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Abstract

Hydroxyapatite (HAP) is a worthwhile compound for its biomedical applications.
Nanoparticles (NPs) and nanostructured HAP scaffolds promote and intensify the inter-
action between artificial material and natural bone due to their high surface/volume ratio.
In this chapter, first, the technique for the production of HPA nanoparticles smaller than
100 nm is addressed. It consists of the use of a rotating disk reactor to optimize the
reaction-precipitation process. The centrifugal force dispersed into the liquid layer over
the disk surface enables the attainment of micromixing conditions between the reagents
and maximizes the reaction rate as a consequence. The reaction between calcium chloride
and ammonium phosphate in the presence of ammonium hydroxide was adopted. NPs
minimum size, equal to 78 μm, was obtained using a rotational velocity of 147 rad/s and
feeding points of reagents 3 cm from the disk center. A computational fluid dynamics
(CFD) model of the liquid layer was specifically developed for the interpretation of the
obtained experimental results on the production of pure HAP. In the second part of the
chapter, the feasibility of producing Mg2+ doped hydroxyapatite (Mg-HAP) by adding
MgCl2 and using the same technique is reported. Satisfactory results were obtained:
nanoparticles were between 50 and 70 μm in size and Mg2+/Ca2+ molar ratio was equal to
0.06, according to the composition target.

Keywords: hydroxyapatite, precipitation, spinning disk, micromixing, Mg-doped
hydroxyapatite

1. Introduction

In recent years, several chemistry-based processing routes have been reported for preparing

hydroxyapatite (HAP) powders. Nanoparticles with several morphologies have been synthesized

by means of solid-state reaction, emulsion techniques, sol-gel and hydrothermal method [1];

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



however, the wet chemical precipitation method was proven to be one of the easiest ways for

preparing HAP powders.

Wet chemical precipitation consists of a chemical reaction followed by the precipitation of the

reaction product, which is a very sparingly solute. The overall process can be distinguished in

several stages: the mixing among the reagents in liquid phase or gas-liquid phase, the reaction,

the nucleation of solid particles as soon as the supersaturation has overcome the metastable

limit, the growth and the aggregation of the solid particles. In order to produce solid

nanoparticles, it is necessary to maximize nucleation rate and to minimize both growth and

aggregation rate. In this respect, the key factor is the intensification of the mixing process. In

fact, if the local mixing among the reagent streams, called micromixing, is very effective, the

reagents locally attain the maximum concentration. As a consequence, the reaction rate takes

place at the maximum rate, the maximum concentration of the required product, that is, its

maximum supersaturation, is achieved and the nucleation rate is optimized.

According to the attained supersaturation, homogeneous or heterogeneous nucleation takes

place. If the micromixing conditions are intense enough, the micromixing time is smaller than

1 ms and homogeneous nucleation becomes dominant with respect to heterogeneous one. In

general, when the needed average crystal size is around one micron or smaller with tight

crystal size distribution, homogeneous nucleation is preferred to heterogeneous nucleation.

The major objective in this matter is, thus, to develop a precipitation reactor, which intensifies

the mixing between the reagents much more than in a stirred reactor, in order to produce

nanoparticles in a very narrow size range. For this purpose, microreactors, so-called T-mixer

reactor and rotating disk reactor are adopted. All these reactors may assure conditions of

micromixing, which usually induces homogeneous nucleation. More recently, the use of tubu-

lar microreactors have been proposed. Such apparatuses are characterized by very fast heat

and mass transfer and a very small residence time of reagents fed to microstructured devices

where the reactions are performed at very controlled conditions [2]. However, the application

of this technique at the industrial scale seems to be hard to be proven. The T-mixer is often

adopted as premixing device for precipitation-stirred reactors, but cannot represent a practical

solution as a reactor stands alone, in particular for its needed high-dispersed energy. The

rotating disk reactor requires lower energy amount with respect to the two above-mentioned

reactors, may work in continuous mode and is of relatively simple scale-up. The present

chapter is focused on the production process of nanoparticles of HAP, not-doped or Mg-

doped, by using a spinning disk reactor (SDR).

