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1. Introduction     

Hidden Markov models (HMMs) have been widely used to model speech signals for speech 
recognition. However, they cannot precisely model the time dependency of feature 
parameters. In order to overcome this limitation, several researchers have proposed 
extensions, such as segmental unit input HMM (Nakagawa & Yamamoto, 1996). Segmental 
unit input HMM has been widely used for its effectiveness and tractability. In segmental 
unit input HMM, the immediate use of several successive frames as an input vector 
inevitably increases the number of dimensions. The concatenated vectors may have strong 
correlations among dimensions, and may include nonessential information. In addition, 
high-dimensional data require a heavy computational load. Therefore, to reduce 
dimensionality, a feature transformation method is often applied. Linear discriminant 
analysis (LDA) is widely used to reduce dimensionality and a powerful tool to preserve 
discriminative information. LDA assumes each class has the same class covariance. 
However, this assumption does not necessarily hold for a real data set. In order to remove 
this limitation, several methods have been proposed. Heteroscedastic linear discriminant 
analysis (HLDA) could deal with unequal covariances because the maximum likelihood 
estimation was used to estimate parameters for different Gaussians with unequal 
covariances. Heteroscedastic discriminant analysis (HDA) was proposed as another 
objective function, which employed individual weighted contributions of the classes. The 
effectiveness of these methods for some data sets has been experimentally demonstrated. 
However, it is difficult to find one particular criterion suitable for any kind of data set. In 
this chapter we show that these three methods have a strong mutual relationship, and 
provide a new interpretation for them. Then, we present a new framework that we call 
power linear discriminant analysis (PLDA) (Sakai et al., 2007), which can describe various 
criteria including the discriminant analyses with one control parameter. Because PLDA can 
describe various criteria for dimensionality reduction, it can flexibly adapt to various 
environments such as a noisy environment. Thus, PLDA can provide robustness to a speech 
recognizer in realistic environments. Moreover, the presented technique can combine a 
discriminative training, such as maximum mutual information (MMI) and minimum phone 
error (MPE). Experimental results show the effectiveness of the presented technique. O
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2. Notations 

This chapter uses the following notation: capital bold letters refer to matrices, e.g., A, bold 

letters refer to vectors, e.g., b, and scalars are not bold, e.g., c. Where submatrices are used 

they are indicated, for example, by [ ]pA , this is an pn×  matrix. TA  is the transpose of the 

matrix, |A| is the determinant of the matrix, and tr(A) is the trace of the matrix. 

We let the function f of a symmetric positive definite matrix A equal 

( ) ( )( ) ( )( ) TT
n fffdiag UΛUUU =λλ ,,1 A , where TUUA Λ= , U denotes the matrix of n 

eigenvectors, and Λ  denotes the diagonal matrix of eigenvalues, iλ 's. We may define the 

function f as some power or the logarithm of A. 

3. Segmental Unit Input HMM 

For an input symbol sequence ( )Toooo ,,, 21 A=  and a state sequence ( )Tqqq ,,, 21 A=q , the 

output probability of segmental unit input HMM is given by the following equations 
(Nakagawa & Yamamoto, 1996): 

 ( ) ( )111111 ,,|,,,,,|),,( −− ×=∑∏ ii

i

iiiT qqqPqqPP AAAA
q

ooooo  (1) 

 ( )( ) ( )∑∏ −−−−≈
q

ooo

i

iiiidii qqPqP 111 |,,,| A  (2) 

 ( )( ) ( )∑∏ −−−≈
q

oo

i

iiiidi qqPqP 11 ||,,A , (3) 

where T denotes the length of input sequence and d denotes the number of successive 

frames used in probability calculation at a current frame. The immediate use of several 

successive frames as an input vector inevitably increases the number of parameters. When 

the number of dimensions increases, several problems generally occur: heavier 

computational load and larger memory are required, and the accuracy of parameter 

estimation degrades. Therefore, to reduce dimensionality, feature transformation methods, 

e.g., principal component analysis (PCA), LDA, HLDA or HDA, are often used (Nakagawa 

& Yamamoto, 1996; Haeb-Umbach & Ney, 1992; Kumar & Andreou, 1998; Saon et al., 2000). 

Here, we briefly review LDA, HLDA and HDA, and then investigate the effectiveness of 
these methods for some artificial data sets. 

