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Abstract

Matrix methods for metric symmetry determination are fast, efficient, reliable, and, 
in contrast to reduction techniques, allow to establish simply all possible pseudo-
symmetries in the vicinity of higher symmetry borders. It is shown that distances to 
borders may be characterized by one or a few monoaxial deformations measured by 
parameter ε, which corresponds to the relative change in the interplanar distance. The 
scope of this chapter is limited to a careful analysis of rhombohedral or monoclinic 
deformations occurring in hR lattices.

Keywords: semi-reduced lattices, lattice symmetry, Bravais type border, lattice 
deformation

1. Introduction

Chemical species are structurally classified by symmetry. The preliminary classification 
takes into account only translational properties, the lattice of a crystal structure. But iden-
tical lattices may be described by an infinite number of different unit cells (a,b,c, α,β,γ or 
corresponding metric tensor G) and thus it is important to select finally the reference cell 
called the Bravais cell, which symmetry reflects the lattice symmetry. While the derivation 
of unit cell parameters from good X-ray diffraction data is generally straightforward, the 
problem of symmetry-standardization is challenging [1], especially in the presence of ran-
dom errors, pseudo-symmetry caused by the vicinity of Bravais type boundaries, textures, 
etc. Stable algorithms should recognize admittable symmetry and pseudo-symmetry(-tries) 
and calculate the distance(s) from the experimental unit-cell data to the Bravais lattice(s) 
subspace. Conceptually, a similar problem arises in the determination of distances between 
pairs of unit cells for database searching. A concise review of commonly used lengths (met-
rics) and its application to protein database search [2] showed that there is still room for 
improvements to characterize better the lattice on the symmetry borders. Advances in X-ray 
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diffraction techniques as well as improvements in data analyzing procedures allow to con-
clude that some of the previously obtained results may be based on pseudo-symmetry rather 
than on true symmetry (typical dilemma: hR or mC?). Some new diffraction data suggest, 
for example, that generally accepted trigonal crystal structures α-Cr

2
O

3
, α-Fe

2
O

3
, and CaCO

3
 

show monoclinic distortions [3, 4]. In consequence, the importance of border problems has a 
growing-up tendency.

Classifications of unique lattice representatives obtained by the Niggli reduction or Delaunay 
reduction are commonly used techniques to assign the Bravais symmetry to a given lattice. 
Another approach, called the matrix method, directly derives isometric transformations from 
the lattices by B-matrices, which transform a lattice onto itself [1, 5, 6], or by the space distribu-
tion of orthogonalities [7], or by filtering predefined set V of 480 potential symmetry matrices 
[8, 9]. The latter technique is applicable to a wide class of semi-reduced lattice descriptions, 
additionally forced by a geometric interpretation of symmetry operations. The following 
advantages seem to be apparent: (i) the filtering process is extremely simple, (ii) semi-reduced 
lattices after a small deformation are generally still semi-reduced, (iii) symmetry axes and 
planes are automatically indexed, (iv) a lattice deformation, which retains the given symme-
try, is easily deduced. The property (iv) can be utilized as a ‘distortion index’, a new measure 
of the distance between symmetrical lattices. The aim of this chapter is to carefully look at 
the border problems frequently occurring in hR lattices (hR-cF, hR-cP, hR-cI, hR-mC), but in 
the less-known semi-reduced lattice representations. Two appended real-life examples explain 
deeper the proposed technique and its possibilities.

2. Semi-reduced lattice descriptions

The concept of a semi-reduced lattice description (s.r.d.) has been given elsewhere [9]. The 
emphasis on the crystallographic features of lattices was obtained by shifting the focus (i) from 
the analysis of a lattice metric to the analysis of symmetry matrices [6], (ii) from the geometric 
interpretation of isometric transformation based on invariant subspaces to the orthogonality 
concept [7] extended to splitting indices [8], (iii) and from predefined cell transformations 
to transformations derivable via geometric information [6, 7]. It was shown that both cor-
responding arithmetic and geometric holohedries share the space distribution of symmetry 
elements and thus simplify the crystallographic description of structural phase transitions, 
especially those observed with the use of powder diffraction. Moreover, the completeness of 
s.r.d. types revealed a combinatorial structure of V (see below).

The main result of introduced semi-reduced lattice representations consists in the extension 
of the famous characterization of Bravais lattices according to their metrical, algebraic, and 
geometric properties onto a wide class of primitive, less restrictive lattices (including Niggli-
reduced, Buerger-reduced, nearly Buerger-reduced, and a substantial part of Delaunay-
reduced). While the geometric operations in Bravais lattices map the basis vectors onto 
themselves, the arithmetic operators in s.r.d. transform the basis vectors into cell vectors (basis 
vectors, face or space diagonals) and are represented by matrices from the set V of 480 matri-
ces with the determinant 1 and elements {0, ±1} of the matrix powers. A lattice is in s.r.d. if the 
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absolute values of off-diagonal elements in both metric tensors G and G−1 are smaller than the 
corresponding two diagonal elements sharing the same column and sharing the same row. 
The experimental s.r.d. metric G must be unchanged (with some relaxation) by the symmetry 
operation from V, thus by simple filtering:

