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1. Introduction     

Automatic speech recognition is often formulated as a statistical pattern classification 
problem. Based on the optimal Bayes rule, two general approaches to classification exist; the 
generative approach and the discriminative approach. For more than two decades, 
generative classification with hidden Markov models (HMMs) has been the dominating 
approach for speech recognition (Rabiner, 1989). At the same time, powerful discriminative 
classifiers like support vector machines (Vapnik, 1995) and artificial neural networks 
(Bishop, 1995) have been introduced in the statistics and the machine learning literature. 
Despite immediate success in many pattern classification tasks, discriminative classifiers 
have only achieved limited success in speech recognition (Zahorian et al., 1997; Clarkson & 
Moreno, 1999). Two of the difficulties encountered are 1) speech signals have varying 
durations, whereas the majority of discriminative classifiers operate on fixed-dimensional 
vectors, and 2) the goal in speech recognition is to predict a sequence of labels (e.g., a digit 
string or a phoneme string) from a sequence of feature vectors without knowing the 
segment boundaries for the labels. On the contrary, most discriminative classifiers are 
designed to predict only a single class label for a given feature. 
In this chapter, we present a discriminative approach to speech recognition that can cope 
with both of the abovementioned difficulties. Prediction of a class label from a given speech 
segment (speech classification) is done using logistic regression incorporating a mapping 
from varying length speech segments into a vector of regressors. The mapping is general in 
that it can include any kind of segment-based information. In particular, mappings 
involving HMM log-likelihoods have been found to be powerful. 
Continuous speech recognition, where the goal is to predict a sequence of labels, is done 
with N-best rescoring as follows. For a given spoken utterance, a set of HMMs is used to 
generate an N-best list of competing sentence hypotheses. For each sentence hypothesis, the 
probability of each segment is found with logistic regression as outlined above. The segment 
probabilities for a sentence hypothesis are then combined along with a language model 
score in order to get a new score for the sentence hypothesis. Finally, the N-best list is 
reordered based on the new scores. O
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The chapter is organized as follows. In the next section, we introduce some notation and 
present logistic regression in a general pattern classification framework. Then, we show how 
logistic regression can be used for speech classification, followed by the use of logistic 
regression for continuous speech recognition with N-best rescoring. Finally, we present 
experimental results on a connected digit recognition task before we give a short summary 
and state the conclusions. 

2. Pattern classification and logistic regression 

In pattern classification, we are interested in finding a decision rule h , which is a mapping 

from the set of observations X  to the set of labels Y . Depending on the application, an 

observation ∈x X  can be a vector of features, or it can have a more complex form like a 

sequence of feature vectors. The latter is the most common way of representing a speech 
segment (Rabiner, 1989). A label y  is usually denoted as a natural number in the finite set 

∈ …{1, , }KY  of class labels. In speech classification, for example, there are typically = 39K  

class labels representing phonemes. 
If the joint probability distribution ( , )p x y  of observations and labels were known, the 

optimal decision rule would be the Bayes decision rule (Berger, 1985), which is 

 
∈

∈

=

=

ˆ argmax ( | )

argmax ( | ) ( ).

y

y

y p y x

p x y p y

Y

Y

 (1) 

In practical applications, however, we usually do not know any of the above probability 
distributions. One way to proceed is to estimate the distributions from a set 

= …1 1{( , ), ,( , )}
L L

x y x yD  of samples referred to as training data. Bayes decision rule can then 

be approximated in two ways. The first way is to estimate the two distributions ( | )p x y  and 

( )p y , and substitute these into the second line in (1), an approach called the generative 

approach. The second way is to estimate ( | )p y x , and substitute this into the first line in (1), 

an approach called the discriminative approach. 
Logistic regression is a statistically well-founded discriminative approach to classification. 
The conditional probability of a class label given an observation is modeled with the 
multivariate logistic transform, or softmax function, defined as (Tanabe, 2001a,b)  

 
Λ

Λ
=

= Λ =
∑

( , , )