3.1 Linear discriminant analysis 

Given n-dimensional feature vectors ),,2,1( Njn
j A=ℜ∈x , e.g., [ ]TT

j
T

djj oox ,,)1( A−−= , let us 

find a transformation matrix pn
p

×ℜ∈][B  that projects these feature vectors to p-dimensional 

feature vectors ),,2,1( Njp
j A=ℜ∈z  (p < n), where j

T
pj xBz ][= , and N denotes the number 

of all features. 
Within-class and between-class covariance matrices are defined as follows (Fukunaga, 1990): 
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 ( )( )
1 x

1
x x

j k

c T

w j k j k
k DN

μ μ
= ∈

Σ = − −∑ ∑   

 
1

,
c

k k
k

P
=

= Σ∑  (4) 

 ( )( )
1

,
c

T

b k k k
k

P μ μ μ μ
=

Σ = − −∑  (5) 

where c denotes the number of classes, kD  denotes the subset of feature vectors labeled as 

class k, μ  is the mean vector of all features, kμ  is the mean vector of the class k, kΣ  is the 

covariance matrix of the class k, and kP  is the class weight, respectively. 

There are several ways to formulate objective functions for multi-class data (Fukunaga, 
1990). Typical objective functions are the following: 

 ( ) [ ] [ ]

[ ]

[ ] [ ]

B B
B ,

B B

T

p b p

LDA p T

p w p

J
Σ

=
Σ

 (6) 

 ( ) [ ] [ ]

[ ]

[ ] [ ]

B B
B ,

B B

T

p t p

LDA p T

p w p

J
Σ

=
Σ

 (7) 

where tΣ  denotes the covariance matrix of all features, namely a total covariance, which 

equals wb Σ+Σ . 

LDA finds a transformation matrix ][pB  that maximizes Eqs. (6) or (7). The optimum 

transformations of (6) and (7) result in the same transformation. 

3.2 Heteroscedastic extensions 

LDA is not the optimal transformation when the class distributions are heteroscedastic. 

Campbell has shown that LDA is related to the maximum likelihood estimation of 

parameters for a Gaussian model with an identical class covariance (Campbell, 1984). 

However, this condition is not necessarily satisfied for a real data set. 

 In order to overcome this limitation, several extensions have been proposed. This chapter 
focuses on two heteroscedastic extensions called heteroscedastic linear discriminant analysis 
(HLDA) (Kumar & Andreou, 1998) and heteroscedastic discriminant analysis (HDA) (Saon 
et al., 2000). 

3.2.1 Heteroscedastic linear discriminant analysis 

In HLDA, the full-rank linear transformation matrix nn×ℜ∈B  is constrained as follows: the 

first p columns of B span the p-dimensional subspace in which the class means and 

variances are different and the remaining n-p columns of B span the (n-p)-dimensional 

subspace in which the class means and variances are identical. Let the parameters that 

describe the class means and covariances of xBT  be kμ̂  and kΣ̂ , respectively: 
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[ ]

[ ]

B
ˆ ,

B

T

p k

k T

n p

μ
μ

μ−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (8) 

 
[ ] [ ]

[ ] [ ]

B B 0
ˆ ,

0 B B

T

p k p

k T

n p t n p− −

Σ⎡ ⎤
Σ = ⎢ ⎥Σ⎣ ⎦

 (9) 

where [ ]][][ | pnp −= BBB  and )(
][

pnn
pn

−×
− ℜ∈B . 

Kumar et al. incorporated the maximum likelihood estimation of parameters for differently 

distributed Gaussians. An HLDA objective function is derived as follows (Kumar & 

Andreou, 1998): 

 ( )
2

[ ] [ ] [ ] [ ]
1

B 1
B .

B B B B
k

N

HLDA N c NT T
n p t n p p k p

k

J

− −
=

=
Σ Σ∏

 (10) 

kN  denotes the number of features of class k. The solution to maximize Eq. (10) is not 

analytically obtained. Therefore, its maximization is performed using a numerical 

optimization technique. 

3.2.2 Heteroscedastic discriminant analysis 

HDA uses the following objective function, which incorporates individual weighted 
contributions of the class variances (Saon et al., 2000): 

 ( ) [ ] [ ]

[ ]
1

[ ] [ ]

B B
B

B B

kNT
c

p b p

HDA p T
k

p k p

J
=

⎛ ⎞Σ
⎜ ⎟=
⎜ ⎟Σ⎝ ⎠

∏  (11) 

 
[ ] [ ]

[ ] [ ]
1

B B
.