The first attempt to use the SDR for a precipitation process was afforded by Cafiero et al. [3] by

performing the wet precipitation of BaSO4 over a disk rotating between 200 and 1000 rpm. In a

subsequent paper, the same authors [4] calculated that at the highest rotational speed a

micromixing time between the reagents smaller than 1 ms occurred and particles of barium

sulfate around 0.5 μm in size were obtained. Moreover, a comparison between the T-mixer and

the SDR performances, leading to the same micromixing, was made and it was shown that

T-mixer is much energy consuming with respect to SDR.

Some other works reported the chance to use SDR to produce nanoparticles: Trippa et al. [5]

studied the production of calcium carbonate particles from dissolved CO2; Raston et al. [6]
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showed the feasibility of producing b-carotene nanoparticles; Loh et al. [7] showed the poten-

tiality of the spinning disk technology for large manufacture of chitosan nanoparticles; and

finally Dabir et al. [8] present an experimental method for large-scale production of silver

chloride nanoparticles using SDR.

In all these works, the importance of hydrodynamics of the liquid over the disk surface was

emphasized. The prediction of the hydrodynamics over the SDR has been studied by many

authors. The hydrodynamic simulation models were often evaluated with respect to the

experimental values reported by Burns et al. [9], concerning the measurements of the liquid

film thickness over a rotating disk. In the same paper, there was a comparison between the

Pigford model and the Nusselt theory and it was shown that this latter cannot satisfactorily

predict the liquid profiles over the disk when the inertial forces are higher than the viscous

one, that is, for low values of the Ekman number. More recently, Bhatelia et al. [10] studied the

prediction of the liquid layer over the rotating disk by a CFD model and they obtained results

in good agreement with those reported by Burns. de Caprariis et al. [11] developed a CFD

simulation model to predict the hydrodynamics of the reagent solutions over an SDR used for

the production of hydroxyapatite. It was clearly shown both the patterns of the reagent streams

fed over the disk and the progressively decrease of the reagents concentrations. The first work

dealing with the production of nanoparticles in a two-phase solid liquid was that one of Plasari

et al. [12]. Nucleation and growth were considered, whereas aggregation of particles was neg-

lected. Some deviations between experimental and simulated values were obtained. More

recently, de Caprariis et al. [13] tried to predict the crystallite of HPA produced over the

spinning disk by inserting the particle balance equation in the CFD model previously devel-

oped by the same authors. Definitely, nowadays much work has to be done on the prediction of

nanoparticles produced by means of an SDR.

In this chapter, the effects of several operating parameters (reagent flow rate, rotational speed

and feed point location) on the size of pure HAP and Mg-HAP nanoparticles have been

investigated. The nanoparticles size minimization for not-doped HAP, and for Mg-doped

HAP at a fixed molar ratio Mg2+/Ca2+ equal to 0.06, was pursued. The main aim has been to

show the feasibility of producing nanoscale HAP nanoparticles by wet chemical synthesis in

an SDR, by operating in continuous mode.

2. Description of the SDR system for the production of pure HAP and

mg-HAP nanoparticles

Spinning disk reactor (SDR) appears to be a versatile and efficient equipment for the produc-

tion of nanoparticles by wet chemical synthesis. As soon as chemical precipitation takes place

under intensified micromixing conditions, a two-step nucleation-aggregation process mainly

determines the size distribution of the produced nanoparticles. In these conditions, almost all

the generated supersaturation is quickly consumed by nucleation, and only a small amount of

the residual local supersaturation is available for growth and aggregation. First of all, it is

interesting to point out the effect of the mixing intensification on the two main phenomena of
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nucleation and aggregation. Hounslow and Mumtaz [14] have described the two-step process

of aggregation: a shear stress orthokinetic collision between two particles and a subsequent

cementation of these at their contact point due to internal diffusion of solute ions. In this

process, fluid shear appears on the one hand to be in favor of aggregation by increasing the

number and intensity of the particle collisions and on the other hand in disagreement, since it

reduces the effect of the collisions due to reduced time for bridge formation and its disruptive

action on the agglomerated particles. These considerations were derived from experimental

runs on the aggregation of nanoparticles of calcium oxalate in a Poiseuille flow crystallizer. In

this case, aggregation was reduced by intensified operating conditions, leading mainly to the

disruptive action of the fluid shear stress. As a consequence, it appears that the mixing process

intensification, enhancing nucleation and reducing aggregation process, leads to the produc-

tion of smaller nanoparticles in size.

