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Abstract

Current research is continually implicating the importance of astrocytes as active partic-
ipants in neurological injury, disease, and tumor progression. This chapter will discuss
some of these emerging concepts, especially as they relate to tumor biology. Astrocytes
themselves can become tumorigenic, such as the case in gliomas, which often have
aberrant signaling in key regulating genes of astrocyte development. Astrocytes secrete
factors that maintain the tight junctions of the blood brain barrier (BBB), which in turn
regulates the success or failure of metastatic cells extravasating into the brain. This
astrocytic association with the brain vasculature also promotes brain tumor stem cell
characteristics, which are known to be necessary for tumor initiation. Tumor cells within
the brain make direct contacts with astrocytes through gap junctions, which subsequently
lead to increased chemoresistance of the tumor cells. Astrocytes have also been shown to
effect tumors cells via secretion of degradative enzymes, cytokines, chemokines, and
growth factors, all of which have been shown to promote tumor cell proliferation, sur-
vival, and invasion. Thus, research in astrocyte biology and the role of astrocytes in the
tumor microenvironment has and will likely continue to reveal novel targets for cancer
intervention.
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1. Introduction

The tumor microenvironment plays a critical role in tumor progression. Tumors within the

central nervous system (CNS) include primary brain tumors originating from a CNS resident

cell, or secondary tumors that came from extraneural origins. The brain microenvironment

consists of multiple cell types including the most abundant glial cell, astrocytes. Astrocytes

have very diverse and microenvironment-dependent morphologies; for a long time, this
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structural contribution was considered their main purpose. Present in gray matter, protoplas-

mic astrocytes are the most common types of astrocytes and are stellate in nature with

branching processes or “endfeet” [1]. These endfeet make important contacts with neurons

and other cells within the brain microenvironment. Importantly for this chapter, one of these

interfaces, which we will discuss further, is the astrocyte endfeet connections made with

endothelial cells and pericytes, commonly referred to as the blood brain barrier (BBB). This

barrier allows for select metabolites to enter and toxic waste to exit the brain.

Homeostasis in the brain is of utmost importance to maintain neural function and prevent

potentially detrimental immune responses from occurring. An invading tumor cell normally

encounters enormous barriers before it can colonize the brain. On entering the brain, it will

need to overcome brain defense mechanisms, which are partly mediated by astrocytes and

brain macrophage cells called microglia. These and other mechanisms are in place to thwart

tumor cell entrance, however, in some cases these mechanisms are either not adequate to

prevent tumor cell invasion, or exploited to aid in tumor cell extravasation into the brain. In

addition to regulating brain metastases, astrocytes, which develop from neural stem cells

(NSCs), can become transformed and undergo developmental dysregulation due to aberrant

gene activation, resulting in various types of brain tumors, including gliomas.

In this chapter, we will further discuss autocrine, paracrine, and juxtacrine mechanisms in

which astrocytes influence surrounding cells in the brain microenvironment and tumor pro-

gression within the CNS. We will discuss the underlying mechanisms that regulate these

processes, and provide examples of possible interventions that could eventually be translated

into successful clinical treatment for patients.

2. Primary tumors of astrocytic origin

We begin this chapter by understanding how astrocytes themselves may become transformed

and discuss the key features of these types of tumors. The cellular origin of many brain tumors

can be traced back to multipotent NSCs, which are able to self-renew and differentiate into all

subtypes of mature neurons and glial cells. However, many tumors with more distinct cellular

origins exist along the glial cell differentiation axis, and are traced back to more restricted and

differentiated astrocyte progeny [2]. During development of mature astrocytes, NSCs first

partially differentiate into neuronal precursor cells where, in the presence of specific growth

factors and their cognate receptors, they differentiate into various cellular lineages [3]. Early

astrocyte precursors are characterized by their expression of fibroblast growth factor receptor

(FGFR), nestin, and epidermal growth factor receptor (EGFR), while mature astrocytes express

markers such as glutamate aspartate transporter (GLAST), FGFR3, S100β and glial fibrillary

acidic protein (GFAP) [4–7]. These astrocyte precursor cells are perhaps most vulnerable to

transformation, and depending on the stage of these cells, fatal adult primary brain tumors

(gliomas) may arise. Because mature astrocytes maintain their ability to proliferate throughout

adulthood (an uncommon characteristic of many CNS cells), it is hypothesized that this is a

contributing reason for why astrocytic tumors are so common overall and most common in

adults [8, 9].
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The term “glial cells” describes a broader group of cells including astrocytes, ependymal cells

and oligodendrocytes, not all gliomas are specifically astrocytic in nature. Gliomas which are

thought to originate or histologically resemble astrocytes include astrocytomas, mixed gliomas

or oligoastrocytomas, diffuse intrinsic pontine gliomas [10], and high grade astrocytomas

called glioblastoma multiforme (GBM). There are also several types of mixed neuronal-glial

tumors. These tumors are extremely heterogeneous, differing in histology, location in the brain,

molecular biology, karyotype, age of onset, and survival prognosis of the patient. Gliomas

share many characteristics with astrocytes, particularly activated astrocytes, which will be

discussed in a later section of this chapter. Some of these include migration capabilities, growth

factor expression pattern, stem cell-like characteristics, and the ability for anchorage-independent

growth which is correlated with invasiveness of a tumor [11–13].

In general, cellular origins of the previously mentioned gliomas are astrocyte precursor cells.