B B
k

N
T

p b p

c N
T

p k p
k=

Σ
=

Σ∏
 (12) 

In contrast to HLDA, this function is not considered (n-p) dimensions. Only a 

transformation matrix ][pB  is estimated. There is no closed-form solution to obtain 

transformation matrix ][pB  similar to HLDA. 

3.3 Dependency on data set 

In Fig. 1, two-dimensional, two- or three-class data features are projected onto one-

dimensional subspaces by LDA and HDA. Here, HLDA projections were omitted because 

they were close to HDA projections. Fig. 1 (a) shows that HDA has higher separability than 

LDA for the data set used in (Saon et al., 2000). On the other hand, as shown in Fig. 1(b), 

LDA has higher separability than HDA for another data set. Fig. 1 (c) shows the case with 

another data set where both LDA and HDA have low separabilities. Thus, LDA and HDA 
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do not always classify the given data set appropriately. All results show that the 

separabilities of LDA and HDA depend significantly on data sets. 
 

     

(a)     (b) 

 
(c) 

Fig. 1. Examples of dimensionality reduction by LDA, HDA and PLDA. 

4. Generalization of discriminant analysis 

As shown above, it is difficult to separate appropriately every data set with one particular 
criterion such as LDA, HLDA, or HDA. Here, we concentrate on providing a framework 
which integrates various criteria. 

4.1 Relationship between HLDA and HDA 

By using Eqs. (8) and (9), let us rearrange BB t
TΣ  as follows: 

 B B B B B BT T T

t b w
Σ = Σ + Σ  (13) 

 ( )( ) ˆˆ ˆ ˆ ˆ
T

k k k k k
k k

P Pμ μ μ μ= − − + Σ∑ ∑  (14) 

 
[ ] [ ]

[ ] [ ]

B B 0
,

0 B B

T

p t p

T

n p t n p− −

Σ⎡ ⎤
= ⎢ ⎥Σ⎣ ⎦

 (15) 

where μμ TB=ˆ . 

The determinant of this is 
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[ ] [ ] [ ] [ ]

B B B B B B ,T T T

t p t p n p t n p− −Σ = Σ Σ  (16) 

Inserting this in (10) and removing a constant term yields 

 ( ) [ ] [ ]

[ ]

[ ] [ ]
1

B B
B .

B B
k

N
T

p t p

HLDA p c N
T

p k p
k

J

=

Σ
∝

Σ∏
 (17) 

From (12) and (17), the difference between HLDA and HDA lies in their numerators, i.e., the 
total covariance matrix versus the between-class covariance matrix. This difference is the 
same as the difference between the two LDAs shown in (6) and (7). Thus, (12) and (17) can 
be viewed as the same formulation. 

4.2 Relationship between LDA and HDA 
The LDA and HDA objective functions can be rewritten as 

 ( ) [ ] [ ]

[ ]

[ ] [ ]

1

B B
B ,

B B

T

bp b p

LDA p cT

p w p
k k

k

J

P
=

ΣΣ
= =

Σ Σ∑

#

#
 (18) 

 ( ) [ ] [ ]

[ ]

[ ] [ ]
1 1

B B
B ,

B B
k

k

N
T

bp b p

HDA p c cN
T P

p k p k
k k

J

= =

ΣΣ
= ∝

Σ Σ∏ ∏

#

#
 (19) 

 where ][][
~

pb
T
pb BB Σ=Σ and ][][

~
pk

T
pk BB Σ=Σ  are between-class and class k covariance matrices 

in the projected p-dimensional space, respectively. 
Both numerators denote determinants of the between-class covariance matrix. In Eq. (18), 
the denominator can be viewed as a determinant of the weighted arithmetic mean of the class 
covariance matrices. Similarly, in Eq. (19), the denominator can be viewed as a determinant 
of the weighted geometric mean of the class covariance matrices. Thus, the difference between 
LDA and HDA is the definitions of the mean of the class covariance matrices. Moreover, to 
replace their numerators with the determinants of the total covariance matrices, the 
difference between LDA and HLDA is the same as the difference between LDA and HDA. 