Some works emphasized the great importance of hydrodynamics on the produced particles size,

taking into account the feeding points of the reagents over the disk surface. The paper of Parisi

et al. [15] on the production of HAP particles pointed out the importance of the feed stream

injection points over the disk to achieve specific particle size distributions and yields. Moreover,

Stoller et al. [16] showed that the location of the injection points is very important with respect to

the aggregation rate and the scaling formation over the reactor surface. In this chapter, the

importance of the feed flow rate on the particle agglomeration was also observed, and in fact

the density of the produced nanoparticles over the disk surface increases the aggregation rate.

Summarizing, the performances of a given SDR appear to be a function of the disk rotational

speed, feed flow rate(s) and location of the injection points. The experimental device used in

this work is schematized in Figure 1. It consists of a cylindrical case with an inner disk of

8.5 cm in diameter, made by PVC.

Rotational velocity of the disk could be increased up to 147 rad/s, corresponding to 1500 rpm.

The reagent solutions were fed over the disk at a distance of 5 mm from the disk surface

through tubes, 1 mm in diameter. The position of the reagent injection points over the disk

Figure 1. Scheme of the adopted SDR.
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surface as a function of the distance from the disk center could be chosen between 0 and 3 cm.

The constancy of the feed flow rates of each reagent solution stream was assured by the use of

peristaltic pumps.

The produced suspension left the disk in continuous mode from its periphery and then suddenly

came out of the cylindrical case. All the experiments were conducted at room temperature.

3. Experimental results

In the following two sections, the major results pertaining to the experimental tests conducted

for the synthesis of HAP andMg-doped HAP nanoparticles are reported. The detailed descrip-

tion of the adopted experimental procedures and the extensive discussions on the obtained

results are reported in the cited papers.

3.1. Production process of HAP

In case of pure HAP production, three solutions were fed over the disk surface: the two reagent

solutions at a distance from the disk center of 2 or 3 cm and an aqueous solution of ammonium

hydroxide at the disk center. In particular, a 10% aqueous solution of NH4OH at a flow rate of

80 ml/min was fed, whereas the two reagent aqueous streams had both a flow rate of 100 ml/min

and a solute mass fraction of 5.6% of CaCl2 and 3.5% of (NH4)2HPO4, respectively. The

calcium/phosphate (Ca/P) ratio of 1.67, corresponding to stoichiometric HAP, was respected.

This condition is considered bymany researchers very important in order to obtain nanoparticles

of hydroxyapatite with high purity [17].

The reaction takes place between calcium chloride and ammonium phosphate, in the presence

of ammonium hydroxide, according to the stoichiometry:

10CaCl2 þ 6 NH4ð Þ2HPO4 þ 8NH4OH ! Ca10 PO4ð Þ6 OHð Þ2 þ 20 NH4ð Þ Clþ 6H2O (1)

Ammonium hydroxide is used to attain a pH value equal to 10 and, as a consequence, high yield

of the reaction to HAP [17]. Particle size distribution was measured by a dynamic light scattering

instrument (DLS, PLUS 90 by Brookhaven) in the range 1–6000 nm. The samples were prepared

by dispersing small amounts of the HAP powder in a 25-mL NaOH solution (0.1 M, pH 10) with

0.2 g of the surfactant Twin60 and submitting this suspension to ultrasonication for 15 min.

The experiments were focused on the evaluation of the effects of the rotational speed and of the

radial distance of reagent feeding points from the disk center on the size of the HAP particles.

In fact, these two parameters strongly affect the local micromixing time and as a consequence

the achieved nucleation rate.

The majority of the experimental tests were carried out, feeding the reagents at 2 cm from the

disk center and varying the rotational speed between 58 rad/s and 147 rad/s. Furthermore, in

order to evaluate the effect of the feeding point, two runs were performed, at constancy of

rotational speed of 147 rad/s, by feeding the two reagents at opposite distance of 3 cm from

the center.

Hydroxyapatite Production by an Intensification Process
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The measured particle size as a function of rotational speed and feeding point distance is

reported in Figure 2. As expected, the mean size of the produced particles is inversely propor-

tional to the local energy dissipation due to the centrifugal force. In fact, this latter becomes

higher when the disk rotational velocity increases and the radial position of the feed point

approaches the disk edge. The minimum size, equal to 78 nm, was obtained using a rotational

velocity of 147 rad/s and feeding points of reagents 3 cm from the disk center.

