupled from the waveguide.

The emitter is initially prepared in a superposition state of α gi þ β eij
�

� with β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� α2
p

. The

reflection amplitude of a single-photon input is given by

tΔ ¼ Δþ i γ� Γð Þ
Δþ i γþ Γð Þ , (8)

with Δ is the detuning between the carrier frequency and the transition frequency between gij
and eij .

A passing resonant photon then introduces a phase shift if and only if the emitter is in state gij .

The transmission amplitude is given by tΔ ¼ γ� Γð Þ= γþ Γð Þ for this on resonance input.

When Γ≫γ, a π phase shift is imprinted on the photon. Then another classical control pulse

is applied to invert the state to�β gi þ α eijj . The complete procedure thus realizes the mapping

1 signal photon : gi ! β2 þ tΔα
2

� �

gi þ αβ 1� tΔð Þ si;j
�

�

�

� (9)

0 signal photon : gi ! gi:jj (10)

Measuring the phase shift imprinted on an incident classical laser pulse can measure the state

of emitter. The emitter in sij unambiguously reveals the presence of a signal single photon.

This scheme is very unclear. They did not discuss how the phase of classical laser field can be

shifted by an observable amount. It is also unclear how the single photon changes the state of

emitter to be measured.

Figure 10. (a) Sketch of potential experimental setup for QND measurement of a single photon. The single-photon

circulator is used to separate the input and output. (b) Level diagram of the emitter [30].
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For simplicity, set va ¼ vp ¼ 1. Without loss of generality, a Gaussian input, ∅ps t ¼ 0; zp; zs
� �

¼

1=
ffiffiffiffiffiffiffiffiffiffiffiffi

πτpτs
p	 


e� zp�zp,0ð Þ2=2τ2pe� zs�zs,0ð Þ2=2τ2s is applied, where zp,0 and zs,0 are the group delays of

the probe and signal wavefunctions, respectively.

6. A possible bright future

QND measurement opens a door for precise measurement and versatile applications in photon-

based quantum information processing. In principle, QND measurement enables repeated mea-

surement of photon number, n, of a light beam. Because QNDmeasurement does not disturb the

photon number of light, it allows one to measure the photon number many times. This can

surpass the standard quantum limit bounded by the “shot-noise” and allows to measure light

with ultrahigh sensitivity. QND measurement down to the single photon level further enables

potential application in quantum information processing. Remarkably, when a single signal

photon can induce a π phase shift to another probe photon, the scheme for QND measurement

essentially has the potential to implement a quantum controlled-phase gate between these two

photonic modes. This kind of gate is a universal quantum gate for quantum computation.

Another important application is to squeeze light via QND measurement. Although QND

measurement has been well studied theoretically and has been realized in experiments, it is still

questioned in its interpretation [31]. Monroe comments that photons can be independently

generated once a signal photon is detected via absorption. He claims that the concept of QND

measurement is confusing and should be demolished. However, his comments are also ques-

tionable. Squeezing light through QND measurement cannot be realized by simply generating

photons according to the detection events. In summary, the concept of QND measurement

applied to photons promises of great applications in quantum measurement. The progress

approaching the single photon level may provide a simple router for implementing quantum

information processing [32] or even quantum telescope [33].
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