4.3 Power linear discriminant analysis 
As described above, Eqs. (18) and (19) give us a new integrated interpretation of LDA and 
HDA. As an extension of this interpretation, their denominators can be replaced by a 
determinant of the weighted harmonic mean, or a determinant of the root mean square.  
In the econometric literature, a more general definition of a mean is often used, called the 
weighted mean of order m (Magnus & Neudecker, 1999). We have extended this notion to a 
determinant of a matrix mean and have proposed a new objective function as follows (Sakai 
et al., 2007): 

 ( )[ ] 1

1

B , ,
n

PLDA p m
c

m

k k
k

J m

P
=

Σ
=

⎛ ⎞Σ⎜ ⎟
⎝ ⎠
∑

#

#
 (20) 

www.intechopen.com



Feature Transformation Based on Generalization of Linear Discriminant Analysis 

 

109 

where { } ][][
~

,
~

,
~~

pt
T
pttbn BB Σ=ΣΣΣ∈Σ , and m is a control parameter. By varying the control 

parameter m, the proposed objective function can represent various criteria. Some typical 
objective functions are enumerated below.  

• m=2 (root mean square) 

 ( )[ ] 1 2

2

1

B , 2 .
n

PLDA p
c

k k
k

J

P
=

Σ
=
⎛ ⎞Σ⎜ ⎟
⎝ ⎠
∑

#

#
 (21) 

• m=1 (arithmetic mean) 

 ( ) ( )[ ] [ ]

1

B ,1 B .
n

PLDA p LDA pc

k k
k

J J

P
=

Σ
= =

Σ∑

#

#
 (22) 

• 0→m  (geometric mean) 

 ( ) ( )[ ] [ ]

1

B ,0 B .
k

n

PLDA p HDA pc P

k
k

J J

=

Σ
= ∝

Σ∏

#

#
 (23) 

• m=-1 (harmonic mean) 

 ( )[ ] 1

1

1

B , 1 .
n

PLDA p
c

k k
k

J

P

−
−

=

Σ
− =

⎛ ⎞Σ⎜ ⎟
⎝ ⎠
∑

#

#
 (24) 

The following equations are also obtained under a particular condition.  

• ∞→m  

 ( )[ ]
B , .

max

n

PLDA p

k
k

J
Σ

∞ =
Σ

#

#  (25) 

• −∞→m  

 ( )[ ]
B , .

min

n

PLDA p

k
k

J
Σ

−∞ =
Σ

#

#  (26) 

Intuitively, as m becomes larger, the classes with larger variances become dominant in the 
denominator of Eq. (20). Conversely, as m becomes smaller, the classes with smaller 
variances become dominant. 
We call this new discriminant analysis formulation Power Linear Discriminant Analysis 

(PLDA). Fig. 1 (c) shows that PLDA with m=10 can have a higher separability for a data set 
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with which LDA and HDA have lower separability. To maximize the PLDA objective 

function with respect to B, we can use numerical optimization techniques such as the 

Nelder-Mead method or the SANN method. These methods need no derivatives of the 

objective function. However, it is known that these methods converge slowly. In some 

special cases below, using a matrix differential calculus, the derivatives of the objective 

function are obtained. Hence, we can use some fast convergence methods, such as the quasi-

Newton method and conjugate gradient method. 

4.3.1 Order m constrained to be an integer 

Assuming that a control parameter m is constrained to be an integer, the derivatives of the 
PLDA objective function are formulated as follows: 

 ( ) 1

[ ] [ ]

[ ]

log B , 2 B 2D ,
B

PLDA p n p n m

p

J m
−∂

= Σ Σ −
∂

#  (27) 

where 

.
~~~

and

,
~~~

otherwise,
1

0m if,
~

0m if,
1

1

1

1
,,

1

1

1

,,

1 1

,,][

1

1
][

1 1

,,][

j
k

c

l

m
ll

jm
kkjm

j
k

c

l

m
ll

jm
kkjm

c

k

m

j

kjmpkk

c

k

kpkk

c

k

m

j

kjmpkk

m

P

P

P
m

P

P
m

−

−

=

−+

−

−

=

−

= =

=

−

= =

Σ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ΣΣ=

Σ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ΣΣ=

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

Σ−

=ΣΣ

>Σ

=

∑

∑

∑ ∑

∑

∑ ∑

Y

X

YB

B

XB

D

 

This equation can be used for acoustic models with full covariance. 