A typical size distribution measurement of the HAP nanoparticles is reported in Figure 3.

It has to be noticed that the produced nanoparticles, even in the nanometers range, are

aggregations of single particles around 5 nm in size. This is, in fact, the dimension of a single

crystallite estimated using the Scherrer’s formula from X-ray diffractometer measurements for

particles produced at the maximum rotational speed [13, 18].

The key of a rapid mixing is to produce a region of high turbulent energy dissipation, as a

matter of fact that the increase of the rotational speed provides higher energy dissipation in the

liquid phase over the disk surface. The specific dispersed power, [W/kg], was calculated

according to the equation proposed by Moore [19]:

ε ¼
1

2 � tres
r
2
e
� ω2 þ vre

2
� �

� r
2
i
� ω2 þ vri

2
� �� �

(2)

where tres is the residence time of the liquid solution on the rotating disk between an external

radius, re, where the fluid velocity is vre, and an internal radius, ri, where the fluid velocity is vri.

The residence time can be calculated by the following relationship:

tres ¼
2 � re � rið Þ

vre þ vri

(3)

Figure 2. Average size of the produced particles, varying the rotational speed and the injection position. Blue points and red

point refer to an injection point at 2 and 3 cm from the disk center, respectively.
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The values of the specific dispersion energy determined for a feeding point at 2 cm far from the

disk center as function of the adopted values of rotational speed are reported in Figure 4. In

this figure, the value of ε calculated for a feeding point 3 cm far from the disk center and at

147 rad/s is also reported. It is clear that increasing the disk speed and the distance of the

feeding point from the center higher energy dissipation power occurs, producing better mixing

conditions.

In conclusion, by increasing the local specific energy dispersion over the disk surface, micro-

mixing at the contact point of the two reagent solutions is enhanced and HAP nanoparticles of

smaller size are produced.

3.2. Production process of mg-doped HAP

It is well known that trace quantities of cations (i.e., Mg2+, Zn2+, Sr2+) and/or anions (i.e.,

SiO4
4�, F�, CO3

2�) in HAP play a pivotal role in its overall biological performances. Among

substituting cations, magnesium is widely studied, being the fourth most abundant cation in

the human body (0.44–1.23 wt%). Mg2+ substitution plays an essential role in the biologic

environment due to its strong impact on the mineralization process, influencing both HAP

crystal formation and growth [20], and increasing the HAP dissolution in human physiologic

medium. In this work, the chance to produce Mg-doped nanoparticles by precipitation using

Figure 3. Size distribution measurement of HAP nanoparticles obtained with a rotational speed of 147 rad/s.
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an SDR has been proven and the influence of the operating parameters on the nanoparticles

size was investigated.

Mg-doped hydroxyapatite powders were prepared at room temperature (25�C) and air atmo-

sphere. The precipitation reactor was performed by using the SDR 8.5 cm in diameter above

described with a rotational velocity between 840 and 1500 rpm. The reaction took place among

the following reagent aqueous solutions: ammonium phosphate dibasic ((NH4)2HPO4 0.264 M),

ammonium hydroxide, (NH4OH 2.853 M), calcium chloride (CaCl2 0.475 M) and magnesium

chloride (MgCl2 0.028 M). The overall reaction was as follows:

10� xð Þ CaCl2 þ xMg Cl2 6H2Oþ 6 NH4ð Þ2 HPO4 þ 8NH4OH ! Ca10�x Mgx PO4ð Þ6 OHð Þ2
þ 20 NH4Clþ 6 1þ xð Þ H2O

(4)

A value of x = 0.566 was chosen to determine a Mg2+/Ca2+ molar ratio equal to 0.06, that is the

value suggested by Landi et al. [21] to achieve the fastest bone growing rate. The NH4OH

solution was fed at the disk center, whereas the feed points of the two other reagent solutions

were symmetrically located at 2 or 3 cm from the center of the disk. The details of the

experimental work are reported elsewhere [22]. After each run, the obtained nanoparticles

were first separated by the mother solution, then washed several times and dried for 96 h in a

furnace at 80�C.