( , , )

1

ˆ ( | , , ) .
k

i

f x W

K f x W

i

e
p y k x W

e
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In the above equation, 
i
f  is a linear combination (plus a bias term) of M  regressors 

φ λ φ λ1 1 …( , ), , ( , )
M M

x x , with hyperparameters λ λ1 ΜΛ ={ }…, , , i.e., 

 
φ λ φ λ

φ
1 1Λ = + + +

= ( Λ)

"0 1

T

( , , ) ( , ) ( , )

, ,

i i i Mi M M

i

f x W w w x w x

w x
 (3) 

with φ φ λ φ λ1 1( Λ) = … T, [1, ( , ), , ( , )]
M M

x x x  and = … T
0[ , , ]

i i Mi
w w w . The parameters of the model 

are the elements of the + ×( 1)M K  dimensional weight matrix 
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Fig. 1. The logistic regression model. 

Due to the probability constraint 
κ

Κ

=1
= Λ) =1∑ ˆ ( | , ,p y k x W , the weight vector for one of the 

classes, say 
K

w , need not be estimated and can be set to all zeros. Here however, we follow 

the convention in (Tanabe, 2001a,b) and keep the redundant representation with K  non-
zero weight vectors. As explained in (Tanabe, 2001a,b), this is done for numerical stability 
reasons, and in order to treat all the classes equally. 
We can think of the model for the conditional probability of each class k  given an 
observation x  as a series of transforms of x  as illustrated in Fig. 1. First, x  is transformed 

into a vector φ( Λ),x  of M  regressors augmented with a “1”. Then a linear transform 

φ= ( Λ)T ,f W x  gives the elements of the K -dimensional vector f , which are subsequently 

used in the multivariate logistic transform in order to obtain the conditional probabilities 
= Λˆ ( | , , )p y k x W . 

The classical way to estimate W  from a set of training data D  is to maximize the likelihood, 

or equivalently, minimize the negative log-likelihood 

 
=

= − = Λ∑
1

ˆ( ; ) log ( | , , ).
L

l l

l

l W p y y x WD  (5) 

However, the maximum likelihood estimate does not always exist (Albert & Anderson, 

1984). This happens, for example, when the mapped data set φ φ( Λ) ( Λ)…1 1{( ; , ), ,( ; , )}
L L

x y x y  

is linearly separable. Moreover, even though the maximum likelihood estimate exists, 
overfitting to the training data may occur, which in turn leads to poor generalization 
performance. For this reason, we introduce a penalty on the weights and find an estimate 

Ŵ  by minimizing the penalized negative log-likelihood (Tanabe, 2001a,b) 

 δ
δ

=

= − = Λ + Γ Σ
2∑ T

1

ˆ( ; ) log ( | , , ) trace ,
L

l l

l

pl W p y y x W W WD  (6) 

where δ ≥ 0  is a hyperparameter used to balance the likelihood and the penalty factor. The 

×K K  diagonal matrix Γ  compensates for differences in the number of training examples 

from each class, as well as include prior probabilities for the various classes. If we let 
k

L  
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denote the number of training examples from class k , and =ˆ ( )p y k  denote our belief in the 

prior probability for class k , we let the k th element of Γ  be 

 γ =
=

.
ˆ ( )

k

k

L

Lp y k
 (7) 

The + × +( 1) ( 1)M M  matrix Σ  is the sample moment matrix of the transformed 

observations φ( Λ);
l

x  for = …1, ,l L , that is, 

 φ φ
=

Σ = Σ(Λ) = ( Λ) ( Λ)∑ T

1

1
; ;

L

l l

l

x x
L

. (8) 

It can be shown (Tanabe, 2001a) that δ ( ; )pl W D  is a matrix convex function with a unique 

minimizer *W . There is no closed-form expression for *W , but an efficient numerical 

method of obtaining an estimate was introduced in (Tanabe, 2001a,b, 2003). In this 

algorithm, which is called the penalized logistic regression machine (PLRM), the weight 

matrix is updated iteratively using a modified Newton’s method with stepsize α
i
, where 

each step is 

 α+ = − Δ1i i i i
W W W , (9) 

where Δ
i

W  is computed using conjugate gradient (CG) methods (Hestenes & Stiefel, 1952; 