However, the diversity in the distinct molecular/genetic alterations of the tumors suggests that

different stages or types of precursor cells have different sensitivities to specific genetic muta-

tions. One of the most notable genetic signatures of GBM is EGFR amplification and

overexpression which, as previously mentioned, is also involved in regulating astrocyte differ-

entiation [14–17]. There have been several mechanisms associating EGFR overexpression with

astrocyte tumor malignancy. Several known ligands of EGFR, including EGF and transforming

growth factor-α (TGF-α), promote proliferation of astrocytes and astrocyte precursor cells, thus

contributing to the malignancy of the tumors [14, 18, 19]. Additionally, cell cycle regulators such

as Rb, p53 and CDKN2A are commonly mutated and inactivated in low grade gliomas and

GBM, [15, 20–23]. Mutations in isocitrate dehydrogenase (IDH)-1 and -2 are also extremely

common, but only in certain gliomas; they are present in 70% of grade II and III astrocytomas

and oligodendrogliomas, as well as secondary GBMs, but are rare in primary GBMs [15, 24].

3. The role of astrocytes in tumor growth and progression

As will be discussed in more detail throughout this chapter, astrocytes are very heterogeneous in

regards to function and influence on tumors within the CNS. This fact, combined with the

heterogeneity that encompasses the transformation of cells results in unique tumor genotypes

and phenotypes, plus many other contextual factors, equates to interactions that are both tumor

promoting and tumor suppressive (Figure 1). Arguably, there is more evidence suggesting how

astrocytes can be tumor promoting, which will be covered in this section. Some functions of

astrocytes that are known within the literature to be tumor promoting to both primary and

metastatic brain tumors are summarized and illustrated (Figure 2).

3.1. Metastatic tumors: Interactions with astrocytes at the blood-brain barrier

One of the critical steps in the life time of tumor progression is tumor metastasis, especially

brain metastasis. This step results in catastrophic consequences from a patient perspective. The

metastases from extraneural tumors in the brain are actually the most common sources of

tumors in the CNS, as shown in Table 1 [25, 26].
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http://dx.doi.org/10.5772/intechopen.72720

165



The process of metastasis, in brief, involves invasion of a tumor cell away from the tumor to a

blood vessel, entry into and survival in the blood circulation, extravasation from the blood

vessel into the secondary organ, and survival, engraftment, and proliferation into a secondary

tumor. Extravasating into the brain provides an added challenge: that of getting past the BBB.

The most functionally important component of the BBB are the tight junctions held between

brain microvascular endothelial cells. Thus, substances that get into the brain parenchyma are

tightly controlled. Both para-cellular and trans-cellular diffusion are low; most solutes that get

in and out through the BBB, such as glucose and other nutrients, do so through transporters

expressed on endothelial cells [27–29]. Despite this added barrier, many extraneural tumors

have a strong tendency to metastasize to the brain. To note, there are regions within the brain

that lack BBB, and could also be a potential avenue of metastasis [30]. The recent discovery of

brain lymphatics is also suggestive of an alternative route given the already known function of

lymphatics to carry tumor cells [31].

Breast cancer, melanoma, and lung cancer are three tumor types that show proclivity to go to the

brain. Themost common type of brainmetastases originate from lung cancer, accounting for up to

56% of brain metastases, followed by breast cancer metastases at 13–30% [32, 33]. Interestingly,

specific subtypes of these tumors have a much higher frequency of brain metastases, including

non-small cell lung cancer (NSLC), triple negative breast cancer cells that are estrogenic receptor

(ER), progesterone receptor (PR) and epidermal growth factor receptor-2 (HER2) (ER�, PR�,

HER2�), and HER2-enriched (HER2+) breast cancer cells [32–35]. One theory behind a specific

tumors’ proclivity to the brain is explained by Paget’s seed and soil hypothesis, which suggests

that for a seed (tumor cell) to take up in a soil (brain), it must adapt itself and make changes that

will favor the soil [26, 36]. In support of this idea, genes associatedwith breast cancer metastasis to

brain have been discovered and efforts continue to identify new targets for lung cancer cell

metastasis to the brain and for other cancers as well [37–40]. However, the question raised by the

Figure 1. Research shows astrocytes have functions that result in tumor supporting and tumor suppressing mechanisms,

and sometimes both. Like many physiological responses, this demonstrates the context dependent balancing act that

occurs when homeostasis is breached, and the many factors that play a role in tipping the balance one way or another.
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seed-soil hypothesis is whether the soil influences the seed, and if so, how it is accomplished. One

could argue that in the first place, the soil is influenced by the seed. Therefore, in this “circular

logic,” both seed and soil appear to contribute together, ultimately, for the growth of the tumor cell.

Astrocytes are vital to the development and maintenance of the BBB, therefore understanding

their role in this process is necessary to understand how they also may influence brain metastatic

tumor cells attempting to breach the BBB. The tight junctions between the endothelial cells of the

BBB are comprised of many junctional proteins, notably claudin-5 and occludin [41, 42]. Vascular

endothelial (VE)-cadherin is also of importance within adherens junctions which associate with

tight junctions, as well as cytoplasmic scaffolding proteins such as zonula occludens (ZO)-1 and

-2 [27, 43–45]. In normal conditions, the BBB homeostasis and junctional complexes are partially

supported at the structural and physiological functional levels by astrocytes. Astrocytes contact