4.3.2 kΣ
~

constrained to be diagonal 

Because of computational simplicity, the covariance matrix of class k is often assumed to be 

diagonal (Kumar & Andreou, 1998; Saon et al., 2000). Since a diagonal matrix multiplication 

is commutative, the derivatives of the PLDA objective function are simplified as follows: 

 ( )[ ] 1

1

B , ,

( )

n

PLDA p m
c

m

k k
k

J m

P diag
=

Σ
=
⎛ ⎞Σ⎜ ⎟
⎝ ⎠
∑

#

#
 (28) 
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 ( ) 1

[ ] [ ]

[ ]

log B , 2 B 2F G ,
B

PLDA p n p n m m

p

J m −∂
= Σ Σ −

∂
#  (29) 

where 

 1

[ ]
1

F B ( ) ,
c

m

m k k p k
k

P diag −

=

= Σ Σ∑ #  (30) 

 

1

1

G ( ) ,
c

m

m k k
k

P diag

−

=

⎛ ⎞= Σ⎜ ⎟
⎝ ⎠
∑ #  (31) 

and diag is an operator which sets zero for off-diagonal elements. In Eq. (28), the control 
parameter m can be any real number, unlike in Eq. (27). 
When m is equal to zero, the PLDA objective function corresponds to the diagonal HDA 
(DHDA) objective function introduced in (Saon et al., 1990).  

5. Selection of an optimal control parameter 

As shown in the previous section, PLDA can describe various criteria by varying its control 
parameter m. One way of obtaining an optimal control parameter m is to train HMMs and 
test recognition performance on a development set changing m and to choose the m with the 
smallest error. Unfortunately, this raises a considerable problem in a speech recognition 
task. In general, to train HMMs and to test recognition performance on a development set 
for finding an optimal control parameter requires several dozen hours. PLDA requires 
considerable time to select an optimal control parameter because it is able to choose a 
control parameter within a real number. 
In this section we focus on a class separability error of the features in the projected space 
instead of using a recognition error on a development set. Better recognition performance 
can be obtained under the lower class separability error of projected features. Consequently, 
we measure the class separability error and use it as a criterion for the recognition 
performance comparison. We define a class separability error of projected features. 
  

 

Fig. 2. Comparison of Bayes error and Chernoff bound. 

5.1 Two-class problem 

This section focuses on the two-class case. We first consider the Bayes error of the projected 
features on training data as a class separability error: 
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 [ ]1 1 2 2
min (x) , (x) x,P p P p dε = ∫  (32) 

where iP  denotes a prior probability of class i and )(xip  is a conditional density function of 

class i. The Bayes error ε  can represent a classification error, assuming that training data 

and evaluation data come from the same distributions. However, it is difficult to directly 
measure the Bayes error. Instead, we use the Chernoff bound between class 1 and class 2 as 
a class separability error (Fukunaga, 1990): 

 1,2 1 1

1 2 1 2
(x) (x) x for 0 s 1s s s s

u
P P P P dε − −= ≤ ≤∫  (33) 

where uε  indicates an upper bound of ε . In addition, when the )(xip 's are normal with 

mean vectors iμ  and covariance matrices iΣ , the Chernoff bound between class 1 and class 

2 becomes 

 
1,2 1 1,2

1 2
exp( ( )) ,s s

u
P P sε η−= −  (34) 

where 

 
121,2 1

1 2 12 1 2 1

1 2

Σ(1 ) 1
( ) (μ μ ) Σ (μ μ ) ln ,

2 2 Σ Σ
T

s s

s s
sη −

−

−
= − − +  (35) 

where 2112 )1( ΣΣΣ ss −+≡ . In this case, uε  can be obtained analytically and calculated 

rapidly. In Fig. 2, two-dimensional two-class data are projected onto one-dimensional 

subspaces by two methods. To compare with their Chernoff bounds, the lower class 

separability error is obtained from the projected features by Method 1 as compared with 

those by Method 2. In this case, Method 1 preserving the lower class separability error 

should be selected. 

5.2 Extension to multi-class problem 

In Section 5.1, we defined a class separability error for two-class data. Here, we extend a 
two-class case to a multi-class case. Unlike the two-class case, it is possible to define several 
error functions for multi-class data. We define an error function as follows: 

 ,

1 1

( , )
c c

i j

u u
i j

I i jε ε
= =

=∑∑#  (36) 

where )(⋅I  denotes an indicator function. We consider the following three formulations as 

an indicator function. 

5.2.1 Sum of pairwise approximated errors 

The sum of all the pairwise Chernoff bounds is defined using the following indicator 
function: 

 
1, if ,

( , )
0, otherwise.

j i
I i j

>⎧
= ⎨
⎩

 (37) 
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5.2.2 Maximum pairwise approximated error 

The maximum pairwise Chernoff bound is defined using the following indicator function: 

 
ˆ ˆ1, if ( , ) ( , ),

( , )
0, otherwise,

j i and i j i j
I i j

⎧ > =⎪= ⎨
⎪⎩

 (38) 

where ji
u

ji

ji ,

,

maxarg)ˆ,ˆ( ε≡ . 