Tanabe, 1977) by solving the equation (Tanabe, 2001a,b) 

 φφ δ δ
=

Δ − + ΣΔ Γ = Φ − + Σ Γ∑ T T T T

1

(diag ) ( ( ) )
L

l l i l l l i i i

l

W p p p W P W Y W . (10) 

In the above equation, Φ  is the + ×( 1)M L  matrix whose l th column is φ φ= Λ( ; )
l l

x , ( )P W  

is a ×K L  matrix whose l th column is = = Λ = Λ… Tˆ ˆ[ ( 1 | , , ), , ( | , , )]
l l l

p p y x W p y K x W , and Y  is 

a ×K L  matrix where the l th column is a unit vector with all zeros except 
l

y  which is 1. 

2.1 Adaptive regressor parameters 

Additional discriminative power can be obtained by treating Λ as a set of free parameters of 

the logistic regression model instead of a preset fixed set of hyperparameters (Birkenes et al., 

2006a). In this setting, the criterion function can be written 

 δ
δ

=

Λ = − = Λ + Γ Σ Λ
2∑ T

1

ˆ( , ; ) log ( | , , ) trace ( )
L

l l

l

pl W p y y x W W WD , (11) 

which is the same as the criterion in (6), but with the dependency on Λ  shown explicitly. 

The goal of parameter estimation is now to find the pair ∗Λ*( , )W  that minimizes the 

criterion in (11). This can be written mathematically as 

 δ
∗

Λ
Λ = Λ;*

( , )
( , ) arg min ( , )

W
W pl W D . (12) 
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As already mentioned, the function in (11) is convex with respect to W  if Λ  is held fixed. It 

is not guaranteed, however, that it is convex with respect to Λ  if W  is held fixed. Therefore, 

the best we can hope for is to find a local minimum that gives good classification 
performance. 
A local minimum can be obtained by using a coordinate descent approach with coordinates 

W  and Λ . The algorithm is initialized with 0Λ . Then the initial weight matrix is found as 

 δ 0= Λ0 argmin ( , ; )
W

W pl W D . (13)  

The iteration step is as follows: 

 
δ

δ

+ Λ

+ +

Λ = Λ

= Λ

1

1 1

arg min ( , ; )

arg min ( , ; ).

i i

i i
W

pl W

W pl W

D

D
 (14) 

The coordinate descent method is illustrated in Fig. 2. 
 

 

Fig. 2. The coordinate descent method used to find the pair ∗Λ*( , )W  that minimizes the 

criterion function δ Λ( , ; )pl W D . 

For the convex minimization with respect to W , we can use the penalized logistic regression 

machine (Tanabe, 2001a,b). As for the minimization with respect to Λ , there are many 
possibilities, one of which is the RProp method (Riedmiller and Braun, 1993). In this 
method, the partial derivatives of the criterion with respect to the elements of Λ  are needed. 
These calculations are straightforward, but tedious. The interested reader is referred to 
(Birkenes, 2007) for further details. 

When the criterion function in (11) is optimized with respect to both W  and Λ , overfitting 

of Λ  to the training data may occur. This typically happens when the number of free 
parameters in the regressor functions is large compared to the available training data. By 
keeping the number of free parameters in accordance with the number of training examples, 
the effect of overfitting may be reduced. 

2.2 Garbage class 
In some applications, the classifier will be presented with observations x  that do not 

correspond to any of the classes in the label set Y . In this situation, the classifier should 

return a small probability for every class in Y . However, this is made impossible by the fact 
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that the total probability should sum to 1, that is, 
∈

=∑ ( | ) 1
y

p y x
Y

. The solution to this 

problem is to introduce a new class = + ∈ = +∪1 { 1}y K K0Y Y , called a garbage class, that 

should get high conditional probability given observations that are unlikely for the classes 
in Y , and small probability otherwise (Birkenes et al., 2007). 

