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Overcoming HMM Time and Parameter 
Independence Assumptions for ASR 

Marta Casar and José A. R. Fonollosa 
Dept. of Signal Theory and Communications, Universitat Politècnica de Catalunya (UPC) 

Spain 

1. Introduction 

Understanding continuous speech uttered by a random speaker in a random language and 
in a variable environment is a difficult problem for a machine. To take into account the 
context implies a broad knowledge of the world, and this has been the main source of 
difficulty in speech related research. Only by simplifying the problem – restricting the 
vocabulary, the speech domain, the way sentences are constructed, the number of speakers, 
and the language to be used, and controlling the environmental noise – has automatic 
speech recognition been possible.  
For modeling temporal dependencies or multi-modal distributions of “real-world” tasks, 
Hidden Markov Models (HMMs) are one of the most commonly used statistical models. 
Because of this, HMMs have become the standard solution for modeling acoustic 
information in the speech signal and thus for most current speech recognition systems.  
When putting HMMs into practice, however, there are some assumptions that make 
evaluation, learning and decoding feasible. Even if effective, these assumptions are known 
to be poor. Therefore, the development of new acoustic models that overcome traditional 
HMM restrictions is an active field of research in Automatic Speech Recognition (ASR).  
For instance, the independence and conditional-independence assumptions encoded in the 
acoustic models are not correct, potentially degrading classification performance. Adding 
dependencies through expert knowledge and hand tuning can improve models, but it is 
often not clear which dependencies should be included. 
Different approaches for overcoming HMM restrictions and for modeling time-domain 
dependencies will be presented in this chapter. For instance, an algorithm to find the 
beststate sequence of HSMMs (Hidden Semi-Markov Models) allows a more explicit 
modeling of context. Durations and trajectory modeling have also been on stage, leading to 
more recent work on the temporal evolution of the acoustic models. Augmented statistical 
models have been proposed by several authors as a systematic technique for modeling 
HMM additional dependencies, allowing the representation of highly complex distributions. 
These dependencies are thus incorporated in a systematic fashion, even if the price for this 
flexibility is high. 
Focusing on time and parameter independence assumptions, we will explain a method for 
introducing N-gram based augmented statistical models in detail. Two approaches are 
presented: the first one consists of overcoming the parameter independence assumption by 
modeling the dependence between the different acoustic parameters and mapping the input O
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signal to the new probability space. The second proposal attempts to overcome the time 
independence assumption by modeling the temporal dependencies of each acoustic 
parameter. 
The main conclusions obtained from analyzing the proposals presented will be summarized 
at the end, together with a brief dissertation about general guidelines for further work in 
this field. 

2. ASR using HMM 

2.1 Standard systems 

Standard ASR systems rely on a set of so-called acoustic models that link the observed 
features of the voice signal with the expected phonetic of the hypothesis sentence. The most 
common implementation of this process is probabilistic, that is, Hidden Markov Models, or 
HMMs (Rabiner, 1989; Huang et al., 2001). 
A Markov Model is a stochastic model describing a sequence of possible events in which the 
probability of each event depends only on the state attained in the previous event. This 
characteristic is defined as the Markov property. An HMM is a collection of states that fulfills 
the Markov property, with an output distribution for each state defined in terms of a mixture 
of Gaussian densities (Rabiner, 1993). These output distributions are generally determined by 
the direct acoustic vector plus its dynamic features (namely, its first and second derivatives), 
plus the energy of the spectrum. The dynamic features are the way of representing the context 
in HMMs, but generally they are only limited to a few subsequent feature vectors and do not 
represent long-term variations. Frequency filtering parameterization (Nadeu et al., 2001) has 
become a successful alternative to cepstral coefficients. 
Conventional HMM training is based on Maximum Likelihood Estimation (MLE) criteria 

(Furui & Sandhi, 1992), via powerful training algorithms, such as the Baum-Welch algorithm 

or the Viterbi algorithm. In recent years, the discriminant training method and the criteria of 

Minimum Classification Error (MCE), based on the Generalized Probabilistic Descent (GPD) 

framework, has been successful in training HMMs for speech recognition (Juang et al., 1997). 

