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Abstract

Contamination by pesticides is a worldwide problem that can greatly disturb the biota,
directly and/or indirectly. Nonetheless, few efforts were done so far to present review-
style publications that analyse and integrate monitoring data—in a global scale—and
evaluate possible environmental risks. Herein, we assessed possible environmental risks
through theoretical calculations, using worldwide data published at least during the last
17 years and considering different trophic levels and the maximum average environmen-
tal concentrations (in water) observed in each continent. Furthermore, hazard quotients—
using the estimated average daily intake, theoretical maximum daily intake and the
maximum residue limits—were calculated to estimate the potential risks to humans
through direct consumption of molluscs, crustaceans and fish. In summary, several pesti-
cides were quantified at concentrations capable to affect low to medium trophic level
species, which through the food web can affect higher trophic levels; theoretical appro-
aches considering the environmental mixtures showed that algae and invertebrates are the
most sensitive groups. Moreover, fish and crustaceans evidenced the highest body con-
centrations. To evaluate a potential risk through direct consumption, human health risk
assessments were done, and in spite of no direct risk, some hazard quotients indicate a
potential risk for developing carcinogenic effects.

Keywords: insecticides, herbicides, fungicides, aquatic organisms, EC50, LC50, PNEC,
ADI, EADI, MRL, hazard quotients, mollusc, crustacean, bivalve, fish, bioaccumulation,
biomagnification
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1. Preamble

Worldwide, several studies have shown contamination with pesticides within different matri-

ces. Together with the data shown previously in chapter “Pesticides in Worldwide Aquatic

Systems: Part I”, information such as the maximum concentrations in waters and the concen-

tration of pesticides found in the different biological matrices were used to (i) assess eventual

individual pesticide risk through the comparison with the well-established EC50/LC50 for

aquatic organisms, (ii) predict the environmental risk from pesticide mixtures found in each

continent and (iii) assess the potential risk for human health when consuming molluscs,

crustaceans and fish with the quantified concentrations.

2. Aquatic organisms

Fifty-two studies were used, where 111 different species were studied. The continent with the

highest percentage of available results (quantified pesticides in different organisms) is Africa (39

species), followed by Europe (35 species), Asia (26 species) and then North and South America

(nine and eight species, respectively). Here, we decided to focus on the sample type (zooplank-

ton, molluscs, crustaceans, fish and mammals) analysed per continent and country (Table 1).

Continent/

country

Number of

aquatic systems

Quantified

pesticides

Sampling

year

Sample

type

av-min av-max av-av References

ng/g

Africa

Egypt 2 14 1993 C, F 1.1–6.3 7.6–8.2 4.1–130.2 [3]

Ethiopia 1 12 2011 F 4.1 27.2 17.1 [4]

Ghana 3 6–13 2004–2015 F 1.6–79.8 2.8–154.3 1.6–120.5 [4, 5]

Kenya 1 7 2011 F na na 0.3 [1, 6, 7]

Nigeria 5 1–65 2003–2014 F 19.5–3618 21.5–6355 20.6–5233 [1, 7–9]

Tunisia 1 14 2010 F 14.9 39.3 22.1 [10]

Asia

China 5 7–45 2003–2013 F, Mo, C 0.6–2.5 1.8–34.5 0.8–11.8 [11–15]

India 1 3 na Ma na na 74.5 [16]

Russia 8 2012–2013 F 18.1 52.1 31.7 [17]

South

Korea

1 15 na F na na 2.2 [18]

Tibet 1 55 2005 F na na 1.0 [19]

Europe

Baltic Sea 1 18 2003 C, F, Mo 8.1 10.8 9.4 [20]

Belgium 1 5 2001 F, Mo 1.5 7.6 4.1 [21, 22]
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The data collected between 1993 and 2016 averaged from 0.1 to 5233 ng/g (Table 1). Europe is

represented by 22 aquatic systems, followed by Africa, with 13, and the rest with no more than

nine aquatic systems. When considering the number of pesticides quantified, Africa has more

observations (382) than Europe (327) and the other continents (between 90 and 220), which is

due to the higher number of species studied in Africa.