In order to train the parameters of the logistic regression model with such a garbage class, a 
set of observations labeled with a garbage label, or garbage observations, are needed. For 

applications with a low-dimensional observation set X , these garbage observations can be 

drawn from a uniform distribution over X . For many practical applications however, 

X has a very high dimensionality, so an unreasonably high number of samples must be 

drawn from the uniform distribution in order to achieve good performance. In such cases, 
prior knowledge of the nature or the generation of the possible garbage observations that 
the classifier will see during prediction is of great value. We will soon see how we can use 
N-best lists to generate garbage observations for continuous speech recognition. 

3. Classification of speech segments with logistic regression 

In this section we will be concerned with the modeling of the conditional distribution 

( | )p y x  using the logistic regression model, where each observation = …1( , , )
xT

x o o  is a 

sequence of feature vectors extracted from a speech segment and y is a word label. Since the 
observation x is here a sequence of feature vectors that can vary in length, the logistic 

regression mapping φ +: → R 1MX  is a map from the set X  of all such observations x  into 

the Euclidean space +R 1M  containing all regressor vectors φ( Λ);x . The mapping should be 

able to map observations of varying lengths into fixed dimensional vectors while preserving 
the discriminative information embedded in the observations. 
A mapping that has been found to be effective for speech classification makes use of M = K  
hidden Markov models (HMMs), one for each word in the vocabulary, and is defined as 
(Birkenes et al., 2006a) 

 

λ
φ

λ

1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

( Λ) = ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

#

1

1
ˆlog ( ; )

;

1
ˆlog ( ; )

x

M

x

p x
T

x

p x
T

, (15) 

where λˆ( ; )
m

p x  is the Viterbi-approximated likelihood (i.e., the likelihood computed along 

the Viterbi path) of the mth HMM with parameter vector λm. Specifically, if we let 
λ π η= ( , ),A  be the set of parameters for an HMM, where π denotes the initial state 

probabilities, A is the transition matrix, and η is the set of parameters of the state-conditional 
probability density functions, then 

 

λ λ

π η
−

= =

=

= ∏ ∏1 1 ,
2 1

ˆ ˆ( ; ) max ( , ; )

ˆmax ( | ; ),
x x

t t t

q

T T

q q q t t q
q

t t

p x p x q

a p o q
 (16) 
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where = …1( , , )
xT

q q q  denotes a state sequence. Each state-conditional probability density 

function is a Gaussian mixture model (GMM) with a diagonal covariance matrix, i.e., 

 μ

σ

η μ

π σ
=

=

⎛ ⎞−− ⎜ ⎟− ⎜ ⎟− ⎝ ⎠

= =

= Σ

∑⎛ ⎞
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⎝ ⎠

∑

∑ ∏
2

1

1

11

2/2

1 1

ˆ ( | ; ) ( , )

(2 ) ,

D d qhd

d
qhd

H

q qh qh qh

h

o
DH

D

qh qhd

h d

p o q c

c e

N

 (17) 

where H  is the number of mixture components, 
qh

c  is the mixture component weight for 

state q  and mixture h , D  is the vector dimension, and μ Σ( , )N  denotes a multivariate 

Gaussian distribution with mean vector μ  and diagonal covariance matrix Σ  with elements 

σ
d

. The hyperparameter vector of the mapping in (15) consists of all the parameters of all 

the HMMs, i.e., λ λΛ = ( )…1, ,
M

.  

We have chosen to normalize the log-likelihood values with respect to the length 
x

T  of the 

sequence = …1( , , )
xT

x o o . The elements of the vector φ Λ( ; )x  defined in (15) are thus the 

average log-likelihood per frame for each model. The reason for performing this 
normalization is that we want utterances of the same word spoken at different speaking 
rates to map into the same region of space. Moreover, the reason that we use the Viterbi-
approximated likelihood instead of the true likelihood is to make it easier to compute its 
derivatives with respect to the various HMM parameters. These derivatives are needed 
when we allow the parameters to adapt during training of the logistic regression model. 