For decoding, both Viterbi and Baum-Welch algorithms have been implemented with 

similar results, but a better computational behavior is observed with the former. 

The first implementations of HMM for ASR were based on discrete HMMs (or DHMM). 
DHMMs imply the need of a quantization procedure to map observation vectors from a 
continuous space to the discrete space of the statistical models. There is, of course, a 
quantization error inherent in this process that can be eliminated if continuous HMMs (or 
CHMMs) are used. In CHMMs, a different form of output probability functions is needed. 
Multivariate Gaussian mixture density functions are a clear first choice, as they can 
approximate any continuous density function (Huan et al., 2001). However, computational 
complexity can become a major drawback in the maximization of the likelihood by way of 
re-estimation, as it will need to accommodate the M-mixture observation densities used.  
In many implementations, the gap between discrete and continuous mixture density HMMs 

has been bridged with some minor assumptions. For instance, in tied-mixture HMMs, the 

mixture density functions are tied together across all the models to form a set of shared 

kernels.  

Another solution is the use of semi-continuous HMMs (or SCHMM), where a VQ codebook 

is used to map the continuous input feature vector x onto o, as in discrete HMMs. However, 
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in this case, the output probabilities are no longer directly used (as in DHMM), but are 

rather combined with the VQ density functions. That is, the discrete model-dependent 

weighting coefficients are combined with the continuous codebook probability density 

functions. Semi-continuous models can also be seen as equivalent to M-mixture continuous 

HMMs with all of the continuous output probability density functions shared among all 

Markov states. Therefore, SCHMMs do maintain the modeling ability of large-mixture 

density functions. In addition, the number of free parameters and the computational 

complexity can be reduced, because all of the probability density functions are tied together, 

thus providing a good compromise between detailed acoustic modeling and trainability.  

However, standard ASR systems still don't provide convincing results when environmental 
conditions are changeable. Most of the actual commercial speech recognition technologies 
still work using either a restricted lexicon (i.e. digits, or a definite number of commands) or 
a semantically restricted task (i.e., database information retrieval, tourist information, flight 
information, hotel services, etc.). Extensions to more complex tasks and/or vocabulary still 
have a bad reputation in terms of quality, which entails the mistrust of both potential users 
and customers. 
Due to the limitations found in HMM-based speech recognition systems, research has 
progressed in numerous directions. Among all the active fields of research in speech 
recognition, we will point out only those similar to the approach presented in this chapter. 

2.2 Semi-continuous HMM 

Semi-continuous hidden Markov models can be considered as a special form of continuous 

mixture HMMs, with the continuous output of probability density functions sharing a 

mixture Gaussian density codebook (see (Huang & Jack, 1989)). The semi-continuous output 

probability density function is represented by a combination of the discrete output 

probabilities of the model and the continuous Gaussian density functions of the codebook. 

Thus, the amount of training data required, as well as the computational complexity of the 

SCHMM, can be largely reduced in comparison to continuous mixture HMM. Thus, 

SCHMMs become the perfect choice for training small vocabulary and/or for low resource 

applications.  

Moreover, the ease of combining and mutually optimizing the parameters of the codebook 
and HMM leads to a unified modeling approach. In addition, the recognition accuracy of 
semi-continuous HMMs is comparable to that of both discrete HMMs and continuous 
HMMs under some conditions, which include considering the same number of Gaussian 
mixtures for all techniques and keeping this number low. It is not a coincidence that these 
conditions apply to the applications in which we are interested: real-time and/or low-
resource scenarios.  