The size measurements of the produced particles were taken as above described. The X-ray

diffraction (XRD) characterization of the HAP particles was performed using an XRD diffrac-

tometer (Philips PW1830 DY3558 Cu Kα, 40 kV, 30 mA). The analysis was made over a 2θ

range of 2–70� at a scan rate of 0.5�C/min, with a sampling interval of 2.5 h. The crystallites

average dimension was estimated from the X-ray diffractometer using the Scherrer’s equation.

In addition, the B.E.T. surface area of the powder was measured by the Monosorb instrument

supplied by Quantachrome. The adsorbed gas was N2 (30%) and He (70%) at �196�C. The

Figure 4. Specific dispersed power as a function of the rotational speed and reactant injection position. Blue points and red

point refer to feed points at 2 and 3 cm from the disk center, respectively.
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morphology of the powder was examined by scanning electron microscopy (SEM, 10 Auriga

405 Carl Zeiss). Infrared spectra of Mg-HAP powder were obtained using an infrared Fourier-

transform spectrometer (FTIR, VERTEX 70 model by Bruker). Finally, in order to determine

both HAP stoichiometry and the Mg2+/Ca2+ molar ratio, chemical analysis of Mg2+ and Ca2+

was done by atomic absorption spectrophotometry (AAS, Agilent Technologies 200 series AA).

In the preliminary work, the effect of the rotational speed and the reagent flow rate on the

nanoparticle size was noticed; thus, accordingly, two experimental work series were carried

out to investigate the influence of these two operating variables. In Tables 1 and 2 are reported

the obtained results in terms of the nanoparticles size by changing the SD rotational speed and

the overall flow rate of the reagent solutions, respectively.

The rotational speed has a very strong effect on the nanoparticle size (Table 1), as noticed in the

experimental work on pure HAP, because of the influence of the hydrodynamics on the local

micromixing. By feeding the reagent solutions at 2 cm from the disk center, comparable results

are obtained at rotational speed equal to or higher than 1120 rpm because similar conditions of

almost complete micromixing in the liquid over the SDR surface were attained. Moreover, from

the results in Table 1, it is clear that the feed location largely affects the size of the produced

particles. For a feed location at 3 cm from the disk center, at all the rotational speed, the size of the

obtained particles was less than 100 nm and smaller than one of the particles obtained for the feed

location at 2 cm from the disk center. In order to interpret the obtained results, it is useful to take

into account that in any case the obtained particles are agglomeration of single nanoparticles,

whose size is mainly affected by the local micromixing. The larger the micromixing, due to the

increase in the rotational speed (Table 1), the smaller the single produced particles. The effect of

crystal collision on the nanoparticle size is clearly shown by the results reported in Table 2,

performed at constancy of rotational speed. By increasing the overall reagent solution flow rate,

the residence time of the particle slurry suspension decreases and the probability of collisions as

well. As a consequence, the smallest particle size is achieved at the maximum flow rate of 4 ml/s.

In particular, by increasing eight times the overall feed flow rate from 0.5 up to 4 ml/s, the

average size of the agglomerated particles decreases from 71 down to 52 nm.

The image of the nanoparticles obtained at the best operating conditions, that is, at 1400 rpm,

location point 3 cm from the center and overall reagent solution flow rate of 4 ml/s, is reported

in Figure 5.

SD rotational speed rate (rpm) SD rotational speed rate (rpm)

Feed location at 2 cm Feed location at 3 cm

840 392.8 97.0

980 305.1 71.7

1120 80.2 64.3

1260 75.2 56.9

1400 72.3 51.3

Table 1. Average particle size at different SD rotational speed (overall flow rate of the reagent solutions equal to 3 ml/s).
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http://dx.doi.org/10.5772/intechopen.71775

23



The average size and the standard deviations along the two geometrical axes are, respectively,

169 and 36 nm, along the major axis and 33 and 7 nm along the minor axis, and thus, the

nanoparticles exhibit a length/width ratio around 5. The XRD pattern of the synthesized Mg-

doped powder reported in Figure 6 confirmed a nanocrystalline single-phase HAP and allowed

Overall liquid feed flow rate (ml/s) Particle size (nm)

Average size Standard deviation

0.5 70.7 5.4

1.0 58.8 7.4

2.0 51.9 6.8

3.0 51.3 7.8

4.0 51.3 7.8

Table 2. Nanoparticle size of mg-doped HAP at different values of the overall feed flow rates (feed location at 3 cm from

the center and rotational speed equal to 1400 rpm).