   G   ′  =  V   T  GV, V ϵ V and  (a, b, c, α, β, γ) G~ G   ′   ( a   ′ ,  b   ′ ,  c   ′ ,  α   ′ ,  β   ′ ,  γ   ′ )   (1)

and the subsequent geometric interpretation of the filtered matrices leads to mathematically sta-
ble and rich information on the individual transformation bringing the lattice into coincidence 
with itself (known as an isometry or a symmetry operation) and deviations from the exact match:

  Δa / a % , Δb / b %, Δc / c %, Δ  α   ° , Δ  β   ° , Δ  γ   ° ,  δ   ° ,  (2)

where Δa/a% denotes (a’-a)/a·100[%], Δα° = α’-α[°] and δ° is Le Page parameter [7]. For exact iso-
metric transformation, all such discrepancy parameters should be zero (or very close to zero).

It is obvious that symmetry operations fulfill the closure, associative, identity, and inverse 
axioms and form a group: an arithmetic holohedry or in other words a lattice group. The set V 

of all possible transformations in s.r.d. is covered by the arithmetic holohedries of 39 highest 
symmetry lattices (Table 1).

In the s.r.d. approach, the primitive-to-Bravais transformations are not stored, but dynami-
cally constructed, based on the geometric interpretation of symmetry matrices. Unfortunately, 
the classical symbol of a point or space symmetry operation bears information on an opera-
tion type and a 1D subspace (or 2D in the case of symmetry planes) of points invariant under 
this operation [10], but the information on the complement orthogonal subspace, invariant 
as a whole, is lost. In the developed splitting or dual symbol introduced in [8], orientation of 

Lattice Metric Lattice Metric Lattice Metric Lattice Metric

hP
1

2,2,1,0,0,−1 hP
4

2,2,1,0,0,1 cF
7

2,2,2,0,−1,−1 cI
7

4,3,3,1,2,2

hP
2

2,1,2,0,−1,0 hP
5

2,1,2,0,1,0 cF
8

2,2,2,1,1,0 cI
8

3,3,4,−2,−2,1

hP
3

1,2,2,−1,0,0 hP
6

1,2,2,1,0,0 cF
9

2,2,2,1,0,1 cI
9

3,4,3,−2,1,−2

cP
0

1,1,1,0,0,0 cF
10

2,2,2,0,1,1 cI
10

4,3,3,1,−2,−2

cF
1

2,2,2,1,1,1 cI
1

3,3,3,−1,−1,−1 cF
11

2,2,2,1,−1,0 cI
11

3,3,4,−2,2,−1

cF
2

2,2,2,−1,−1,1 cI
2

3,3,3,1,1,−1 cF
12

2,2,2,1,0,−1 cI
12

3,4,3,−2,−1,2

cF
3

2,2,2,−1,1,−1 cI
3

3,3,3,1,−1,1 cF
13

2,2,2,0,1,−1 cI
13

4,3,3,−1,−2,2

cF
4

2,2,2,1,−1,−1 cI
4

3,3,3,−1,1,1 cF
14

2,2,2,−1,1,0 cI
14

3,3,4,2,−2,−1

cF
5

2,2,2,−1,−1,0 cI
5

3,3,4,2,2,1 cF
15

2,2,2,−1,0,1 cI
15

3,4,3,2,−1,−2

cF
6

2,2,2,−1,0,−1 cI
6

3,4,3,2,1,2 cF
16

2,2,2,0,−1,1 cI
16

4,3,3,−1,2,−2

Metrics corresponding to lattice descriptions cI
5
–cI

16
 determine non-Buerger cells.

Table 1. Complete set M of metrical tensors of highest-symmetry lattices referred to semi-reduced bases [8].
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both subspaces is given by specifying direction [uvw] orthogonal to the family of planes (hkl). 
The centering in the [uvw] direction as well as the crystallographic orthogonality between a 
lattice direction and a lattice plane, hidden in the symmetry matrix, is enclosed in this new 
geometric symbol n+(−) [uvw](hkl). Some properties of [uvw](hkl) are mathematically obvious; 
splitting indices specify the same vector, or more strictly, a pair of parallel directions in direct 
and reciprocal spaces. Others, like calculations of the interplanar distance d(hkl), the distance 

between lattice points l[uvw]
, deriving Le Page angle δ [7] between [uvw] and (hkl), or even using 

indices to predict deformations, which retain a given cyclic group, need additionally G data. 
In a lattice given by G, the uniaxial deformation along symmetry [uvw] direction

   G   '  = G + ε ( 
hh

  
hk

  
hl

  kh  kk  kl  
lh

  
lk

  
ll

  )   (3)

modifies only 1D subspace and in consequence retains the symmetry axis in [uvw] direction 

and also axes orthogonal to this direction, if any. Other symmetries will be broken.