5.2.3 Sum of maximum approximated errors in each class 

The sum of the maximum pairwise Chernoff bounds in each class is defined using the 
following indicator function: 

 
ˆ1, if ,

( , )
0, otherwise,

i
j j

I i j
⎧ =⎪= ⎨
⎪⎩

 (39) 

where ji
u

j
ij

,maxargˆ ε≡ . 

6. Combination of feature transformation and discriminative training 

Feature transformation aims to transform high dimensional features to low dimensional 
features in a feature space while separating different classes such as monophones. 
Discriminative trainings, such as maximum mutual information (MMI) (Bahl et al., 1986) 
and minimum phone error (MPE) (Povey & Woodland, 2002), estimate the acoustic models 
discriminatively in a model space (Fig. 3). Because feature transformation and 
discriminative training are adopted at different levels, a combination of them can have a 
complementary effect on speech recognition. 
 

 
Fig. 3. Feature transformation and discriminative training. 

6.1 Maximum mutual information (MMI) 

The MMI criterion is defined as follows (Bahl et al., 1986): 

 
1

(O | ) ( )
( ) log ,

(O | ) ( )

R
r r r

MMI
r

rs

p s P s
F

p s P s

κ
λ

κ
λ

λ
=

=∑ ∑
 (40)  
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where λ  is the set of HMM parameters, rO  is the r'th training sentence, R denotes the 

number of training sentences, κ  is an acoustic de-weighting factor which can be adjusted to 

improve the test set performance, )|( sp rOλ  is the likelihood given sentence s, and )(sP  is 

the language model probability for sentence s. The MMI criterion equals the multiplication 

of the posterior probabilities of the correct sentences rs . 

6.2 Minimum phone error (MPE) 

MPE training aims to minimize the phone classification error (or maximize the phone 
accuracy) (Povey & Woodland, 2002). The objective function to be maximized by the MPE 
training is expressed as 

 
1

(O | ) ( ) ( , )
( ) ,

(O | ) ( )

R
r rs

MPE
r

rs

p s P s A s s
F

p s P s

κ
λ

κ
λ

λ
= ′

=
′ ′

∑∑ ∑
 (41) 

where ),( rssA  represents the raw phone transcription accuracy of the sentence s given the 

correct sentence rs , which equals the number of correct phones minus the number of errors. 

7. Experiments 

We conducted experiments on CENSREC-3 database (Fujimoto et al., 2006), which is 
designed as an evaluation framework for Japanese isolated word recognition in real in-car 
environments. Speech data were collected using two microphones: a close-talking (CT) 
microphone and a hands-free (HF) microphone. The data recorded with an HF microphone 
tend to have higher noise than those recorded with a CT microphone because the HF 
microphone is attached to the driver’s sun visor. For training of HMMs, a driver’s speech of 
phonetically-balanced sentences was recorded under two conditions: while idling and 
driving on city streets under a normal in-car environment. A total of 28,100 utterances 
spoken by 293 drivers (202 males and 91 females) were recorded with both microphones. 
We used all utterances recorded with CT and HF microphones for training. For evaluation, 
we used driver's speech of isolated words recorded with CT and HF microphones under a 
normal in-car environment and evaluated 2,646 utterances spoken by 18 speakers (8 males 
and 10 females) for each microphone. The speech signals for training and evaluation were 
both sampled at 16 kHz. 

7.1 Baseline system 

In the CENSREC-3, the baseline scripts are designed to facilitate HMM training and 
evaluation by HTK (available at http://htk.eng.cam.ac.uk/). The acoustic models consisted 
of triphone HMMs. Each HMM had five states and three of them had output distributions. 
Each distribution was represented with 32 mixture diagonal Gaussians. The total number of 
states with the distributions was 2,000. The feature vector consisted of 12 MFCCs and log-
energy with their corresponding delta and acceleration coefficients (total 39 dimensions). 
Frame length and frame shift were 20 msec and 10 msec, respectively. In the Mel-filter bank 
analysis, a cut-off was applied to frequency components lower than 250 Hz. The decoding 
process was performed without any language model. The vocabulary size was 100 words, 
which included the original fifty words and another fifty similar-sounding words. 
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7.2 Dimensionality reduction procedure 

The dimensionality reduction was performed using PCA, LDA, HDA, DHDA (Saon et al., 
2000), and PLDA for concatenated features. Eleven successive frames (143 dimensions) were 
reduced to 39 dimensions. In (D)HDA and PLDA, to optimize Eq. (28),  we assumed that 
projected covariance matrices were diagonal and used the limited-memory BFGS algorithm 
as a numerical optimization technique. The LDA transformation matrix was used as the 
initial gradient matrix. To assign one of the classes to every feature after dimensionality 
reduction, HMM state labels were generated for the training data by a state-level forced 
alignment algorithm using a well-trained HMM system. The class number was 43 
corresponding to the number of the monophones. 