Figure 5. SEM image of the mg-doped HAP nanoparticles obtained at the best operating conditions.

Figure 6. XRD pattern of the produced mg-HAP powder.
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to estimate crystallite dimension of 5 nm by applying the Scherrer’s formula. The estimated size

of the crystallites is consistent with the hypothesis of agglomeration for the produced particles.

The B.E.T. results gave a specific area of 132.6 m2/g, which is higher than the values reported

by Landi [21], in the range 90–125 m2/g. The FT-IR spectra reported in Figure 7 show the

typical phosphate bands of hydroxyapatite compounds located at 980–1100 cm–1 (asymmetric

stretching) and at 560–600 cm–1 (asymmetric bending).

Finally, from the Mg-HAP analysis by atomic adsorption spectrophotometry a molar ratio

Mg2+/Ca2+ equal to 0.06 resulted, in according with the target fixed in this work.

4. CFD modeling of the SDR performance in HAP synthesis

The progressive progress in computational fluid dynamics (CFD) techniques and in the avail-

able computing power encourages the application of this modeling approach across multiple

engineering fields and, in particular, in the area of chemical reaction engineering. However, in

the case of spinning disk reactors applied to the synthesis of nanoparticles, a few of CFD

studies are present in literature, in spite of the expected benefits for the physical interpretation

of the occurring physical–chemical phenomena. In this section, a careful attempt has been made

to model the hydrodynamics of the three-phase system over the disk surface and to interpret the

obtained experimental results with reference to the HAP nanoparticles production.

SDR performances are strongly affected by the adopted operating conditions. Consequently, a

fine description of thin-film hydrodynamics appears as essential in studying and optimizing

the operating conditions of an SDR.

The use of an SDR should promote the mixing among the reagents, which leads to very low

micromixing time, less than 1 ms, to maximize the reagent concentrations and one of the

Figure 7. FT-IR spectra of the produced mg-HAP sample.
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products. In case of no adequate mixing, in fact, the two reagent solution streams may give rise

to a wide segregate area where one of the reagents predominates. Once this segregation is

established, the reaction occurs mainly outside the selected pH value, producing the formation

of larger particles which tend to agglomerate away from their feed point because of the high

residual product concentration.

To avoid this unfavorable situation, the optimal condition should be set, promoting a rapid

mixing of the reagent streams, maximizing the reaction rate between the reagents, where high

nucleation rate occurs, and minimizing the residual supersaturation available for the growth of

the formed particle.

These conditions are all favored by a high velocity field in the overall film thickness developed

on the disk. Some simplified descriptions of the film hydrodynamics were proposed in litera-

ture, starting from the simplified Nusselt model, the Pigford, Lepehin and Riabchuk models,

just to mention a few. As matter of fact, Burns et al. [9] reported that the Nusselt model returns

a rough description of the film thickness at high Ekman numbers, with an average overpredic-

tion around 10%. Based on the experimental results reported in this Burns’ work, Bhatelia et al.

[10] implemented and validated a CFD model where no specific liquid film turbulence was

addressed, producing results not enough accurate to grasp the true film hydraulics.

The approach here proposed to simulate the behavior of the reaction precipitation system over

the adopted SDR moves from a CFD hydrodynamic model developed by de Caprariis et al.

[11]. In this study, the CFD model is extended to the prediction of the average size of the

produced HAP nanoparticles. The hydroxyapatite production was studied with the aim to

predict the SDR performances at various operating conditions. A nanoparticle diameter esti-

mation to be compared with the available experimental data was derived by the implementa-

tion of a population balance equation (PBE).

As previously described, the production of nanoparticles of hydroxyapatite by chemical pre-

cipitation reaction took place in an SDR operating in continuous mode and consisting of an

inner rotating disk 8.5 cm in diameter. Three reagent solutions were injected onto the disk at

three selected feed points: the ammonium hydroxide at the distance of 1 mm from the disk and

the other two reagents at 2 cm from the disk center, in opposite positions.