With the logistic regression mapping φ  specified, the logistic regression model can be 

trained and classification can be performed as explained in the previous section. In 

particular, classification of an observation x  is accomplished by selecting the word ∈ŷ Y  

having the largest conditional probability, that is, 

 
∈

= Λˆ ˆarg max ( | , , ),
y

y p y x W
Y

 (18) 

where  

 
φ

φ

Λ

Λ
=

= Λ =
∑

T

T

( , )

( , )

1

ˆ( | , , )
k

i

w x

K w x

i

e
p y k x W

e
. (19) 

Although in this section we only considered probabilistic prediction of words given a 
speech segment, the theory is directly applicable to subword units such as phones. 

4. N-best rescoring using logistic regression 

In this section, we consider the continuous speech recognition problem, which amounts to 

finding the best sequence of subwords, or sentence hypothesis, given a whole utterance of a 

sentence. A problem we have to deal with in this context is that the segment boundaries are 

not known. We propose a two step approach: 1) generate an N-best list using a set of HMMs 

and the Viterbi algorithm (Viterbi, 1983), and 2) rescore the N-best list and select the 
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sentence hypothesis with the highest score. Rescoring of a sentence hypothesis is done by 

obtaining probabilities of each subword using logistic regression, and combining the 

subword probabilities into a new sentence score using a geometric mean. These sentence 

scores are used to reorder the sentence hypotheses in the N-best list. The recognized 

sentence hypothesis of an utterance is then taken to be the first one in the N-best list, i.e., the 

sentence hypothesis with the highest score. 

In the following, let us assume that we have a set of HMMs, one for each subword (e.g., a 

digit in a spoken digit string, or a phone). We will refer to these HMMs as the baseline 

models and they will play an important role in both the training phase and the recognition 

phase of our proposed approach for continuous speech recognition using logistic regression. 

For convenience, we let = …1( , , )
zT

z o o  denote a sequence of feature vectors extracted from a 

spoken utterance of a sentence = …1( , , )
sL

s y y  with 
s

L  subwords. Each subword label 
l

y  is 

one of …(1, , )K , where K  denotes the number of different subwords. Given a feature vector 

sequence z  extracted from a spoken utterance s , the baseline models can be used in 

conjunction with the Viterbi algorithm in order to generate a sentence hypothesis 

= …
ˆ1

ˆ ˆ ˆ( , , )
sL

s y y , which is a hypothesized sequence of subwords. Additional information 

provided by the Viterbi algorithm is the maximum likelihood (ML) segmentation on the 

subword level, and approximations to the subword likelihoods. We write the ML  

 

 
 

Fig. 3. A 5-best list where the numbers below the arcs are HMM log-likelihood values 
corresponding to the segments. The total log-likelihood for each sentence hypothesis is 
shown at the right. The list is sorted after decreasing log-likelihood values for the sentences. 
The circle around sentence number 2 indicates that this is the correct sentence. 

segmentation as = …
ˆ1( , , )
sL

z x x , where 
l

x  denotes the subsequence of feature vectors 

associated with the l th subword ˆ
l

y  of the sentence hypothesis. 

For a given utterance, we can use the baseline models to generate an N-best list of the N  

most likely sentence hypotheses (Schwartz and Chow, 1990). An example of a 5-best list is 

shown in Fig. 3. The list is generated for an utterance of the sentence “seven, seven, eight, 

two”, with leading and trailing silence. The most likely sentence hypothesis according to the 
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HMMs appears at the top of the list and is the sentence “seven, seven, nine, two”. This 

sentence differs from the correct sentence, which is the second most likely sentence 

hypothesis, by one subword. The segmentation of each sentence hypothesis in the list is the 

most likely segmentation given the sentence hypothesis. Each segment is accompanied with 

the HMM log-likelihood. 