Figure 2. Many signaling mechanisms have been identified that implicate astrocytes in tumor progression. Some of these

functions include secretion of factors that have been shown to increase invasiveness and malignancy of established brain

tumors, in addition to factors that enable brain metastasizing cells to enter the brain. Astrocytes have also been shown to

maintain the vascular niche in the brain which can promote stem-like characteristics in BTSCs. Astrocytes directly interact

with tumor cells and communicate via gap junctions, leading to increased intracellular calcium and resistance to treat-

ments. Indirect or paracrine communication with surrounding cells often occurs via secretion of exosomes known to carry

miRNAs to target key tumor suppressor genes in tumor cells and surrounding microenvironment. Lastly, astrocytes have

been shown to regulate CNS immune suppression, weakening the innate tumor killing response of the body.
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brain endothelial cells via their end feet processes. This contact was shown to maintain BBB

permeability characteristics. However, it was later found that secreted factors alone in astrocyte-

conditioned media also upheld the tight junction characteristics in endothelial cells, demonstrat-

ing the importance of both astrocyte contact and paracrine actions in BBB function [46–48]. For

example, Sonic hedgehog (Shh), an important developmental signaling protein, is known to be

secreted by astrocytes and bind its cognate receptor, Patched-1, expressed at the cell membrane

of brain endothelial cells. This induces a signaling cascade mediated by β-catenin that bolsters

tight junctions by increasing expression of occludin [49, 50]. Other proteins secreted by astrocytes

that regulate and maintain tight junctions of brain ECs (most often by increased gene expression

of junctional proteins) include angiotensin-1, FGF, TGF-β, glia derived neurotropic factor

(GDNF), and retinoic acid (RA) [51–55].

Just as astrocytes are important for maintaining the BBB in homeostatic conditions, astrocytes

also play key roles when the BBB is disrupted, which can occur during extravasation of tumor

cells metastasizing to the brain. Several groups utilized mouse models of melanoma, lung, and

breast cancer combined with histological and fluorescent imaging modalities to visualize very

early interactions with tumor cells and the BBB. This work demonstrates that tumor cells first

arrest in the brain capillaries, often at branch points [56, 57]. Lorger et al. (2010) show that very

early on, astrocytes become activated and associate around vasculature in the brain where breast

tumor cells are present, but in some cases have not yet extravasated or visibly altered the BBB

[56]. This suggests that signals secreted by tumor cells are reaching astrocytes either directly or

indirectly through the endothelial cells; a topic that requires further investigation. This associa-

tion of tumor cells with reactive astrocytes persists throughout metastases formation, character-

ized by increased astrocyte expression of GFAP, nestin, andmatrix metalloproteinase 9 (MMP-9),

all of which aid in tumor extravasation mechanisms that will be discussed in later sections.

CNS tumor type Incidence rate (per 100,000 persons) (all ages) References

All brain metastases 8.3/11.1/14.3 [195–197]

Lung cancer brain metastases ~ 3.2–8(estimation based on 39–56% of all brain

metastases)

[32]

Breast cancer brain metastases ~ 1.1–4.3 (estimation based on 13–30% of all brain

metastases)

[32]

Melanoma brain metastases ~ 0.5–1.6 (estimation based on 6–11% of all brain

metastases)

[32]

Primary malignant CNS tumors 7.2 [198]

GBM 3.2 [198]

Nerve sheath tumors 1.82 [198]

Other astrocytomas 1.2 [198]

CNS lymphoma 0.43 [198]

Embryonal tumors (medulloblastoma, ATRT, and

PNET)

0.62 (ages 0–19 only) [198]

Table 1. Primary and metastatic CNS tumors with their respective incidence rates per 100,000 persons. All tumors are

accounting for all ages, except embryonal tumors which only includes persons’ age 0–19 in the population study.
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3.2. Astrocytes’ direct cell-cell interactions with tumor cells

Astrocytes have multiple primary and branching endfeet which expand and contract, allowing

them to dynamically contact both synapses and the microvasculature. Also, astrocytes regulate

communication between neuronal networks and glial-vascular coupling by forming independent

contact network [58–61]. Therefore, it has been widely accepted that astrocytes directly contact

and communicate with neurons to regulate neuronal function at the synaptic and network levels,

which provides a significant impact on physiological and pathological state of the CNS. Subse-

quently, direct interactions with astrocytes and tumor cells, often in the form of gap junctions, has

also been discovered to be significant for tumor progression and resistance to therapy.

As discussed, gliomas are the most lethal primary intracranial tumors. The proliferative dys-

function and invasion of gliomas are associated with changes in gap junction communication

[62, 63]. In metastatic brain tumors, reactive astrocytes protect melanoma cells from chemo-

therapy induced cell death by sequestering intracellular calcium through gap junctions [64]. In

the brain, metastases from breast and lung cancer show upregulation of many survival genes

which is dependent on the direct contact through gap junctions between the astrocytes and

tumor cells, which was found to be causal for developing resistance [65]. These data suggest

that reactive astrocytes participate in tumor progression and chemo-resistance by their direct

physical contacts and gap junctional communication with tumor cells in the brain.

Gap junctions are efficient tools for intercellular communication. In astrocytes, they are com-

posed of connexins 30 and 43 (Cx30, Cx43) [66]. Cx43 is widely expressed in adult astrocytes

and exhibits increased expression in reactive astrocytes induced by various brain pathologies

and intercellular calcium signaling [67–73]. Also, Cx43-mediated intercellular communication

between astrocytes plays an important role in the invasion of glioma cells in the brain [63].

A recent study has also revealed that breast and lung cancer cells express proto-cadherin 7

(PCDH7) to promote tumor-astrocyte gap junction formation by recruiting Cx43, which allows

the transfer of cGAMP from tumor cells to astrocytes to trigger the secretion of inflammatory

cytokines, which further promote tumor growth and chemo-resistance [74].