The first step of the simulation procedure consisted of the generation of a stable, stationary and

continuous liquid film onto the disk surface. This initial condition was addressed by feeding

only the NaOHwater solution (10%wt) at the rate of 80 ml/min. Once a stationary liquid phase

was established, the two reagents CaCl2 and (NH4)2HPO4 were continuously fed in the form of

water solution (5.6 and 3.5%wt, respectively), both at the same flow rate of 100 ml/min, at a

position of 2 cm from the disk center. A calcium/phosphate (Ca/P) stoichiometric ratio of 1.67

was assumed. The rotational velocity was fixed at 146.5 rad/s. The reaction takes place

between calcium chloride and ammonium phosphate, in the presence of ammonium hydrox-

ide, according to the stoichiometry described by Eq. (1).

On the basis of the disk geometry, a computational grid necessary to resolve the CFD model

was built in the Gambit environment. The computational domain has considered only the zone

of the disk from a radius of 2 cm ahead, that is where the liquid height is approximately

constant and the reaction takes place. In fact, according to the liquid profiles reported in
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Figure 8, in the examined domain the film thickness is quite constant and it is the only one

where the reaction occurs, since the reagents are injected 2 cm away from center of the disk.

Therefore, the adopted grid for the simulation work consists of a cylinder 8.5 cm in diameter

and 70 μm in height, composed by 260,000 cells. The mesh is structured and made of

hexahedral cells, so that the flux is orthogonal to the faces of each cell in the radial direction,

limiting the numerical diffusion errors especially in the presence of convective fluxes.

The numerical simulations were performed in the ANSYS Fluent v.14.5 environment, a com-

mercial CFD package based on finite volume resolution method. The reaction was modeled

according to the Eulerian multiphase model. This model was chosen because the length of the

interface between the forming crystals and the liquid medium is by far shorter than the

characteristic length of the computational domain. In the framework of this model, the phys-

ical system was simulated by a continuous liquid phase containing all the reacting species and

a solid phase consisting of the nucleating hydroxyapatite nanoparticles formed by the reaction.

The Eulerian model solves a set of n continuity and momentum equations for each phase,

coupled through the interphase and pressure exchange coefficients. The turbulence was modeled

according to k-epsilon model.

The precipitation reaction was described according to the finite rate model implemented with

literature kinetic data [23]. The set of equations consists of the balances of momentum, mass,

energy and solid particle population. The population balance equation (PBE) aiming to predict

the size distribution of the particles is written in terms of density function n(V,t) as follows:

∂

∂t
n V; tð Þ½ � þ ∇ u

!
n V; tð Þ

h i

þ G ¼ AB þ AD þ BB þ BD (5)

where _nV is the nucleation rate (#/m3s). The PBE can be solved once the boundary and initial

conditions are set:

• BC: n V ¼ 0; tð Þ ¼ _n0

• IC: n V; t ¼ 0ð Þ ¼ nV

In the PBE, G is the growth term, AB and AD are the birth and death rate due to aggregation

terms, respectively, and BB and BD are the birth and death rate due to breakage terms,

respectively. In the considered process, however, all the terms, apart from the nucleation

Figure 8. Film thickness profile [10].
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contribution, have been ignored due the particular characteristics of the reaction. In fact, when

the precipitation reaction takes place at complete micromixing conditions, it can be considered

that most of the supersaturation ratio, that is, the driving force, is consumed by the nucleation,

leaving only a reduced driving force for the remaining phenomena, that is, solid growth and

aggregation. A constant nucleation rate _nV = 1011 #/m3s, equal to an average value derived

from the literature data for this class of reactions, was assumed.

The PBE can be solved according to different approaches, and in this chapter, the Quadrature

Methods of Moments (QMOM) was adopted [24]. This model allows the calculations of the

moments describing the population balance through a relatively reduced set of equations,

furthermore limiting the computational errors. The main advantages of this approach are to

involve few variables (from six to eight different moments) and to allow the dynamic calcula-

tion of the size bins, obtained however at a quite high computational cost. Further details

about the model choice and its setting are reported by Dugo [25]. The main results of the CFD

simulation are briefly shown and discussed below.

The tangential velocity profiles of the liquid phase at the disk surface and at the liquid film

maximum height resulted by the CFD simulation are reported in Figure 9. The liquid velocity

continuously increases from the center to the periphery of the disk, as expected.

The contours of the concentrations of the two reagent streams computed at the middle of the

film (35 μm) are reported in Figure 10. These contours show that the maximum concentration

of each reagent at the feeding point progressively lows down along the disk, due to the

reaction occurrence. It has to be noticed that from the quantitative point of view the complete

mixing gives rise along the disk to an average stoichiometric ratio between the two reagents of

approximately 1.67.