The reason for generating N-best lists is to obtain a set of likely sentence hypotheses with 

different labeling and segmentation, from which the best sentence hypothesis can be chosen 

based on additional knowledge. In the following we will first consider how we can obtain 

reliable subword probabilities given speech segments appearing in N-best lists. We suggest 

using a garbage class for this purpose. Then, we introduce a method for rescoring N-best 

lists using these estimated subword probabilities. 

4.1 Logistic regression on segments in N-best lists 

Provided that the baseline models are reasonably good, many of the segments in the N-best 

lists are good in the sense that they correspond to a complete utterance of exactly one 

subword. However, it is inherent that N-best lists frequently contain segments that do not 

correspond to a complete utterance of exactly one subword. Some segments, for example, 

correspond to only a part of an utterance of a subword, or even an utterance of several 

subwords together. Consider again the 5-best list in Fig. 3, where the correct sentence 

hypothesis appears in position 2. Let us assume that the correct unknown segmentation 

coincides with the ML segmentation in position 2. Then, the third segment in sentence 

hypothesis 3 actually corresponds to an utterance of the two connected digits “seven” and 

“eight” spoken in a sequence. Moreover, for hypotheses 1 and 5, the third segment may not 

correspond to a complete utterance of “seven”, whereas the fourth segment corresponds to 

an utterance of the last part of “seven” and the whole of “eight”. Thus, the segments of an 

N-best list can be roughly divided into two: good segments and garbage segments. 

The role of logistic regression in our N-best rescoring approach is to provide conditional 

probabilities of subword labels given a segment. Obviously, we want a correct subword 

label to get high conditional probability given a good segment. This implies that incorrect 

subword labels will get low probabilities for good segments since the total probability 

should sum to one. Furthermore, garbage segments should result in low probabilities for 

all subword labels. For this reason we introduce a garbage class, whose role is to 

aggregate large probability for garbage segments and low probability otherwise. In the 

training of the model, we need two sets of training examples; 1) a set of good segments 

each labeled with the correct subword label, and 2) a set of garbage segments labeled with 

the garbage label. 

Let us first discuss how we can obtain segments from the former set. If the training 

utterances were segmented on the subword level, i.e., if we knew the segment boundaries of 

each subword, we could simply use these subword-labeled segments as the training set for 

the logistic regression model. In most training databases for speech however, the segment 

boundaries are not known, only the orthographic transcription, i.e., the correct subword 

sequence. Then, the most straightforward thing to do would be to estimate the segment 

boundaries. For this, we will make use of the baseline models to perform Viterbi forced 

alignment (FA) segmentation on the training data. From a pair ( , )z s  in the training 
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database, FA segmentation gives us a set …1 1{( , ), ,( , )}
s sL L

x y x y  of subword labeled segments. 

Doing this for all the pairs ( , )z s  in the training database yields a set 

 == … FAFA 1, ,{( , )}
l l l L

x yD  (20) 

of all FA-labeled segments. 

Extracting garbage segments to be used in the training of the logistic regression model is 

more difficult. In the rescoring phase, segments that differ somehow from the true unknown 

segments should give small probability to any class in the vocabulary, and therefore high 

probability to the garbage class. In order to achieve this, we generate an N-best list for each 

training utterance, and compare all segments within the list with the corresponding forced 

alignment generated segments, or the true segments if they are known. The segments from 

the N-best list that have at least ε  number of frames not in common with any of the forced 

alignment segments, are labeled with the garbage label K+1 and used as garbage segments 

for training. This gives us a set 

 == + … gargar 1, ,{( , 1)}
l l L

x KD  (21) 

of all garbage-labeled segments. The full training data used to train the logistic regression 

model is therefore 

 = ∪FA garD D D . (22) 

4.2 The rescoring procedure 

Now that we have seen how logistic regression can be used to obtain the conditional 

probability of a subword given a segment, we will see how we can use these probability 

estimates to rescore and reorder sentence hypotheses of an N-best list. 