3.3. Astrocytes’ secretome and paracrine signaling mechanisms that influence tumor cells

3.3.1. Cytokines and growth factors

Astrocytes can synthesize a host of biologically interesting growth factors and cytokines.

Previous studies have shown that sphingosine-1-phosphate (S1P), which shows the highest

expression in the brain and is only expressed by astrocytes, induces cell motility in GBM cell

lines that express S1P receptor-1 and S1P receptor-3 [75, 76]. Other neurotrophic factors secreted

by astrocytes, such as TGF-α, C-X-C motif chemokine 12 (CXCL12), and GDNF, have also

revealed the potential to increase the invasive capacity of GBM cells [77, 78]. In brain metastatic

tumors, an early study found that metastatic MDA-MB-435 breast cancer cells, when cultured

with astrocyte conditioned media, exhibit better growth in response to the conditioned

medium. However, the growth-stimulatory effect was partially reversed by anti-IL-6, anti-

TGF-β, and anti-insulin like growth factor-1 (IGF-I) antibodies [79]. Another study showed that

reactive astrocytes expressed phosphorylated platelet-derived growth factor receptor β at
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tyrosine 751 (p751-PDGFRβ). Pazopanib, an inhibitor of PDGFRs, inhibited the activation of p-

PDGFR expressing astrocytes, and thus prevented brain metastasis formation in the HER2-

transfected MDA-MB-231 breast cancer cells [80]. Taken together, this work demonstrates that

paracrine signaling by astrocyte secreted cytokines and growth factors facilitates tumor metas-

tasis formation in the brain.

3.3.2. Extracellular matrix (ECM) proteins and degradative enzymes

ECM proteins are important participants in the tumorigenic process, as they are involved in

not only the physical adhesion and migration of tumors cells, but also the regulation of

intracellular signaling. The brain parenchyma is high in proteoglycans, glycoproteins, and

matricellular proteins, all of which astrocytes express and secrete [4]. Specifically, some astro-

cyte secreted matricellular proteins have been studied in regulation of various brain tumors,

including secreted protein acidic and rich in cysteine (SPARC) and CYR61/CTGF/NOV (CCN).

Both SPARC and CCN2 have been shown to be secreted by activated astrocytes proximal to

brain tumors or injuries [81, 82]. While increases in CCN2 secretion have been correlated with

negative glioblastoma outcomes, expression of SPARC and its effect on tumor cells is tumor

dependent. In gliomas and astrocytomas, tumor secretion of SPARC promotes invasion,

angiogenesis, and a negative prognosis [83, 84]; however medulloblastoma tumor cells have

increased loss of SPARC, which when rescued induces cell cycle arrest, neuronal differentia-

tion, and limits radioresistant DNA damage response [85–87].

Previously, we discussed MMP-related mechanisms in which astrocytes assist tumor cells in

extravasating the BBB. The secretion of these matrix degrading enzymes also supports brain

tumor progression by breaking down the barriers induced by the ECM. Heparanase degrades

the glycosaminoglycan side chains of heparan sulfate proteoglycans, which are essential and

ubiquitous macromolecules associated with the cell surface [88–90]. Reactive astrocytes have

been frequently found in areas surrounding melanoma-related lesions and produce nerve

growth factor (NGF), the prototypic neurotrophin [91]. Neurotrophins can stimulate heparanase

production in astrocytes and thus contribute to the brain colonization of melanoma cells [88].

MMP-2 and -9 have been observed in secretory vesicles in astrocytes [92]. Stimulation of astro-

cytes with lipopolysaccharide, IL1-α, IL1-β, or TNF-α induces MMP-2 and -9 secretion [93].

MMP-9 also promotes the growth of primary brain tumors by releasing vascular endothelial

growth factor (VEGF) sequestered in the surrounding matrix [94]. The expression of MMP-9 was

up-regulated in reactive astrocytes, which was involved in the brain metastases of MDA-MB-435

cells [56]. Moreover, both MMP-2 and -9 secreted by astrocytes contribute to breast cancer MDA-

MB-231 cell invasion and brain metastases [95]. In addition to secreting MMPs themselves,

astrocytes can also induce tumor cells to secrete MMPs, as shown byMendes et al. (2007), where

they found breast cancer cells to secrete significantly more MMP-2 in the presence of astrocyte

conditioned media, aiding metastasis to the brain [96].

3.3.3. Exosomes

The topic of exosomes, which are endosome-derived microvesicles between 50 and 100 nm in

size that carry specific protein and RNA cargo, has become a subject of intense interest in
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tumor biology. Exosomes are released from cells by fusion of multi-vesicular structures with

the plasma membrane through the process of exocytosis [97]. Exosomes are a general mode of

intercellular communication and can interact with neighboring cells, thus mediating signals

between astrocytes and other cells in the brain microenvironment [98, 99].

Among RNA cargo, microRNA (miRNA) transcripts, specifically miR-26a, is highly expressed

in astrocytes and is present in astrocyte-derived exosomes [100, 101]. MiR-26a targets mRNAs

that impact neuronal function and morphology, and was first implicated in many neuronal

disorders [102–104]. Moreover, miR-26a can be sorted to exosomes and transported by these

vesicles in the plasma, serum, whole blood, urine, or secreted in vitro by human umbilical vein

endothelial cells [105–109]. In addition, miR-26a autonomously regulates primary gliomas by

increasing de novo tumor formation and radiosensitivity through targeting of suppressor phos-

phatase and tensin homolog (PTEN) and ataxia-telangiectasia mutated (ATM), respectively

[110, 111]. Therefore, it is plausible that miR-26a in astrocyte-derived exosomes may function

to regulate the surrounding tumor environment. A recent study found that primary breast

tumor cells express tumor suppressor PTEN, however this expression of PTEN was lost

reversibly after tumor cells metastasized into the brain [112]. Astrocyte-derived exosomal

miR-19a reversibly mediated the downregulation of PTEN expression in cancer cells, thus

providing one mechanism for loss of PTEN in tumor cells that enter the brain. Further, miR-19a

also increased C-C motif chemokine ligand 2 (CCL2) secretion and recruitment of myeloid cells,

thus facilitating changes in the brain microenvironment to promote metastasis [112].