2.3 Time independence and parameter independence assumptions 

In HMMs, there are some assumptions that make evaluation, learning and decoding 

feasible. One of them is the Markov assumption for the Markov chain (Huang et al., 2001), 

which states that the probability of a state st depends only on the previous state st−1. Also, 

when working with different parameters to represent the speech signal, we rely on the 

parameter independence assumption. This assumption states that the acoustical parameters 

modeled by HMMs are independent, and so are the output-symbol probabilities emitted.  
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However, in many cases, the independence and conditional-independence assumptions 
encoded in these latent-variable models are not correct, potentially degrading classification 
performance. Adding dependencies through expert-knowledge and hand-tuning improved 
models can be done, but it is often not clear which dependencies should be included.  
For modeling dependencies between features, Gaussian mixture distribution-based 
techniques are very common. The parametric modeling of cepstral features with full 
covariance Gaussians using the ML principle is well-known and has led to good 
performance. However, although standard cepstral features augmented with dynamics 
information performs well in practice, some authors have questioned its theoretical basis 
from a discriminant analysis point of view (Saon et al., 2000). Thus, work has been done to 
extend LDA methods to HDA (Heteroscedastic Discriminant Analysis) (Saon et al., 2000) or 
maximum likelihood rotations such as LDA+MLLT. However, these techniques are 
expensive with real-time and/or low resource applications. 
For modeling time-domain dependencies, several approaches have focused on studying the 
temporal evolution of the speech signal to optimally change the duration and temporal 
structure of words, known as duration modeling (Pylkkönen & Kurimo, 2003). However, 
incorporating explicit duration models into the HMM structure also breaks some of 
conventional Markov assumptions: when the HMM geometric distribution is replaced with 
an explicitly defined one, Baum-Welch and Viterbi algorithms are no longer directly 
applicable.  
Thus, in Bonafonte et al. (1993), Hidden Semi-Markov Models (or HSMMs) were proposed 
as a framework for a more explicit modeling of duration. In these models, the first order 
Markov hypothesis is broken in the loop transitions. Then, an algorithm to find the best state 
sequence in the HSMM was defined, aiming for a more explicit modeling of context. 
In another approach to overcome the temporal limitations of the standard HMM 
framework, alternative trajectory modeling (Takahashi, 1993) has been proposed, taking 
advantage of frame correlation. The models obtained can improve speech recognition 
performance, but they generally require a demoralizing increase in model parameters and 
computational complexity.  
A smooth speech trajectory is also generated by HMMs through maximization of the 
models’ output probability under the constraints between static and dynamic features, 
leading to more recent work on the temporal evolution of the acoustic models (Casar & 
Fonollosa, 2006b).  
Therefore, a natural next step, given this previous research, is to work on a framework for 
dealing with temporal and parameter dependencies while still working with regular HMMs, 
which can be done by using augmented HMMs. 
Augmented statistical models have been proposed previously as a systematic technique for 
modeling additional dependencies in HMMs, allowing the representation of highly complex 
distributions. Additional dependencies are thus incorporated in a systematic fashion. 
However, the price for flexibility is high, even when working with more computationally-
friendly purposes (Layton & Gales, 2006). 
In an effort to model the temporal properties of the speech signal, class labels modeling 
(Stemmer et al., 2003) has been studied in a double layer speech recognition framework 
(Casar & Fonollosa, 2006a). The main idea was to deal with acoustic and temporal 
information in two different steps. However, the complexity of a double decoding 
procedure was not offset by the results obtained. But temporal dependence modeling is still 
a challenge, and a less complex scheme needed to be developed. 
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The approach presented in this chapter consists of creating an augmented set of models. 
However, instead of modeling utterance likelihoods or the posterior probabilities of class 
labels, we focus on temporal and inter-parameter dependence. 

3. Using N-grams for modeling dependencies 

To better analyze the influence of temporal and parameter dependencies in recognition 
performance, both dependencies can be modeled in an independent fashion. Thus, a new set 
of acoustic models will be built for each case without losing the scope of regular HMMs. 
For both cases, the most frequent combinations of features from the MFCC-based 
parameterized signal will be selected following either temporal or parameter dependence 
criteria. Language modeling techniques (i.e. by means of the CMU Statistical Language 
Modeling (SLM) Toolkit1) should be used for performing this selection. In this way, a new 
probability space can be defined, to which the input signal will be mapped, defining a new 
set of features.  
Going into the mathematical formalism, we start by recalling how, in standard semi-
continuous HMMs (SCHMMs), the density function bi(xt) for the output of a feature vector xt 

by state i at time t is computed as a sum over all codebook classes m ∈ M (Huang et al., 2001): 

 ( ) ( ) ( )i t i,m t i,m t
m m

b x = c p x | m,i c p x | m⋅ ≈ ⋅∑ ∑  (1) 

In our case, new weights should be estimated, as there are more features (inter-parameter 
dependencies or temporal dependencies) to cover the new probability space. Also, the 
posterior probabilities p(xt|m) will be modified, as some independence restrictions will no 
longer apply. 
From this new set of features, a regular SCHMM-based training will be performed, leading 
to a new set of augmented statistical models. 