Africa stands out with average concentrations of 132 ng/g (SD 411), followed by Europe (57 ng/g,

SD 271), South America (17 ng/g, SD 40) and Asia and North America (5 ng/g, SD 20). This

scattered difference between concentrations is mainly due to the average values observed in

Warri River (Nigeria, Africa) and in the Danube Delta (Romania, Europe) [1, 2].

Grouping data by category, insecticides prevail in 89% of biologic analyses, leaving 11% for the

herbicide and fungicide categories and presenting the same pattern on all continents (Figure 1).

Continent/

country

Number of

aquatic systems

Quantified

pesticides

Sampling

year

Sample

type

av-min av-max av-av References

ng/g

Croatia 1 8 2012 Mo 0 1.4 na [23]

Finland 1 5 2002 F 1.8 4.5 3.1 [24]

France 6 2–12 2001–2008 F, Mo 0.2–0.8 0.6–4.4 0.3–1.2 [21, 25, 26]

Italy 3 5–22 2002–2010 C, F, Mo 0.9–6.9 2.8–21.6 1.5–10.9 [10, 27, 28]

Poland 1 22 2003–2004 F na na 0.3 [29]

Portugal 4 1–54 2011–2013 F, Mo 4.6–7.6 27.2–72.0 0.2–18.6 [30–33]

Romania 1 72 2001 F,Z 188.3 278.4 220.3 [2]

Spain 3 3–13 1996–2015 C, F, Mo 0.1–10.4 0.8–9.0 0.3–8.0 [34–37]

North America

California 1 19 2001 F 1.5 25.2 7.2 [38]

Canada 1 43 1999–2000 F 0.7 2.5 1.5 [39]

Greenland 1 18 1994–1995 F, Mo 0.1 0.3 0.2 [40]

Martinique

Island

1 3 2003–2013 C, F, Mo 0.3 876.4 55.9 [41]

Mexico 1 15 2012–2013 F 2.1 25.5 6.3 [42]

USA 3 3–9 2004–2013 F, Mo na na 0.1–11.1 [43–45]

South America

Argentina 1 6 1999 Ma 7 34.6 15.2 [46]

Brazil 3 6–42 1996–2009 F, Mo, Ma 0.1–30.1 0.1–410.7 0.1–99.8 [47–50]

Z, zooplankton; C, crustaceans; Mo, molluscs; F, fish; Ma, mammals; na, not applicable

Table 1. Pesticide concentrations [average minimum (av-min), average maximum (av-max) and average of averages (av-av)

values; ng/g] fresh weight to make it; ng/g of fresh weight in aquatic organisms, presented by continent and country; the

number of quantified aquatic systems, pesticides and sampling year were also added (when more than one aquatic system,

a range of values are presented).
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Figure 1. Representation of the quantified pesticides in organisms (%), per category, in each continent; the right upper

corner pie chart represents the Metazoan lineages used worldwide.

Figure 2. Representation of the quantified pesticides in organisms (%), per lineages of Metazoan, vertebrates and

invertebrates and matrices.
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Figure 3. Average pesticide concentrations (ng/g fresh weigh) and number of quantifications per Metazoan lineage,

worldwide (A) and by continent (B). The error bars represent standard deviations (SD).
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No data are available for Oceania and Antarctica; so, when citing herein “worldwide”, these

continents will not appear.

Analysing data by matrix, the most common analysis occurred in fish (74%) and molluscs

(20%). The remaining studies considered zooplankton, crustaceans, turtles and mammals

(Figure 1). In total, 74% of the quantified pesticides were conducted on vertebrates and the

other 26% in invertebrates (Figure 1). While for the latter, 80% of the quantifications were done

using the whole animal, and for vertebrates, it is further divided; specific organs or tissues

were used to quantify pesticides.

Many factors account for the strong bias towards vertebrates. Invertebrates are small, less

complex and as a food resource almost entirely eatable, while the same is not applicable to

vertebrates. Besides that, the study goal (i.e., food control or environmental/toxicological studies)

also influences the type of the tissue/organ to study (muscle, liver, gonads or gills). For example,

the bubbler tissue and fat are only applicable for aquatic mammals and turtles (Figure 2).