4. The role of astrocytes in brain tumor stem cell biology

An important attribute of brain tumor biology regarding tumor initiation and propagation is the

existence of brain tumor stem cells (BTSCs). These cells have been found to, in many ways,

resemble adult NSCs that exist in distinct regions of the brain, including the subventricular zone

(SVZ) and the subgranular zone (SGZ) [113, 114]. Many groups identified CD133, Nestin, and

sex determining region Y-box 2 (SOX2) as markers to isolate NSCs which maintain the essential

properties of stem cells (self-renewal and ability to differentiate into multiple progeny) [115–118].

Using the NSC neurosphere culturing method, CD133 and/or CD15 have also been found to be

expressed on BTSCs fromGBM, medulloblastoma, ependymoma, and astrocytoma tumors [118–

120]. Interestingly, Singh et al. (2003) found CD133+ cells to be tumor initiating, whereas CD133�

cells could not initiate a tumor or self-renew in a mouse xenograft model [118, 121]. The levels of

CD133+ BTSCs has since been correlated to negative prognoses in gliomas, and have been found

to be particularly enriched in recurrent tumors after radiation and chemotherapy [122–124].

These findings highlight the importance of stem cells in the overall initiation, malignancy, and

recurrence of brain tumors.

4.1. Astrocytes’ direct influence on cancer stem cells

It is clear that BTSCs play an important role in the progression of all brain tumors. Therefore,

cells in the microenvironment that influence BTSCs are of interest from a clinical therapy

perspective. Interestingly, astrocytes seem to affect normal NSCs and BTSCs quite differently.
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While astrocyte secreted factors have been shown to promote neurogenesis of normal adult

NSCs, astrocytes within the microenvironment of brain tumors have also been shown to

promote stem-like characteristics in BTSCs and enrich the stem cell population, thus worsen-

ing the malignancy of such brain tumors [125–128]. GBM CD133+ stem cells co-cultured both

directly and indirectly with astrocytes show gene expression signatures known to be involved

in GBM invasion and metastasis, such as a disintegrin and metalloproteinase domain-

containing protein 10 (ADAM10), hyaluronan synthase 2 (HAS2), and vascular cell adhesion

molecule-1 (VCAM1). Interestingly, although there were many overlapping genes in conditions

where astrocytes and tumor cells were and were not in direct contact, even the distinct gene

expression changes in each condition were still related to tumor cell invasion. This emphasizes

the role of astrocytes in GBM invasion, which is one of the most challenging traits of GBM

[127]. Indeed, CD133+ GBM cells were found to be more invasive, whereas CD133� GBM cells

did not have the same gene expression and invasion changes [127]. Later, it was shown that

indirect co-culture with CD133+ GBM cells and astrocytes resulted in cytokine release from

astrocytes that reduced radiosensitivity of the GBM cells; again, this same phenotype and

crosstalk with astrocytes was absent in CD133�GBM cells [128]. Some of the astrocyte secreted

cytokines that induced radioresistance include CXCL1, IL-4, IL-6, and CCL7 [128]. These

differences suggest that cancer stem (or stem-like) cells signal differently with astrocytes

compared to tumor cells lacking stem characteristics. The reverse effect, which is tumor stem

cells influencing astrocytes has also been observed in GBM. GBM stem cells provide signals

that block the expression of p53 in surrounding astrocytes [129]. P53 is a tumor suppressor

often found mutated in many tumors [130], and is classically known for its function in DNA

damage response. However, recently p53 has been shown to have non-autonomous cellular

functions, particularly in the tumor microenvironment, by influencing secretion of proteins,

including ECM proteins [129, 131, 132]. Thus, the interaction between astrocytes and BTSCs

are bi-directional and influence each other’s development.

In addition to primary brain tumors, cancer stem cells of brain metastatic tumors are also

influenced by astrocytes. It has been shown that cyclooxygenase 2 (COX2) is highly

expressed in breast cancer brain metastatic cells, which autonomously induces expression

of MMP-1 and prostaglandins [133]. While MMP-1 allows for BBB tight junction and base-

ment membrane degradation to aid brain metastasis, prostaglandins are able to activate

astrocytes and subsequently increase astrocyte expression of CCL7, which was shown to

significantly increase self-renewal and survival of breast cancer stem cells through increased

expression of Nanog, a key stem cell regulator [133, 134]. This study provides evidence that

astrocytes enrich breast cancer stem cells in brain metastases and aid in their ability to

extravasate the BBB.

4.2. Astrocytes as a part of the perivascular niche

Normal NSCs in the SVZ and SGZ are maintained by specialized vascular regions called the

perivascular niche (PVN) [135]. The PVN consists of the endothelial cells lining the vascula-

ture, as well as astrocytes, pericytes, macrophages, microglia, fibroblasts, and vascular smooth

muscle cells. These cells function and signal together to maintain structure and provide signals

to NSCs. Evidence exists which demonstrates the vital role endothelial cells play inmaintaining
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and regulating NSC/BTSCs’ survival and differentiation status [136–139]. Astrocytes also play

a vital role within the PVN. First and foremost, they play an indirect but obvious role in the

structural and chemical maintenance of endothelial cell-BBB phenotypes, as discussed earlier.