3.1 Modeling inter-parameter dependence 

In most HMM-based ASR systems, acoustic parameters are supposed to be independent 
from each other. However, this is no more than a practical assumption, as successive 
derivatives are by definition related to the parameters from which they are derived. 
Therefore, we can model the dependence between the different acoustic parameters, and 
thus overcome the parameter independence assumption. 
Let us assume that we work with four MFCC features: cepstrum (f0), its first and second 
derivatives (f1,f2) and the first derivative of the energy (f3). We can express the joint output 
probability of these four features by applying Bayes' rule: 

 ( ) ( ) ( ) ( ) ( )01,2,301,201032,1,0, fff|fPff|fPf|fPfP=ffffP  (2) 

where  fi corresponds to each of the acoustic features used to characterize the speech signal. 
Assuming parameter independence, HMM theory expresses equation (2) as: 

 ( ) ( ) ( ) ( ) ( )321032,1,0, fPfPfPfP=ffffP  (3) 

                                                 
1 See http://www.speech.cs.cmu.edu 
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If parameter independence is to be overcome, some middle ground has to be found between 
equations (2) and (3). Thus, instead of using all dependencies to express the joint output 
probability, only the most relevant dependence relations between features are kept. For the 
spectral features, we take into account the implicit temporal relations between the features. 
For the energy, experimental results show in a more relevant dependence on the first 
spectral derivative than to the rest.  
Thus, equation (2) is finally expressed as: 

 ( ) ( ) ( ) ( ) ( )1301,201032,1,0, f|fPff|fPf|fPfP=ffffP  (4) 

In practice, not all of the combinations of parameters will be used for modeling each 
parameter dependency for each P(fi), but only the most frequent ones. Taking into account 
the parameter dependence restrictions proposed, a basic N-gram analysis of the 
dependencies in the training corpus is performed, defining those most frequent 
combinations of acoustic parameterization labels for each spectral feature. That is, we will 
consider dependence between the most frequent parameter combinations for each feature 
(considering trigrams and bigrams), and assume independence for the rest. 
The input signal will be mapped to the new probability space. Recalling equation (1), we can 
redefine the output probability of state i at time t for each of the features used as Pi(fk), 
where fk  corresponds to each of the acoustic features used to characterize the speech signal. 
Starting with the first acoustic feature, the cepstrum, the new output probability is defined 

as a sum over all codebook classes m∈M of the new posterior probability function weighted 
by the original weights ci,m  for the acoustic feature f0. That is:  

 ( ) ( )0

0 0i i,m
m

P f = c p f | m⋅∑  (5) 

For the second acoustic feature, the first derivative of the cepstrum (f1), the new output 
probability is defined as:  

 ( ) ( )
0

1

ˆ1 , 1i i,m m
m

P f = c p f | m⋅∑  (6) 

The new weights in this output probability are defined according to N-gram-based feature 

combinations, taking advantage of the bi-gram ",ˆ" 0 mm , where 0m̂  is the likeliest class for 
feature f0  at each state i and time t  considered in the sum of probabilities. It is defined as: 

 ( )0 0
ˆ arg max

m

m p f | m=  (7) 

When the bi-gram 
0

ˆ" , "m m  is not defined, and 
0

1 1

ˆ,i,m m i,m
c c= , which are the original weights 

for feature f1. 
For the third acoustic feature, the second derivative of the cepstrum (f2), the new output 
probability is defined as:  

 ( ) ( )
0,  1

2

ˆ ˆ2 , 2i i,m m m
m

P f = c p f | m⋅∑  (8) 