Results per Metazoan lineages (zooplankton, mollusc, crustacean, fish, turtles and mammals)

were assessed considering the average concentrations and the number of quantifications

(Figure 3). Average concentrations were ~11 ng/g for zooplankton and molluscs, ~35 ng/g for

mammals and ~100 ng/g for crustaceans and fishes (Figure 3A).

Among continents, Africa presented the highest concentrations for crustaceans (142 ng/g) and

fishes (253 ng/g) followed by North America (136 ng/g for crustaceans). Asia, Europe and

South America included data belonging to four Metazoan lineages, with similar range of

concentrations (~3 to ~76 ng/g (Figure 3B)).

3. Half effective and lethal concentrations (EC50/LC50) for aquatic

organisms

It is nowwell established that at specific concentrations all pesticides are harmful to biota, affecting

algae and plants, invertebrates and vertebrates [51]. Databases such as Pesticides Properties

DataBase (PPDB) present information on the physicochemical properties, environmental fate,

human health and ecotoxicological data of all active ingredients and approved pesticides [52].

In order to evaluate the worst-case scenario, the maximum average concentrations measured

in waters from each continent were compared against the acute and chronic concentrations for

aquatic animals, documented by the PPDB (see chapter “Part I: Pesticides in Worldwide

Aquatic Systems”). On a global scale, 57 pesticides were registered at maximum average

concentrations above the LC50 and/or EC50 settled for algae, invertebrates and/or fishes;

among continents, Europe reported the highest number of pesticides (44 of 116), followed by

Asia (14 of 42), Africa, Oceania and finally South America (6 of 24).

The most critical measured environmental concentrations (MEC) were registered for dicofol,

ethion (Asia), metribuzin (Europe) and diazinon (Africa) with values from 2- to 200-folds

higher than EC50 or LC50 set for invertebrates and algae.
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4. Predictive aquatic risk assessment of pesticide mixtures

Despite the common occurrence of pesticides, mixtures in the environment, laws, conventions

and recommendations still focus on individual standard parameters. Modelling approaches,

based on available ecotoxicological information, can be used to estimate the impact of mixtures

in the biota, completing this lack of information [53].

Based on the European chemical legislation REACH, the ecological risk quotient (RQ) is

determined by the equation:

RQ
MEC

PNEC

� �

¼
Measured Environmental Concentration MEC;mg=Lð Þ

Predicted No Effect Concentration PNEC;mg=Lð Þ

PNEC is derived by selecting the most sensitive trophic level—from algae, invertebrate or fish

—and applying an appropriate assessment factor (AF) [52, 54]. The AF, also denoted as safety

or uncertainty factor, considers intra- and inter-laboratory variation of the data, biological

variance and short-term to long-term exposures, presenting stipulated values for specific

conditions [55, 56]; as an example, considering the Maximum Acceptable Concentration-

Quality Standards (MAC-QS) to assess short-term effects an AF = 100 should be applied [55].

The RQ values, classified from <0.01 (negligible) to >1 (significant), indicate a range of potential

risks for concern, but do not inform about the specific biological end point for that organismwhich

is representing a specific trophic level [53, 57]. For this reason, a second approach, which defines

the most sensitive trophic level for that environmental concentration, should be applied [53]:

RQ toxic units TUð Þ ¼
MEC mg=Lð Þ

EC50or LC50 per each trophic level mg=Lð Þ

RQTU values are summed per trophic level (sum of the toxic units (RQSTU)). If both RQ(MEC/PNEC)

and RQSTU are >1, additional considerations are required [53]. Based on the two reference

models—concentration addition (CA) and independent action (IA)—the RQSTU/MaxTU can be

used to predict the second tier, resulting in the maximum value from which CA may display

higher toxicity values than IA [58].

In this work, the maximum of the average measured concentration of pesticides in water

samples was used to assess the potential risk per continent and on a worldwide scale (Table 2).

From a total of 144 pesticides quantified in water samples, 133 were used for ecological risk

assessment (Table 2); the remainders, mostly isomers and metabolites, were not integrated due

to lack of information on their EC50 and LC50 concentrations set for these trophic levels (algae,

invertebrate and fish). The highest number of pesticides suitable for this approach are

represented by insecticides (n = 118). In general, algae was the most sensitive group to herbi-

cides and fungicides, with 75% and 61.5% of the cases, respectively, while invertebrates

showed the highest sensitivity to insecticides (66.1%) (Table 2).