Studies have shown that BTSCs maintain close proximity to angiogenic regions of the tumor

microenvironment, providing evidence that these regions phenocopy the PVNwithin the SVZ/

SGZ to provide enrichment signals to BTSCs [140].

5. Astrocytes as an immune regulator in the tumor microenvironment

The immune system within the CNS is tightly controlled. In addition to the BBB, there are other

barriers that maintain the CNS as an immune-privileged system, including the blood-meningeal

barriers and the blood-cerebrospinal fluid (CSF) barriers [141, 142]. During homeostasis, these

barriers do not allow entry of pathogens or blood-borne immune cells. Only upon CNS injury do

some of these cellular barriers become fenestrated to allow for immune cell entrance. Although

microglia are thought to be the main regulator of immune responses within the brain, astrocytes

(and other cells) also play key roles in this function [143]. A vast amount of work investigating

the astrocyte function in either normal or activated state is often related to the regulation of the

immune environment in the CNS, as shown in functional studies and astrocyte secretome

studies, summarized well by Sofroniew et al. [144–147]. As suggested by Yang et al. (2013), the

presence of classical immunological surface molecules, such as major histocompatibility (MHC)

antigen and intercellular adhesion molecule-1 (ICAM-1) on astrocytes underlines their impor-

tance in CNS immune function [11, 148, 149]. We will discuss next how astrocytes control

immune responses to invading tumor cells, and the immune-related concepts associated with

this process.

5.1. Immune responses to tumor cell presence

As mentioned in the discussion of astrocytes and tumor cell interactions at the BBB, there have

been a few key studies observing the cellular events that take place when metastatic cells

extravasate into the brain parenchyma [56, 57]. From these studies, it is known that astrocytes

are the first to respond to extravasating metastatic tumor cells entering the brain, followed by

microglia [56]. Regardless of whether a CNS tumor is primary or metastatic, microglia and

astrocytes control the immune response; therefore, it is upon their activation that other

immune cells, such as macrophages or lymphocytes, may infiltrate [144–146, 150]. Activated

astrocytes secrete pro-inflammatory molecules such as CXCL12, CCI2, Il15, CCL8, and CXCL1,

all of which are known to regulate recruitment, activation and proliferation of T-cells, B-cells,

or natural killer (NK) cells [144–146].

As it is often seen with any local or systemic inflammation, CNS immune responses can often

persist or be dysregulated by tumor cells to become pathogenic. Many of these signaling responses

aremediated by astrocytes. For example, Valiente et al. [151] reported that astrocytes produce FasL

and plasmin ligands as defense mechanisms to kill brain-invading tumor cells. In response, tumor

cells secrete serpins, which thwart the lethal action of plasmin [151]. Thus, Fas-mediated tumor cell

apoptosis is blocked, leading to tumor survival. Other cells, such as endothelial cells, in the brain
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microenvironment are also co-opted, which is facilitated by up-regulation of L1 cell adhesion

molecules (L1CAM). All these mechanisms work together to initiate brain metastasis [151].

Astrocytes are also known to function in immunosuppression. This is accomplished by

downregulating the pro-inflammatory cytokine TNF-α in surroundingmicroglia, and suppressing

the antigen presenting abilities of various immune cells by downregulating their expression of

MHCII and CD80 [152, 153]. Additionally, activated astrocytes can co-localize and induce apopto-

sis in T-cells attempting to infiltrate the brain parenchyma by expression of the “death ligand,”

CD95L, which binds the receptor on T-cells [152, 154].

5.2. Reactive Astrogliosis

Arguably, the most important feature of astrocytes in relation to their immune function is their

ability to activate, a process called reactive astrogliosis. What determines whether an astrocyte

is “activated” or not has not been clearly defined, however Sofroniew summarized the existing

research into four key features. First, reactive astrogliosis is a spectrum of molecular, cellular,

and functional changes among astrocytes in response to CNS injury of many kinds [147].

Second, the changes can vary in severity and the response can be sequential and/or progressive.

Third, the changes are regulated by intra- and inter-cellular signals and lastly, signaling events

can be both gain and loss of function in nature, resulting in both beneficial and detrimental

outcomes [147, 155]. In other words, reactive astrogliosis is spectral in nature; the triggers can

vary and therefore the “activation” or response can vary and is context dependent, which is

also true in regards to how reactive astrocytes affect tumor progression and/or tumor death.

The activation responses can be as small as a transient upregulation of GFAP, to permanent

structural changes in the brain from a process called glial scar formation. Scar formation occurs

when astrocytes proliferate and overlap to a point that causes dense, compact barriers around

necrotic tissue [147, 156]. In between these two extremes, other phenotypic changes that occur

include hypertrophy of the cell body and processes, a vast array of gene expression changes, and

varying degrees of proliferation up to the point of scar formation. Some of the chemical activa-

tors of astrocytes known to be secreted by or induced by tumor cells include EGF (glioblastoma

and medulloblastoma), TGF-α (medulloblastoma), receptor activator of nuclear factor kappa-B

(NFκB) ligand (RANKL) (glioma), macrophage migration inhibitory factor (MIF), interleukin-8

(IL-8), and plasminogen activator inhibitor-1 (PAI-1) (lung cancer metastases) [11, 157–160].