Now the new weights are defined according to N-gram-based feature combinations as 

0 1

2

ˆ ˆ, ,i,m m m
c . Extrapolating equation (7):  
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 ( )ˆ arg max
k k

m

m p f | m=  (9) 

Now, if the tri-gram 
1 0

ˆ ˆ" , , "m m m  is not defined, 
0 1 0

2 2

ˆ ˆ ˆ, , ,i,m m m i,m m
c c=  if the bi-gram 

0
ˆ" , "m m  

applies, or 
0 1

2 2

ˆ ˆ, , i,mi,m m m
c c= otherwise.  

Finally, for the energy:  

  
( ) ( )m|fpc=fP

m

mmi,i 3
3

ˆ,3 1 
⋅∑  (10) 

where the new weights are defined according to the bi-grams 
1

ˆ" , "m m . If this bi-gram is not 

defined, again the original weights 3

i,m
c apply.  

From these new output probabilities, a new set of SCHMMs can be obtained using a Baum-
Welch training and used for decoding, following the traditional scheme. 

3.2 Modeling temporal dependencies 

Generally, HMM-based ASR systems model temporal dependencies between different 

frames by means of the successive derivatives of the acoustic features. However, a more 

explicit modeling of the time domain information seems relevant for improving recognition 

accuracy.  

The observation probability distributions used in HMMs assume that successive 

information s1 ... st within a state i can be considered independent. This is what is generally 

known as the Markov assumption for the Markov chain, and it is expressed as: 

 ( ) ( )1

1

1 −
−

tt

t

t s|sP=s|sP  (11) 

where s1t-1 represents the state sequence s1,s2,...,st-1. 
Taking into account a state sequence of length N, equation (11) can be reformulated to: 

  ( ) ( )1

1

1 −−
− … tNtt

t

t ss|sP=s|sP  (12) 

For simplicity, not all of the sequence of observations is taken into account, but only the two 
previous ones for each observation st, working with the 3-gram st-2, st-1, st.  Then, equation 
(12) can be expressed as:  

  ( ) ( )1ttt

t

t s,s|sP=s|sP −−
−

2

1

1  (13) 

Applying independence among features (recall equation (3)), the output probability of each 
HMM feature will be expressed as: 

  ( ) ( )
12 −− tt iiii f,f|fP=fP  (14) 

Again, the most frequent combinations of acoustic parameterization labels can be defined, 

and a set of augmented acoustic models can be trained. The output probability (from 

equation (1)) of state i at time t for each feature k will be rewritten following the same line of 

argument as in previous sections (see section 3.1, and equations (5)-(9)).  
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Now: 

 
( ) ∑ ⋅

−−
m

k
k

m,mmiki mfpc=fP
tk,tk,

)|(
21 ˆˆ,,  (15) 

with  

  
( )itm,|fpm k

m
tk, −=− maxargˆ

i  (16) 

Notice that if the trigram 
2 1

ˆ ˆ, ,
k,t k,t
m m m− −   does not exist, the bigram or unigram case will be 

used. 

4. Some experiments and results  

4.1 Methods and tools 

For the experiments performed to test these approaches, the semi-continuous HMM -based 
speech recognition system RAMSES (Bonafonte et al., 1998) was used as reference ASR 
scheme, and it is also used in this chapter as baseline for comparison purposes. 
When working with connected digit recognition, 40 semidigit models were trained for the 

first set of acoustic models, with the addition of one noisy model for each digit, each 

modeled with 10 states. Silence and filler models were also used, each modeled with 8 

states. When working with continuous speech recognition, demiphones models were used. 

For the first set of acoustic models, each phonetic unit was modeled by several 4-state left-

to-right models, each of them modeling different contexts. In the second (augmented) set of 

HMMs, each phonetic unit was modeled by several models that modeled different temporal 

dependencies, also using 4-state left-to-right models. 