Globally, the RQ(MEC/PNEC) resulted in 43% of very high-risk cases, led by insecticides; fungicides

were the least worrisome category, asmost of the cases presented lowor negligible risks (Figure 4).
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The results presented above are a consequence of the highest values measured around the world.

Since Europe was the continent with more values of RQ(MEC/PNEC), these results are mostly

representative for this continent (see Table 1). However, this does not mean that concentrations

measured on the other continents are innocuous. As observed for the number of compounds

analysed per continent, Africa presented the most disturbing scenarios (52%), followed by Asia

and Europe (45%) and then Oceania and South America (24%) with RQ > 1 (Figure 5).

In order to evaluate the effect of the maximum average concentrations found per individual

trophic level (RQTU), further evaluation should be done through RQSTU (Table 3).

When comparing between continents, the highest RQSTU ratios were attained in Europe, for

algae (16.13) and fish (33.12), and in Asia for invertebrates (324.97); however, the last one is due

to a punctual concentration observed in India for ethion [59]. Independently of that, the

invertebrate group is the most sensitive trophic level, presenting the highest RQSTU values.

The same pattern is observed in the other continents except in Oceania, where the highest risk

is observed for the algae (0.92) by the herbicides (Table 3).

The RQ(MEC/PNEC) and RQSTU demonstrate that one or more biotest organisms are sensitive to

the concentrations presented on that continent; so, the ratio RQSTU/highest RQTU was done,

applying the highest sum among trophic levels (Table 4).

For each of these scenarios, the maximal possible ratio RQSTU/RQTU was lower than the value

given by the number of mixture of toxic components, suggesting that the possible observed

toxicity is due to a low number of pesticides. As we can notice, the RQSTU/RQTU ratio is very

Africa Asia Europe Oceania South America PNEC Algae Invert Fish

mg/L (mg/L) %

Herbicides

Av. 5.7E-04 8.1E-05 7.8E-03 5.7E-04 2.3E-03 2.5E-06–2.0E+00 75.0 6.25 18.8

n 5 6 38 9 7

Insecticides

Av. 7.7E-04 2.2E-03 2.3E-03 1.4E-05 2.9E-04 1.7E-08–1.0E+00 8.5 25.4 66.1

n 19 28 49 7 15

Fungicides

Av. 8.5E-05 4.5E-04 2.6E-04 1.1E-05 3.9E-05 3.0E-05–4.6E-01 61.5 0.0 38.5

n 1 8 22 3 3

Table 2. Ecological risk assessment through the PNEC, using the maximum average concentrations of pesticides in water

(mg/L), quantified in each continent; here in this table only the average values/category (Av.), the total number of

pesticides (n) observed per category and continent, and the range of PNEC values are presented; data based on Table 1 of

the chapter in this book entitled Pesticides in worldwide aquatic systems- Part I.
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Figure 5. Percentage of RQ(MEC/PNEC) samples above 1, grouped by continent (total number of observations, n= 25, 42,

110, 19, 25 in Africa, Asia, Europe, Oceania, and South America, respectively).

Figure 4. Distribution of pesticides per category (%), according to RQ(MEC/PNEC) ranking.
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similar among continents; however, the number of toxic compounds per total, where Africa pre-

sents a significant number (52%)when compared to the others, should be also considered (Table 4).

5. Human health risks

Dietary pesticide risks can be estimated through well-established indices and defined and used

by US Environmental Protection Agency (EPA) [60], European Food Safety Authority (EFSA)

RQSTU

Africa Asia Europe Oceania South America

Algae

Fungicides 0.01 0.07 0.03 0.00 0.00

Herbicides 0.08 0.00 15.28 0.91 0.01

Insecticides 0.04 0.27 0.81 0.00 0.01

Total 0.13 0.34 16.13 0.92 0.02

Invertebrates

Fungicides 0.00 0.06 0.02 0.00 0.00

Herbicides 0.57 2.91 0.19 0.00 0.02

Insecticides 8.65 322.0 18.84 0.01 3.94

Total 9.22 324.97 19.05 0.01 3.96

Fishes

Fungicides 0.00 0.01 0.02 0.00 0.00

Herbicides 0.17 0.02 0.59 0.00 0.00

Insecticides 0.67 8.42 32.51 0.00 0.43

Total 0.84 8.45 33.12 0.00 0.43

Table 3. Sum of the toxic units per trophic level (RQSTU) of each continent (with available data), organised by pesticide

category; the most sensitive trophic level, per continent, is in bold.