For a given sentence hypothesis = …
ˆ1

ˆ ˆ ˆ( , , )
sL

s y y  in an N-best list with corresponding 

segmentation = …
ˆ1( , , )
sL

z x x , we can use logistic regression to compute the conditional 

probabilities = = Λˆ
ˆ ˆ ˆ( | , , )

ly l l
p p y y x W . A score for the sentence hypothesis can then be taken as 

the geometric mean of these probabilities multiplied by a weighted language model score 

ˆ ˆ( )p s  as in 

 ( )β
=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∏

ˆ
ˆ

1/

ˆ ˆ

1

ˆ ˆ ˆ( )

s
s

l

L
L

s y

l

v p p s , (23) 

where β  is a positive weight needed to compensate for large differences in magnitude 

between the two factors. In order to avoid underflow errors caused by multiplying a large 

number of small values, the score can be computed as 
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=
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When all hypotheses in the N-best list have been rescored, they can be reordered in 

descending order based on their new score. Fig. 4 shows the 5-best list in Fig. 3 after 

rescoring and reordering. Now, the correct sentence hypothesis ”seven, seven, eight, two” 

has the highest score and is on top of the list. 

Additional performance may be obtained by making use of the log-likelihood score for the 

sentence hypothesis already provided to us by the Viterbi algorithm. For example, if ˆ ˆ( | )p z s  

denotes the sentence HMM likelihood, we can define an interpolated logarithmic score as 

 α α β
=

= − + +∑�
ˆ

ˆ ˆ
1ˆ

1
ˆ ˆ ˆ ˆ ˆ(1 ) log log ( | ) log ( )

s

l

L

s y

ls

v p p z s p s
L

, (25) 

where α≤ ≤10 . 

 

 
 

Fig. 4. The 5-best list in Fig. 3 after rescoring using penalized logistic regression with HMM 
log-likelihood regressors. The hypotheses have been re-ordered according to sentence scores 
computed from geometric means of the segment probabilities. Sentence number 2, which is 
the correct one, is now at the top of the list. 

5. Experimental results 

We performed rescoring of 5-best lists generated by an HMM baseline speech recognizer 

on the Aurora2 database (Pearce and Hirsch, 2000). We tried both rescoring without a 

garbage class, and with a garbage class. In the latter experiment, we also interpolated the 

logistic regression score and the HMM score. In all experiments, a flat language model 

was used. 

5.1 The Aurora2 database and the baseline system 

The Aurora2 connected digits database (Pearce & Hirsch, 2000) contains utterances, from 

different speakers, of digit strings with lengths 1–7 digits. We used only the clean data in 

both training and testing. The clean data corresponds to the data in the TI-digits 

database (Leonard, 1984) downsampled to 8 kHz and filtered with a G712 characteristic. 
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There are 8440 training utterances and 4004 test utterances in the training set and the test 

set, respectively. The speakers in the test set are different from the speakers in the 

training set.  

From each speech signal, a sequence of feature vectors were extracted using a 25 ms 

Hamming window and a window shift of 10 ms. Each feature vector consisted of 12 Mel-

frequency cepstral coefficients (MFCC) and the frame energy, augmented with their delta 

and acceleration coefficients. This resulted in 39-dimensional vectors. 

Each of the digits 1–9 was associated with one class, while 0 was associated with two classes 

reflecting the pronunciations “zero” and “oh”. The number of digit classes was thus =11C . 

For each of the 11 digit classes, we used an HMM with 16 states and 3 mixtures per state. In 

addition, we used a silence (sil) model with 3 states and 6 mixtures per state, and a short 

pause (sp) model with 1 state and 6 mixtures. These HMM topologies are the same as the 

ones defined in the training script distributed with the database. We refer to these models as 

the baseline models, or collectively as the baseline recognition system. The sentence 

accuracy on the test set using the baseline system was 96.85%. 