7.3 Experimental results 

Tables 1 and 2 show the word error rates and class separability errors according to Eqs. (37)-

(39) for each dimensionality reduction criterion. The evaluation sets used in Tables 1 and 2 

were recorded with CT and HF microphones, respectively. For the evaluation data recorded 

with a CT microphone, Table 1 shows that PLDA with 5.0−=m  yields the lowest WER. For 

the evaluation data recorded with a HF microphone, the lowest WER is obtained by PLDA 

with a different control parameter ( 5.1−=m ) in Table 2. In both cases with CT and HF 

microphones, PLDA with the optimal control parameters consistently outperformed the 

other criteria. Two data sets recorded with different microphones had different optimal 

control parameters. The analysis on the training data revealed that the voiced sounds had 

larger variances while the unvoiced sounds had smaller ones. As described in Section 4.3, 

PLDA with a smaller control parameter gives greater importance to the discrimination of 

classes with smaller variances. Thus, PLDA with a smaller control parameter has better 

ability to discriminate unvoiced sounds. In general, under noisy environment as with an HF 

microphone, discrimination of unvoiced sounds becomes difficult. Therefore, the optimal 

control parameter m for an HF microphone is smaller than with a CT microphone. In 

comparing dimensionality reduction criteria without training HMMs nor testing recognition 

performance on a development set, we used s = 1/2 for the Chernoff bound computation 

because there was no a priori information about weights of two class distributions. In the 

case of s = 1/2, Eq. (33) is called the Bhattacharyya bound. Two covariance matrices in Eq. 

(35) were treated as diagonal because diagonal Gaussians were used to model HMMs. The 

parameter selection was performed as follows: To select the optimal control parameter for 

the data set recorded with a CT microphone, all the training data with a CT microphone 

were labeled with monophones using a forced alignment recognizer. Then, each 

monophone was modeled as a unimodal normal distribution, and the mean vector and 

covariance matrix of each class were calculated. Chernoff bounds were obtained using these 

mean vectors and covariance matrices. The optimal control parameter for the data set with 

an HF microphone was obtained using all of the training data with an HF microphone 

through the same process as a CT microphone. Both Tables 1 and 2 show that the results of 

the proposed method and relative recognition performance agree well. There was little 

difference in the parameter selection performances among Eqs. (37)-(39) in parameter 

selection accuracy. The proposed selection method yielded sub-optimal performance 

without training HMMs nor testing recognition performance on a development set, 

although it neglected time information of speech feature sequences to measure a class 
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separability error and modeled a class distribution as a unimodal normal distribution. In 

addition, the optimal control parameter value can vary with different speech features, a 

different language, or a different noise environment. The proposed selection method can 

adapt to such variations. 

 

 m WER Eq. (37) Eq. (38) Eq. (39) 

MFCC+ Δ + ΔΔ  - 7.45 2.31 0.0322 0.575 

PCA - 10.58 3.36 0.0354 0.669 

LDA - 8.78 3.10 0.0354 0.641 

HDA - 7.94 2.99 0.0361 0.635 

PLDA -3.0 6.73 2.02 0.0319 0.531 

PLDA -2.0 7.29 2.07 0.0316 0.532 

PLDA -1.5 6.27 1.97 0.0307 0.523 

PLDA -1.0 6.92 1.99 0.0301 0.521 

PLDA -0.5 6.12 2.01 0.0292 0.525 

DHDA 
(PLDA) 

- 
(0.0) 

7.41 2.15 0.0296 0.541 

PLDA 0.5 7.29 2.41 0.0306 0.560 

PLDA 1.0 9.33 3.09 0.0354 0.641 

PLDA 1.5 8.96 4.61 0.0394 0.742 

PLDA 2.0 8.58 4.65 0.0404 0.745 

PLDA 3.0 9.41 4.73 0.0413 0.756 

Table 1. Word error rates (%) and class separability errors according to Eqs. (37)-(39) for the 
evaluation set with a CT microphone. The best results are highlighted in bold. 