Continent No. of compounds (toxic/total) RQTU ∑RQSTU ∑RQSTU/RQTU

Algae Invert Fishes

Africa 13/25 Parathion methyl 8.05 9.22 1.15

Asia 10/21 Ethion 221.42 8.45 1.47

Europe 9/22 Deltamethrin 20.11 33.12 1.65

Oceania 5/19 Diuron 0.79 0.92 1.17

South America 6/25 Cypermethrin 2.47 3.96 1.61

Table 4. Second tier, using RQSTU and the highest RQTU per trophic level and continent.
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and European Union Directives [61, 62]. Realistic predictions involve several parameters, such

as pesticide residue intake (PRI), as the one reported by Food and Agriculture Organisation

(FAO) [63]:

PRI ¼ Pesticide Concentration mg=kgð Þ �Acceptable Consumption Rate kg=capita=day
� �

The acceptable daily intake (ADI) estimates the amount of a substance in food that can be

ingested daily over a lifetime without appreciable health risk to the consumer [64]:

ADI mg=kg=dayð Þ ¼
No observed Effect Level NOELð Þ

Safety Factor

The estimated average daily intake (EADI), according to EPA, should be less than the

established ADI values [64]:

EADI
mg

kg

bw

day

� �

¼
PRI

Standard Body Weight

The theoretical maximum daily intake (TMDI) represents the maximum concentration of a

pesticide residue (mg/kg) legally permitted in food [64]:

TMDI ¼ Comsumption Rate kg=capita=day
� �

�Maximum Residue Limits MRLsð Þ

When no specific MRL is published, a 0.01 mg/kg value is applied [8]. Additionally, hazard

quotients (HQs)—which measure the potential exposure for developing non-carcinogenic

health effects—may be calculated using several assumptions [65].

EADI may be divided by the acute reference dose (ARfD, mg/kg/day) [14]—which is derived

from the no-observed-adverse-effect levels (NOAEL) and based on studies of short time expo-

sures (1–7 days) [66], by ADI, for long intake periods, and by TMDI, which is advised by EFSA

to calculate the potential risks of unintentional compounds, such as pollutants.

In the chapter Part I: Pesticides in Worldwide Aquatic Systems, the levels/categories of pesti-

cides per continent/country are displayed. The maximum average concentrations shown in

Part I were used here to assess human health risks. Data are summarised in Table 5.

Continent Molluscs Invertebrates Fishes

Africa — 1.6E + 00 (30) 5.2E + 00 (370)

Asia 3.2E-01 (41) 1.0E-02 (3) 9.0E-02 (173)

Europe 6.0E-02 (143) 1.4E-01 (10) 4.0E + 00 (168)

North America 1.0E-02 (16) 1.4E-01 (1) 3.0E-02 (104)

South America 1.8E-01 (46) — 1.7E-01 (32)

Table 5. Average maximum concentrations (mg/kg) found per continent and by group of aquatic animals (mollusc,

invertebrates and fishes) and the total number of cases used in each case (between brackets).
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Continent/pesticide MEC EADI MRL TMDI ADI ARfD HQ