The precipitation reaction is nearly instantaneous and starts as soon as the reagent streams get

in contact. Hence, the maximum reaction rate is located at the contact points, as clearly shown

in Figure 11.

The HAP mass fraction contour showed in left side of Figure 11 confirms that the HAP

production starting point occurs at the feed point of the two reagents, where the calculated

reaction rate shows the highest values (right side of Figure 11). From these points, ahead the

Figure 9. Tangential velocity profiles of the liquid phase at the disk surface and at the maximum film height (70 μm).
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HAP concentration increases for the advances of the reaction along the disk until a maximum

concentration at the disk edge.

On the basis of the calculated mass produced by the reaction, the HAP crystallite dimension

was predicted by means of the PBE as here after detailed.

The results of concern of the PBE solution are the moments of different orders that are directly

related to the particle diameters. In particular, the moments of order from 0 to 3 are linked to

the representative diameters, d10 and d32, by Eqs. (6) and (7), respectively:

d10 ¼
m1

m0
(6)

d32 ¼
m3

m2
(7)

Because the estimation of the d32 diameter is based on the m2 and m3 moments, linked to the

surface and volume shape factors, respectively, the corresponding figure can be considered

more accurate in inferring the true particle size.

The values of the moments calculated at the disk edge are shown in Table 3, allowing the

estimation of the formed nanoparticle size in the range d10 = 2.19 nm and d32 = 4.8 nm. These

results should be considered as referring to the dimension of the crystallite, that is, the crystals

Figure 11. Hydroxyapatite concentration contour in the liquid phase at a film height of 35 μm, left. Reaction rate contour,

right.

Figure 10. Reagent concentration contours at a film height of 35 μm: CaCl2 left, (NH4)2HPO4 right.
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born due to the nucleation phenomenon, since no crystal growth and agglomeration phenom-

ena were taken into account in the simulations.

The dimension of the crystallite of hydroxyapatite was measured in previous works [13, 22]

with X-ray diffraction technique, calculating the value of the diameter by the Scherrer’s for-

mula. The images of the HPA crystals reported in Section 3 and considered as agglomerated

crystals are consistent, and the estimated crystallite diameter is about 5 nm. The d32 value

obtained from the CFD simulation proves, thus, the reliability of the developed model.

5. Conclusions

The biocompatible characteristics of hydroxyapatite are emphasized when its mass has a very

high specific surface, as in case of nanoparticles. In this chapter, it has shown that the HAP

production process can be effectively performed by chemical precipitation by using a spinning

disk reactor. By operating at a disk rotational speed of 1500 rpm, pure HAP nanoparticles

around 70 nm are obtained. When the reaction is operated in the presence of MgCl2, Mg-doped

HAP nanoparticles are obtained down to 51 nm in size. In this case, the adopted analytical

techniques ascertained both the nature of HAP and a molar ratio Mg2+/Ca2+ equal to 0.06,

needed to achieve the fastest bone growing rate. The results in terms of the obtained nanopar-

ticle sizes are worthwhile because they refer to a production process which can be carried out

in continuous mode, whereas most of the results in literature concern preparation in batch

mode. In this chapter, the effects of the disk rotating speed and the feed location of the reagent

solutions on the produced particle size were clearly shown and discussed. Then, a CFD model

was developed in order to describe the hydrodynamics and the reaction-precipitation process in

the film thickness formed over the SDR surface. The interest in developing such a tool relies in

the possibility to predict the outcome of reagent mixing and chemical reaction processes into the

system domain, a prerequisite to estimate the particle size distribution of the product obtained

by chemical precipitation.

The results show that the SDR is an effective device in performing this class of reactions where

the mixing of the reagents is of fundamental importance. Hydroxyapatite, indeed, is produced

in the liquid phase instantaneously as soon as the reagents enter in contact. The population

balance equation added to the hydrodynamic model allows an estimation of the particle

diameters. Because only the nucleation was taken into account in the PBE equation, the

prediction concerned only the size of the HAP crystallite, which results of 4.3 nm. This value

is in a good agreement with literature experimental data.

Moments

m0 4.12 � 107

m1 9.04 � 10�2

m2 1.63 � 10�11

m3 7.82 � 10�20

Table 3. Values of the moments obtained from the simulations.
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