 

 m WER Eq. (37) Eq. (38) Eq. (39) 

MFCC+ Δ + ΔΔ  - 15.04 2.56 0.0356 0.648 

PCA - 19.39 3.65 0.0377 0.738 

LDA - 15.80 3.38 0.0370 0.711 

HDA - 17.16 3.21 0.0371 0.697 

PLDA -3.0 15.04 2.19 0.0338 0.600 

PLDA -2.0 12.32 2.26 0.0339 0.602 

PLDA -1.5 10.70 2.18 0.0332 0.5921 

PLDA -1.0 11.49 2.23 0.0327 0.5922 

PLDA -0.5 12.51 2.31 0.0329 0.598 

DHDA 
(PLDA) 

- 
(0.0) 

14.17 2.50 0.0331 0.619 

PLDA 0.5 13.53 2.81 0.0341 0.644 

PLDA 1.0 16.97 3.38 0.0370 0.711 

PLDA 1.5 17.31 5.13 0.0403 0.828 

PLDA 2.0 15.91 5.22 0.0412 0.835 

PLDA 3.0 16.36 5.36 0.0424 0.850 

Table 2. Word error rates (%) and class separability errors according to Eqs. (37)-(39) for the 
evaluation set with an HF microphone. 
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7.4 Discriminative training results 

We also conducted the same experiments using MMI and MPE by HTK and compared a 

maximum likelihood (ML) training, MMI, approximate MPE and exact MPE. The 

approximate MPE assigns approximate correctness to phones while the exact MPE assigns 

exact correctness to phones. The former is faster in computation for assigning correctness, 

and the latter is more precise in correctness. The results are shown in Tables 3 and 4. By 

combining PLDA and the discriminative training techniques, we obtained better 

performance than the PLDA with a maximum likelihood criterion training. There appears to 

be no consistent difference between approximate and exact MPE as reported in a 

discriminative training study (Povey, 2003). 
 

 ML MMI MPE (approx.) MPE (exact) 

MFCC+ Δ + ΔΔ  7.45 7.14 6.92 6.95 

PLDA 6.12 5.71 5.06 4.99 

Table 3. Word error rates (%) using a maximum likelihood training and three discriminative 
trainings for the evaluation set with a CT microphone. 

 ML MMI MPE (approx.) MPE (exact) 

MFCC+ Δ + ΔΔ  15.04 14.44 18.67 15.99 

PLDA 10.70 10.39 9.44 10.28 

Table 4. Word error rates (%) using a maximum likelihood training and three discriminative 
trainings for the evaluation set with an HF microphone. 

7.5 Computational costs 

The computational costs for the evaluation of recognition performance versus the proposed 
selection method are shown in Table 5. Here, the computational cost involves the 
optimization procedure of the control parameter. In this experiment, we evaluate the 
computational costs on the evaluation data set with a Pentium IV 2.8 GHz computer. For 
every dimensionality reduction criterion, the evaluation of recognition performance 
required 15 hours for training of HMMs and five hours for test on a development set. In 
total, 220 hours were required for comparing 11 feature transformations (PLDAs using 11 
different control parameters). On the other hand, the proposed selection method only 
required approximately 30 minutes for calculating statistical values such as mean vectors 
and covariance matrices of each class in the original space. After this, 2 minutes were 
required to calculate Eqs. (37)-(39) for each feature transformation. In total, only 0.87 hour 
was required for predicting the sub-optimal feature transformation among the 11 feature 
transformation described above. Thus, the proposed method could perform the prediction 
process much faster than a conventional procedure that included training of HMMs and test 
of recognition performance on a development set. 
 

conventional 220 h 
= (15 h (training) + 5 h (test)) ×  11 conditoins 

proposed 0.87 h 
= 30 min (mean and variance calculations)  
+ 2 min (Chernoff bound calculation) × 11 conditions 

Table 5. Computational costs with the conventional and proposed methods. 
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8. Conclusions 

In this chapter we presented a new framework for integrating various criteria to reduce 
dimensionality. The framework, termed power linear discriminant analysis, includes LDA, 
HLDA and HDA criteria as special cases. Next, an efficient selection method of an optimal 
PLDA control parameter was introduced. The method used the Chernoff bound as a 
measure of a class separability error, which was the upper bound of the Bayes error. The 
experimental results on the CENSREC-3 database demonstrated that segmental unit input 
HMM with PLDA gave better performance than the others and that PLDA with a control 
parameter selected by the presented efficient selection method yielded sub-optimal 
performance with a drastic reduction of computational costs. 
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