In addition to chemical activation, astrocytes can also be activated by tumor cells mechanically.

Although extremely abundant, astrocytes hold a highly regulated, non-overlapping distribution

that plays an important role in morphology and contact-dependent inhibition of proliferation

[11, 61]. This distribution and homeostasis is mediated by contact inhibition and adherens

junctions. Therefore, mechanical disruption occurs when processes such as migration and/or

proliferation of surrounding cells is initiated. Such mechanical signals could come potentially

emerge from tumor cells, subsequently triggering astrocyte activation via disruption of these

cell surface complexes such as cadherins and β-catenin [161, 162]. The genes activated by

β-catenin signaling are regulatory and often lead to proliferation and migration [11, 163].

Interestingly, Yang et al. (2012) found this contact initiated activation of astrocytes to parallel

what occurs in the transformation of astrocytomas, further coupling the process of astrocyte

activation and tumor progression [162].
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6. Therapeutic opportunities for cancer emerging from astrocyte-tumor

cross talk

As stated previously, homeostasis in brain environment is key for the functionality of the brain,

and therefore key checkpoints, such as the BBB, are responsible for maintaining homeostasis

[30]. The BBB also prevents access of key drugs into the brain for targeting tumor cells. Any

surgical intervention in the brain clearly has quality of life considerations, and does not offer

complete disease-free state. Therefore, it is of importance to prevent tumor cells from entering

the brain or block the target routes and underlying mechanisms used by tumors to circumvent

checkpoints. It is worth noting that the regions of the brain which are free from the protections

of the junctional characteristics of the BBB, such as the stroma of the choroid plexus and area

postrema have increased vascular permeability which can be problematic, and therefore must

be considered when trying to block tumor cell entrance into the brain [30].

As we know, astrocytes are capable of signaling to trigger tumor cell (breast, lung, skin, and

brain) migration, invasion and metastasis in vivo [88, 95, 127, 160]. There are many targets in

the brain microenvironment that provide effective intervention strategies for metastasis, and is

reviewed elsewhere [164]. Here, we will discuss targets and mechanisms at the signaling

interface of tumor cells and astrocytes that offer fresh perspective on intervention strategies.

6.1. Enzyme targets

As discussed earlier, we and others have identified astrocyte secreted MMP-2, MMP-9, and

MMP-1 to promote tumor progression, and blocking them with broad spectrum MMP inhibi-

tors does influence tumor metastasis in pre-clinical models [95, 96, 165–167]. Interestingly,

MMP-1 was one of 21 MMPs that showed clinical significance in regards to breast cancer brain

metastasis, and expression analysis of brain-seeking triple negative breast cancer clonal cells

confirm MMP-1 and MMP-9 as potential targets [133, 168]. Therefore, these studies suggest

either MMPs or the underlying pathways that regulate their expression as pharmaceutical

targets. Given that targeting MMPs in the past using first generation MMP inhibitors resulted

in disappointing results in the clinic, we also suggest that next generation, highly-specific

MMP inhibitors, applied locally, could be effective new strategies to consider in preventing

further growth and movement of tumor cells to a second location in the brain [169].

6.2. Gap junction protein targets

Astrocytes are co-opted to up-regulate survival genes in tumor cells and induce protection

from chemotherapy [65]. Downregulation of the astrocyte-initiated survival gene expression in

tumor cells will render tumor cells sensitive to chemotherapy [65]. This chemoprevention role,

however, appears to be contact dependent, utilizing gap junctions to mediate the changes in

tumor cells. Previously, gap junction proteins Cx43 and Cx26 were utilized by breast cancer

and melanoma cells to initiate brain metastatic lesion formation in cohort with the vascula-

ture [170]. Indeed, patient data analysis revealed increased cancer recurrence and metastasis

with increased expression of Cx26 and Cx43 in primary melanoma and breast tumor cells.

The recent work done by Chen et al. shows that brain metastatic breast and lung cancer

cells initiate contact with astrocytes through gap junctions, which produces a signaling
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response (discussed in detail earlier in the chapter) resulting in chemoresistance [74]. Bio-

available modulators of gap junctions, meclofenamate and tonabersat, could influence this

paracrine signaling loop, and thus could be proposed for treatment of established brain

metastases [74].

6.3. PTEN, exosomes and miRNA targeting

Breast cancer metastases often show common alterations in the EGFR and HER2 driven

pathways, both of which are regulated by PTEN gene [171]. PTEN is mutated in human brain,

breast and prostate cancer, and loss of PTEN was found in a substantial portion of breast

cancer brain metastases samples significantly associated with triple negative breast cancer

[172, 173]. Interestingly, PTEN loss promotes a feedback loop between tumor cells and glial

cells, which contributes to disease progression. We already know one mechanism in which

PTEN expression is lost; through the targeting and degradation of transcript by miR-26a and

miR-19a from astrocyte secreted exosomes [110–112].

Blocking the astrocytes from secreting the PTEN-targeting microRNA rescues the PTEN loss

and importantly suppresses brain metastasis in vivo [112, 174]. Similarly, miR-200 containing

extracellular vesicles, which regulates the mesenchymal to epithelial transition, can be trans-

ferred from metastatic cells to non-metastatic cells leading to promotion of metastasis [175].

Therefore, collectively, approaches that promote PTEN expression or prevent loss of PTEN

expression has the potential to influence metastatic outcome in the clinic for select cancers such

as breast, brain and prostate cancer.