5.2 Rescoring 5-best lists without a garbage class 

Before training the logistic regression model, the training data was segmented using the 

baseline models with forced alignment. We updated only the means of the HMMs while 

keeping the other HMM parameters fixed. For each of the coordinate descent iterations we 

used the Rprop method (Riedmiller & Braun, 1993) with 100 iterations to update the HMM 

means Λ  and the Newton method with 4 iterations to update W . After 30 coordinate 

descent iterations, the optimization was stopped. 

We used the trained logistic regression model to rescore 5-best lists that were generated on 
the test set by the baseline recognition system. The upper bound on the sentence accuracy 
inherent in the 5-best lists, i.e., the sentence accuracy obtainable with a perfect rescoring 
method, was 99.18%. We chose to rescore only those sentence hypotheses in each 5-best list 
that had the same number of digits as the first hypothesis in the list (Birkenes et al., 2006b). 
The resulting sentence accuracy was 97.20%. 

5.3 Rescoring 5-best lists with a garbage class 

We now present results that we achieved with 5-best rescoring with the use of a garbage 

class in the logistic regression model. The 5-best lists used in the rescoring phase were the 

same as above. This time the training was done using two sets of segments; correct segments 

with the correct class label, and garbage segments with the garbage label. The former set 

was generated using the baseline recognition system with forced alignment on the training 

data. The garbage segments were generated from 5-best lists on the training data, with 

ε =10 . Again, we updated only the mean values of the HMMs while keeping the other 

HMM parameters fixed. The training with the coordinate descent approach was done in the 

same way as above. Also this time we stopped the optimization after 30 iterations. 

The sentence accuracies for δ ∈{ }3 4 5 610 ,10 ,10 ,10  are shown in Fig. 5. The baseline accuracy 

and the accuracy of the 5-best rescoring approach without a garbage class are also shown. 

We see that our approach with a garbage class gives the best accuracy for the four values of 

the regularization parameter δ  we used in our experiments. For lower values of δ , we  
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Fig. 5. Sentence accuracy on the test set for various δ . 

 

Fig. 6. Sentence accuracy using interpolated scores. 
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expect a somewhat lower sentence accuracy due to overfitting. Very large δ  values are 

expected to degrade the accuracy since the regression likelihood will be gradually negligible 

compared to the penalty term. 

Fig. 6 shows the effect of interpolating the HMM sentence likelihood with the logistic 

regression score. Note that with α = 0 , only the logistic regression score is used in the 

rescoring, and when α =1 , only the HMM likelihood is used. The large gain in performance 

when taking both scores into account can be explained by the observation that the HMM 

score and the logistic regression score made very different sets of errors. 

6. Summary 

A two-step approach to continuous speech recognition using logistic regression on speech 

segments has been presented. In the first step, a set of hidden Markov models (HMMs) is 

used in conjunction with the Viterbi algorithm in order to generate an N-best list of 

sentence hypotheses for the utterance to be recognized. In the second step, each sentence 

hypothesis is rescored by interpolating the HMM sentence score with a new sentence 

score obtained by combining subword probabilities provided by a logistic regression 

model. The logistic regression model makes use of a set of HMMs in order to map 

variable length segments into fixed dimensional vectors of regressors. In the rescoring 

step, we argued that a logistic regression model with a garbage class is necessary for good 

performance. 

We presented experimental results on the Aurora2 connected digits recognition task. The 

approach with a garbage class achieved a higher sentence accuracy score than the approach 

without a garbage class. Moreover, combining the HMM sentence score with the logistic 

regression score showed significant improvements in accuracy. A likely reason for the large 

improvement is that the HMM baseline approach and the logistic regression approach 

generated different sets of errors. 

The improved accuracies observed with the new approach were due to a decrease in the 

number of substitution errors and insertion errors compared to the baseline system. The 

number of deletion errors, however, increased compared to the baseline system. A 

possible reason for this may be the difficulty of sufficiently covering the space of long 

garbage segments in the training phase of the logistic regression model. This needs 

further study. 
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