Connected digits recognition was used as the first working task for testing speech 
recognition performance, as it is still a useful practical application. Next, a restricted large 
vocabulary task was tested in order to evaluate the utility of the approach for today's 
commercial systems.  
Different databases were used: the Spanish corpus of the SpeechDat and SpeechDatII 
projects2, and an independent database obtained from a real telephone voice recognition 
application, known as DigitVox, were used for the experiments related to connected digits 
recognition. The Spanish Parliament dataset (PARL) of the TC-STAR project3 was used for 
testing the performance of the models for continuous speech recognition. 

4.2 Experiments modeling parameter dependencies 

In the first set of experiments, we modeled parameter dependencies. The different 
configurations used are defined by the number of N-grams used for modeling the 
dependencies between parameters for each new feature. In the present case, no 
dependencies are considered for the cepstral feature, 2-grams are considered for the first 
cepstral feature and for the energy, and 2 and 3-grams for the second cepstral derivative.  

                                                 
2 A.Moreno, R.Winksky, 'Spanish fixed network speech corpus' SpeechDat Project. LRE-
63314. 
3 TC-STAR: Technology and corpora for speech to speech translation, www.tc-star.org 
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As explained in section 3, as we cannot estimate all the theoretical acoustic parameter 
combinations, we define those N most frequent combinations of parameterization labels for 
each spectral feature. A low N means that only some combinations were modeled, 
maintaining a low dimension signal space for quantization. On the other hand, increasing N 
more dependencies are modeled at the risk of working with an excessive number of 
centroids to map the speech signal. 
Different configurations were tested. Each configuration is represented by a 4-digit string 
with the different values of N used for each feature. The total number of code words to 
represent each feature is the original acoustic codebook dimension corresponding to this 
feature plus the number of N-grams used. The different combinations that result in the 
configurations chosen were selected after several series of experiments, defined to either 
optimize recognition results or to simplify the number of N-grams used.  
In Table 1, we present the best results obtained for connected digit recognition experiments. 
Results are expressed according to SRR (Sentence Recognition Rate) and WER (Word Error 
Rate) to measure the performance. 
 

Database Configuration SRR WER 

Baseline 90.51 2.65 
SpeechDat 

-/2000/2000,2000/20000 91.04 2.52 

Baseline 93.30 1.27 
DigitVox 

-/2000/2000,2000/2000 03.71 1.17 

Table 1. Connected digit recognition rates modeling inter-parameter dependencies 

We can see an important improvement in speech recognition for this task using the 
SpeechDat dataset, with a relative WER decrease of nearly a 5%. When using the DigitVox 
dataset, this improvement is slightly higher, with a relative WER decrease of 7.788%. 
Because both datasets are independent from the training datasets, we didn't expect 
adaptation of the solution to the training corpus. 

4.3 Experiments modeling temporal dependencies 

When modeling temporal dependencies, each new HMM feature models the temporal 
dependencies of the original acoustic features. Again, the different configurations are 
represented by a 4-digit string (henceforth N), with the number of N-grams used in equation 
(15) for modeling each acoustic parameter. In contrast to inter-parameter dependence 
modeling, a wider range of N leads to an increase in recognition accuracy. Thus, this is a 
more flexible solution, where we can chose between optimizing the accuracy and working 
with reasonable codebook size (close to the state-of-the art codebooks when working with 
standard implementations) while still improving the recognition performance. 
First, we want to focus attention on the evolution of recognition performance regarding N 
and also analyze the differences in performance when testing the system with the SpeechDat 
database (a different set of recordings from the training dataset) or an independent database 
(DigitVox).  
Table 2 presents the results for connected digit recognition, according to SRR and WER, 
working with both databases. 
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Database Configuration SRR WER 

Baseline 90.51 2.65 
SpeechDat 

14113/13440/69706/6113 92.30 1.96 

Baseline 93.30 1.27 
DigitVox 

14113/13440/69706/6113 93.79 1.14 

Table 2. Connected digit recognition rates modeling time dependencies 

Results obtained with the SpeechDat dataset show that by modeling time dependencies, we 

can achieve a great improvement in recognition, outperforming the inter-parameter 

dependencies modeling approach with a relative WER reduction of around 26% compared 

to baseline results. However, the improvement when using the DigitVox dataset was 

slightly lower, with a relative WER reduction of 10.2%. Thus, this solution seems more likely 

to be adapted to the training corpus for connected digit recognition.  