6.4. Adaptations (environment)

The finding that breast cancer cells take up a neuronal phenotype when they are in the brain

suggests co-evolution adaptive mechanisms associated with metastatic cells and their micro-

environment. The variable PTEN expression in metastatic tumor cells in response to differ-

ent organ environments suggests a genetic component that drives co-evolution adaptive

behavior between metastatic cells and their microenvironment [176]. Brain homing MDA-

MB-231 cells secrete bone morphogenic protein-2 (BMP-2), which mediates the differentia-

tion of NSCs into astrocytes; subsequently, downregulation of BMP-2 in the brain homing

tumor cells diminished their engraftment and colonization abilities [176]. Further, when co-

cultured with NSCs, primary (non-brain homing) MDA-MB-231 cells fail to proliferate over

15 days, but brain homing MDA-MB-231 cells escaped this growth inhibition, and prolifer-

ation occurred in parallel with NSCs' differentiation into astrocytes [176]. This suggests that

both the brain homing MDA-MB-231 cells’ adaptive phenotype and the NSCs' differentia-

tion into astrocytes are codependent, meaning the brain homing MDA-MB-231 cells require

astrocytic signals to survive. This group extended these observations further and demon-

strated that human breast cancer cells found in the brain and not in the primary tumor,

upregulated γ-aminobutyric acid (GABA) pathway genes, and displayed GABAergic pheno-

types that are similar to neuronal cells [177]. This phenotype offers a proliferative advantage

to tumor cells because GABA is catabolized into succinate which generates NADH, a critical

metabolite necessary for tumor cell sustenance. It is noteworthy that GABA is abundant in
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the brain, and perhaps tumor cells have adapted to this environment that gives them a

proliferative advantage. Of the different cells in the brain, neurons, because of their function,

require the majority of ATP [178]. As such, astrocytes expend less energy, and secrete lactate

that is generated by glycolysis [179]. This evolutionary adaptation feature of tumors and

their reliance on astrocytic signals open up avenues for targeting; several inhibitors of

metabolites such as GABA are available and could be repurposed for brain metastases

treatment. Of course, more research and context-specific treatment of such modalities will

be needed.

6.5. CNS tumor immunotherapies and astrocytes

The emergence and success of immunotherapy techniques in many blood, lymph, and some

solid tumors is bringing groundbreaking and exciting work in the cancer research field [180].

Currently, researchers are now looking for ways to modulate this therapy so it can be applied

to more tumors, including tumors in the CNS [141]. Importantly, the effectiveness of strategies

such as vaccine and immune checkpoint therapies rely on a strong response and presence of

tumor infiltrating immune cells for antigen presentation, which is low in most brain tumors

due to the limited presence of resident immune cells within the brain [141, 181]. Some strate-

gies to stimulate the immune response, such as adjuvants or tetanus and diphtheria boosters

with vaccine administration have increased effectiveness [141, 182, 183]. As discussed earlier,

astrocytes play an important role in immunosuppression in the brain tumor microenviron-

ment, however this function has not yet been targeted. Therefore, one could postulate investi-

gation of a combination therapy targeting an immunosuppressive factor(s) produced by

astrocytes as an additional option worthy of research.

Much excitement in the immune therapy world surrounds the programmed death ligand-1

(PD-L1), an immune checkpoint signal that is immunosuppressive by binding its cognate

receptor, programmed death-1 (PD-1) receptor, expressed on T-cells to induce apoptosis [184].

Targeting and blocking PD-L1 or PD-1 with antibody therapies has been an effective treatment

for several cancers [185, 186]. It has been shown that GBM tumors highly express PD-L1, in

addition to infiltrating microglia [187, 188]. Normal astrocytes have also been found to highly

express PD-L1, however astrocyte expression of PD-L1 in a tumor setting has not yet been

investigated [189]. Future work investigating astrocyte (normal and reactive) expression of

PD-L1 is needed and will provide mechanistic hypothesis to current clinical trial that utilizes

nivolumab, a PD-1 antibody, in combination with temozolomide for treatment GBM. PD-L1

has also been investigated in metastatic brain tumors, however expression and correlation to

outcomes appear to be tumor dependent, leading to conflicting reports on whether PD-L1

expression correlates to a positive or negative prognosis, therefore more research is needed

[190–192].

7. Conclusions

Until recently, the complexities of astrocyte signaling and influence on human pathologies

were not fully appreciated in the literature, especially in regards to astrocytes’ influence on
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tumor biology. Cancer researchers began recognizing that tumor cells themselves may not be

the sole perpetrators in tumor initiation and progression, and the resulting research has made

it increasingly clear that tumor cells and the host environment they reside in are constantly

communicating to facilitate growth, sustenance and metastasis [193, 194]. To facilitate tumor

progression, the host environment is either co-opted by tumor cells or defense mechanisms of

host cells are overcome by the tumor cells. Whether astrocytes are “friends” or “foes” of tumor

cells is a matter of context, as evidence exists for both scenarios. Figure 1 depicts the balancing

act of these functions, in addition to the outside factors which dictate them, eventually deter-

mining the fate of the respective tumor cells and tumor as a whole. There are many known

(and unknown) factors that must be considered in understanding CNS tumors and their

relation to astrocytes. We summarize some of the tumor promoting mechanisms of astrocytes,

which have been highlighted in this chapter (Figure 2), effecting both primary brain tumors

and secondary brain metastases. The diversity of astrocyte mechanism modalities will hope-

fully bring about unique and novel intervention strategies, some of which were also discussed

in this chapter. In conclusion, astrocytes are a critical cell type that participate in various

physiological and pathological conditions, and their role in the history of tumor progression

is beginning to be appreciated.
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