EADI/ EADI/ EADI/ EADI/

MRL TMDI ADI ARfD

Mollusc Asia

HCH (gamma) 2.9E-03 2.9E-06 2.0E-02 1.1E-03 8.0E-03 3.0E-04 0 0.02 0.08 0

HCH (sigma) 3.2E-01 3.1E-04 1.0E-02 5.7E-04 — — 0.03 0.09 0.21 —

Heptachlor epoxide 5.8E-04 5.8E-07 4.0E-03 2.3E-04 1.0E-04 — 0 0.07 0.08 —

Methoxychlor 2.2E-03 2.2E-06 1.0E-02 5.7E-04 1.0E-01 5.0E-03 0 0.55 — —

Europe

Cyanazine 3.6E-02 3.6E-05 1.0E-02 5.8E-04 2.0E-03 — 0 0.04 0.09 —

Endrin 1.8E-02 1.8E-05 5.0E-02 2.9E-03 2.0E-04 3.0E-04 0 0.06 0.14 —

HCH (gamma) 7.7E-03 7.7E-06 2.0E-02 1.2E-03 8.0E-03 3.0E-04 0 0.05 0.16 0.01

Parathion ethyl 9.2E-03 9.2E-06 5.0E-02 2.9E-03 6.0E-04 5.0E-03 0 0.1 0.06 0

Phosmet 4.2E-02 4.1E-05 1.0E-01 5.8E-03 1.0E-02 4.5E-02 0 0.05 0.15 0

Procymidone 1.5E-02 1.5E-05 1.0E-02 5.8E-04 2.8E-03 1.2E-02 0 0.06 0 0

Propazine 1.4E-02 1.4E-05 1.0E-02 5.8E-04 2.0E-02 1.7E-02 0 0.06 0.02 —

Propyzamide 1.2E-02 1.2E-05 1.0E-02 5.8E-04 2.0E-02 7.5E-02 0 0.07 0.01 0

Simetryn 1.3E-02 1.2E-05 1.0E-02 5.8E-04 2.5E-02 — 0 0.08 0 0

Terbuthylazine 2.4E-02 2.4E-05 1.0E-02 5.8E-04 4.0E-03 8.0E-03 0 0.08 0 0

Terbutryn 9.5E-03 9.5E-06 1.0E-02 5.8E-04 1.0E-01 1.0E-03 0 0.09 0.05 0.01

Tetrachlorvinphos 4.5E-02 4.5E-05 1.0E-02 5.8E-04 5.0E-02 3.0E-02 0 0.11 — 0.01

South America

Mirex 2.6E-05 8.3E-09 1.0E-02 2.5E-04 — 2.0E-04 0 0.53 0.54 —

Pentachlorobenzene 8.3E-05 2.6E-08 1.0E-02 2.5E-04 1.7E-02 — 0 0.11 0.01 0.19

Estuary
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Continent/pesticide MEC EADI MRL TMDI ADI ARfD HQ

EADI/ EADI/ EADI/ EADI/

MRL TMDI ADI ARfD

Crustacean Africa

∑DDD,DDE,DDT 2.5E+00 1.2E-03 1.0E

+00

2.9E-02 5.0E-03 — 0 0.04 0.24 —

Chlordane (alpha) 3.0E-02 1.5E-05 2.0E-03 5.9E-05 5.0E-04 — 0.01 0.25 0.03 —

Chlordane (gamma) 5.5E-01 2.6E-04 1.0E-02 2.9E-04 5.0E-04 — 0.03 0.9 0.53 —

Hexachlorobenzene 3.6E-02 1.7E-05 1.0E-02 2.9E-04 6.0E-04 8.0E-04 0 0.06 0.03 0.02

Nonachlor (beta) 1.9E-02 9.2E-06 6.0E-03 1.8E-04 — — 0 0.05 — —

North America

Chlordecone 1.4E-01 9.9E-05 1.0E-02 5.8E-04 — — 0.01 0.17 — —

Fish Africa

∑Aldrin + dieldrin 1.2E+00 5.6E-04 6.0E-03 1.8E-04 1.0E-04 3.0E-03 0.09 3.19 5.62 0.19

∑DDD,DDE,DDT 3.5E+00 1.7E-03 1.0E

+00

2.9E-02 5.0E-03 — 0 0.06 0.34 —

Atrazine 6.3E-01 3.1E-04 1.0E-02 2.9E-04 2.0E-02 1.0E-01 0.03 1.04 0.02 0

Carbofuran 2.2E-01 1.1E-04 2.0E-02 5.9E-04 1.5E-04 1.5E-04 0.01 0.18 0.71 0.71

Chlordane (alpha) 1.8E-01 8.7E-05 2.0E-03 5.9E-05 5.0E-04 — 0.04 1.48 0.17 —

Chlordane (gamma) 1.2E-01 5.8E-05 1.0E-02 2.9E-04 5.0E-04 — 0.01 0.2 0.12 —

ΣEndosulfan 8.6E-01 4.2E-04 5.0E-02 1.5E-03 6.0E-03 2.0E-02 0.01 0.28 0.07 0.02

Endrin 4.5E-01 2.2E-04 5.0E-02 1.5E-03 2.0E-04 3.0E-04 0 0.15 1.09 0.73

Endrin aldehyde 3.3E+00 1.6E-03 1.0E-02 2.9E-04 2.0E-04 3.0E-04 0.16 5.37 7.89 5.26