To test whether this time dependencies modeling based solution works better using a bigger 

(and wider) training corpus, continuous speech recognition was used, with new sets of 

acoustic models based on demiphones, using the PARL dataset.  

The results presented in Table 3 show a WER reduction between 14.2% and 24.3%. We 

observe some saturation in WER improvement when N is increased over certain values: 

after reaching optimum values, WER improvement becomes slower, and we should 

evaluate if the extra improvements really do justify the computational cost of working with 

such large values of N (which means working with high codebook sizes). Afterwards, 

additional WER improvement tends to zero, so no extra benefit is obtained by working with 

a very high number of N-grams. Thus a compromise between the increase in codebook size 

and the improvement in recognition accuracy is made when deciding upon the best 

configuration.  

 

Database Configuration WER WERvar 

Baseline 28.62 - 

3240/2939/2132/ 
6015 

24.56 14.19% 

7395/6089/4341/ 
8784 

21.73 24.07% 

TC-STAR 

20967/18495/17055/15074 21.66 24.32% 

Table 3. Continuous speech recognition rates modeling time dependencies 

The performance of the time dependencies modeling based system compared to the 

reference ASR system has also been analyzed in terms of the computational cost of 

recognition. Despite of the computational cost increase associated with the complexity of the 

system's training scheme, the system clearly outperforms the reference system in general 

terms. This good performance is due to a reduction in the computational cost of recognition 

of about 40% for those solutions which are a good compromise between codebook size 
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increase and recognition accuracy improvement (i.e. N-gram configuration 

“7395/6089/4341/8784” in Table 3). 

6. Discussion 

The future of speech-related technologies is clearly connected to the improvement of speech 

recognition quality. Commercial speech recognition technologies and applications still have 

some limitations regarding vocabulary length, speaker independence and environmental 

noise or acoustic events. Moreover, real-time applications still miss some improvement with 

the system delays.  

Although the evolution of ASR needs to deal with these restrictions, they should not be 

addressed directly. Basic work on the core of the statistical models is still needed, which will 

contribute to higher level improvements. 

HMM-based statistical modeling, the standard state-of-the-art for ASR, is based on some 

assumptions that are known to affect recognition performance. Throughout this chapter, we 

have addressed two of these assumptions by modeling inter-parameter dependencies and 

time dependencies. We noted different approaches for improving standard HMM-based 

ASR systems introducing some actual solutions. 

Two proposals for using N-gram-based augmented HMMs were also presented. The first 

solution consists of modeling the dependence between the different acoustic parameters, 

thus overcoming the parameter independence assumption. The second approach relies on 

modeling the temporal evolution of the regular frequency-based features in an attempt to 

break the time independence assumption. 

Experiments on connected digit recognition and continuous speech recognition have also 

been explained. The results presented here show an improvement in recognition accuracy, 

especially for the time dependencies modeling based proposal. Therefore, it seems that time-

independence is a restriction for an accurate ASR system. Also, temporal evolution seems to 

need to be modeled in a more detailed way than the mere use of the spectral parameter's 

derivatives. 

It is important to note than a more relevant improvement is achieved for continuous speech 

recognition than for connected digit recognition. For both tasks, independent testing 

datasets were used in last instance. Hence, this improvement does not seem to be related to 

an adaptation of the solution to the training corpus, but to better modeling of the 

dependencies for demiphone-based models. Thus, more general augmented models were 

obtained when using demiphones as HMM acoustic models. 

Moreover, although the present research solutions should not be especially concerned with 

computational cost (due to the constant increase in processing capacity of computers), it is 

important to keep in mind implementation for commercial applications and devices. Taking 

computational cost into consideration, we find that the training computational cost increase 

of this modeling scheme clearly pays off by reducing the computational cost of recognition 

by about 40%.  

Further work will be needed to extend this method to more complex units and tasks, i.e. 

using other state-of-the-art acoustic units and addressing very large vocabulary ASRs or 

even unrestricted vocabulary tasks.  
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