HCH (alpha) 1.9E+00 9.0E-04 2.0E-01 5.9E-03 — — 0 0.15 — —
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Continent/pesticide MEC EADI MRL TMDI ADI ARfD HQ

EADI/ EADI/ EADI/ EADI/

MRL TMDI ADI ARfD

HCH (beta) 2.3E+00 1.1E-03 1.0E-01 2.9E-03 — — 0.01 0.39 — —

HCH (gamma) 6.6E-01 3.2E-04 2.0E-02 5.9E-04 8.0E-03 3.0E-04 0.02 0.54 0.04 1.07

Heptachlor 7.4E-01 3.6E-04 4.0E-03 1.2E-04 1.0E-04 — 0.09 3.05 3.58 —

Heptachlor epoxide 2.5E-01 1.2E-04 4.0E-03 1.2E-04 1.0E-04 — 0.03 1.03 1.21 —

Hexachlorobenzene 5.4E-01 2.6E-04 1.0E-02 2.9E-04 6.0E-04 8.0E-04 0.03 0.89 0.44 0.33

Nonachlor (beta) 5.2E-02 2.5E-05 6.0E-03 1.8E-04 — — 0 0.14 — —

Paraquat dichloride 5.2E+00 2.5E-03 1.0E-02 2.9E-04 4.0E-03 4.0E-04 0.25 8.62 0.63 6.34

Europe

∑Aldrin + dieldrin 1.0E-02 1.0E-05 6.0E-03 3.5E-04 1.0E-04 3.0E-03 0 0.03 0.1 0

∑DDD,DDE,DDT 5.5E+00 5.5E-03 1.0E

+00

5.8E-02 5.0E-03 — 0.01 0.1 1.11 —

HCH (gamma) 6.0E-02 6.0E-05 2.0E-02 1.2E-03 8.0E-03 3.0E-04 0 0.05 0.01 0.2

Hexachlorobenzene 5.7E-02 5.7E-05 1.0E-02 5.8E-04 6.0E-04 8.0E-04 0.01 0.1 0.09 0.07

North America

Chlordane 9.6E-03 6.9E-06 2.0E-03 1.2E-04 5.0E-04 — 0 0.06 0.01 —

Chlordane (alpha) 1.0E-02 7.2E-06 2.0E-03 1.2E-04 5.0E-04 — 0 0.06 0.01 —

Endrin 1.6E-02 1.2E-05 5.0E-02 2.9E-03 2.0E-04 3.0E-04 0 0 0.06 0.04

Heptachlor 7.7E-03 5.6E-06 4.0E-03 2.3E-04 1.0E-04 — 0 0.02 0.06 —

South America

∑Aldrin + dieldrin 1.5E-01 4.7E-05 6.0E-03 1.5E-04 1.0E-04 3.0E-03 0.01 0.31 0.47 0.02
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Continent/pesticide MEC EADI MRL TMDI ADI ARfD HQ

EADI/ EADI/ EADI/ EADI/

MRL TMDI ADI ARfD

Endrin aldehyde 5.2E-02 1.6E-05 1.0E-02 2.5E-04 2.0E-04 3.0E-04 0 0.06 0.08 0.05

HCH (gamma) 1.6E-01 5.1E-05 2.0E-02 5.1E-04 8.0E-03 3.0E-04 0 0.1 0.01 0.17

Heptachlor 3.3E-02 1.1E-05 4.0E-03 1.0E-04 1.0E-04 — 0 0.1 0.11 —

Heptachlor epoxide 1.8E-02 5.7E-06 4.0E-03 1.0E-04 1.0E-04 — 0 0.06 0.06 —

MEC, measured environmental concentration (mg/kg); EADI, estimated average daily intake (mg/kg bw); MRL, maximum residue limit (mg/kg); TMDI, theoretical

maximum daily intake (mg); ADI, acceptable daily intake (mg/kg bw/d); ARfD, acute reference dose (mg/kg bw/day); fish and seafood consumption (kg/capita/day):

0.0294 (Africa), 0.05705 (Asia), 0.05765 (Europe), 0.05833 (North America), 0.02548 (South America); body weight (kg): 60.7 (Africa), 57.7 (Asia), 70.8 (Europe), 80.7 (North

America) and 67.9 (South America).

Table 6. Human health hazard, associated with mollusc, crustaceans and fish consumption, displayed by continent and pesticide.
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The highest concentrationswere observed in fish fromAfrica (5.2mg/kg) and Europe (4.0mg/kg),

followed then by crustaceans in Africa (1.6 mg/kg). The highest number of cases (number of

quantifications found considering all the pesticides, species and countries) was registered for fish

(169 average cases), followed by molluscs (62 average cases), and finally crustaceans (11 average

cases). The elevated number of fish studies is likely due to their importance as a food source.

For allowing a detailed evaluation of human health hazard, the same data is displayed by

pesticide and continent and organised considering molluscs, crustaceans and fishes (Table 6).

The food consumption rate and the average adult body weight were defined by continent

[63, 64]. For the compounds endrin ketone and aldehyde, HCH (sigma and lambda),

pretilachlor and pentachlorobenzene, a MRL of 0.01 mg/kg was adopted, since no specific data

was found.

Focusing on the molluscs results, the MEC of 15, 52, 10 and 16 pesticides (from Asia, Europe,

North America and South America, respectively) were used to calculate the HQs. Due to the

low ratio values, only cases with at least one ratio value above 0.05 were presented. As we can

see, none of the results proved to be harmful to human through direct consumption. In other

words, none of the ratios were above 1, indicating that the calculated EADI was below the

reference levels (MRL, TMDI, ADI and ARfD). The highest HQ(EADI/TMDI) was obtained for

methoxychlor in Asia (0.55). For HQ(EADI/ADI), the highest ratio occurred in South America for

mirex with 0.54.

Looking to the crustacean data, a total MEC of eight, two, three and one cases from Africa,

Asia, Europe, North America, respectively, were analysed. The same criterion, which is the

case with at least one ratio value above 0.05, was applied. High HQs for chlordane (gamma)

were observed in crustaceans sampled in Africa (see Table 6). In spite of that, none of the ratios

were above 1.

Twenty-four (Africa), 16 (Asia), 10 (Europe), 28 (North America) and 21 (South America) MEC

cases were analysed considering the fish data. Once again, only HQ ratios with at least one

case above 0.05 are shown. As we can see, none of the maximum average concentrations were

above the MRL values; however, several HQ > 1 are observed in Africa, bringing potential

exposure for developing carcinogenic health effects. This fact may be a result of

bioaccumulation processes (where concentrations increase in higher trophic levels) and/or a

higher interest in this matrix (increasing the data availability and diversity). These ratios were

registered for six compounds—∑aldrin + dieldrin, endrin aldehyde, paraquat dichloride,

endrin, heptachlor and heptachlor epoxide—where the most preoccupant cases (HQ > 3) are

for the first three pesticides cited above.

6. Final considerations

Globally, and because of these high average concentrations, several individual pesticides were

quantified at levels exceeding the established LC50 for fish and EC50 for invertebrates and

algae.
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In addition, the review has provided clear evidence that the biological data grouped according

to Metazoan lineages reached higher concentrations for fish and crustaceans (Figure 3). It is

worth noting however that the same pattern was not verified for higher trophic levels includ-

ing turtles and aquatic mammals which may be due to the lack of samples. Considering that

globally, many of the data displayed a wide range of concentrations, coupled with the fact that

many of the larger aquatic species are migratory; there is a need to address the pesticide

problem from a global perspective.

As a complement to this work, all edible species were evaluated for dietary pesticide risks, as

mollusc, crustaceans and fish. No direct human health risk was observed; however, in Africa,

some hazard quotients (HQ) were above one, indicating a potential exposure for developing

carcinogenic health effects.

In conclusion, the potentially harmful effects of pesticides should be considered not only

locally (national/governmental institutions) but also on a global scale.
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