3. Rhombohedral lattices in s.r.d.

It is difficult to classify or compare lattices that drastically change their class-dependent descrip-
tions as a result of small deformations, structural phase transitions, or experimental errors. Such 
discontinuities in the Niggli-reduced space can be overcome by a deep mathematical treatment 
like in [11] or by applying a less restrictive method of Bravais cell assignment: Niggli reduction 
 Delaunay reduction  s.r.d. A wide class of lattices, including a trigonal and three cubic 
lattices, is considered here as ‘rhombohedral’ lattices. The actual form of a cell has no meaning, 
but a given lattice can be represented by a rhombohedron with equal sides a = b = c and angles 
α = β = γ. The symmetry does not depend on the scale, so we can assume that all sides are equal 
to 1 and thus the class is one-parametric with the rhombohedral angle α, 0° < α < 120°. Symmetry 
matrices of ‘rhombohedral’ lattices cover V nearly completely (excluding 6 hexagonal groups). 
As mentioned earlier, every symmetry matrix describes an isometric transformation of basis 
vectors into cell vectors. Neglecting the vector sense, there are 13 cell vectors grouped in the 
rhombohedral case into four triads <001>, <011>, <01–1>, <1–1-1 > of directions related by three-
fold axis along [111]. Triad <01–1 > corresponds to twofold axes. Moreover, lattice vector [111] is 
orthogonal to coplanar vectors <01–1>, which interaxial angle is 60°. Thus, symmetry matrices 
of hR lattice in the Bravais description (a = b = c, α = β = γ < 120°) are characterized by dual sym-
bols: 3+[111](111), 3⁻[111](111), 2[01–1](01–1), 2[1–10](1–10), 2[−101](−101) and this geometric 
property is exposed in the hexagonal description with c/a = l[111]/l<01–1>. Metrical relationships 
between lengths of cell vectors as functions of α are drawn in Figure 1.

The angle α = 90° and a cubic shape can be considered as the central point of the sketch. Both 
left and right parts separated by 90° are connected by the lattice inversion. Other characteristic 
points (i.e., intersection of curves) are collected in Table 2.

Information contained in both Figure 1 and Table 2 explains discontinuities in descrip 

tions of rhombohedral lattices. Descriptions of Niggli- or Buerger-reduced lattices must be 
changed during crossing characteristic angles 60° and 109.47°, since they are based on the shortest 
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non-coplanar lattice vectors. Similarly, Bravais descriptions should reflect the increased sym-
metry for these angles (directions <001> reveal extra twofold and threefold symmetry). In sharp 
contrast to the above lattice representations, no drastic changes is necessary in semi-reduced 
descriptions of rhombohedral lattices, without losing relation with Bravais standardization.

4. Distance to the higher symmetry border: ε concept

In crystallography, it is crucial to standardize lattice descriptions and to assign one from the 
fourteen 3D Bravais types differentiated by symmetry. The process is straightforward for 
good quality data and faraway from the Bravais borders but in opposite cases, especially in 

Figure 1. Lengths of cell vectors as a function of rhombohedral angle. Intersections of curves define characteristic points 
(e.g., higher symmetry lattices: cF, cP, and cI).

No. cos(α) α[°] Description

1 1 0 1D

2 1/2 60 cF

3 1/4 75.5225 c/a = √(3)

4 0 90 cP

5 −1/8 97.1808 c/a = √(3/3)

6 −1/4 104.4775 c/a = √(3/5)

7 −1/3 109.4712 cI

8 −1/2 120 2D

Lattice cP (point 4) maximally extended along [111] reduces 3D space to the 1D (point 1); maximal compression leads to 
2D space (point 8). Intermediate points (2, 7) correspond to centered lattices: cF, cI. Other intersections (points 5 and 6) 
have no influence on symmetry.

Table 2. Characteristic points (intersections of curves) in Figure 1.

Symmetry of hR and Pseudo-hR Lattices
http://dx.doi.org/10.5772/intechopen.72314

53



the presence of unavoidable experimental errors, the solution cannot be unique. Usable dis-
tances should be defined to rank positive candidates. Most considerations about the calcula-
tion of such distances are devoted to the Niggli reduction, for example, see [11] and references 

contained therein; only some discuss the Buerger reduction [1, 7].

The geometric properties of matrices that transform an s.r.d. lattice into itself are utilized in the 
presented approach to the greatest degree, which form the geometric image of the filtered trans-
formation. Each isometric or pseudo-isometric action on the current lattice is estimated by three 
metrical and four angular parameters (2) and oriented in the lattice space by dual indices [uvw]

(hkl). Deviations are controlled by two thresholds: metrical tol1 and angular tol2. The maxdev (that 
is maximal value of all unsigned deviations for all isometric transformations grouped in the lattice 
symmetry) was selected as an introductory concept of similarity between the probe cell and a cell 
with given symmetry. For exact symmetry, maxdev should be zero (or very close to zero). In the 
vicinity of symmetry borders, high values of tol1 and tol2 (e.g., 5) reveal higher pseudo- (in another 
words ‘approximate’) symmetry—with greater maxdev values and standard group-subgroup 
relations (Table 3). For reasonable thresholds, the number of filtered matrices cannot exceed 24.

The filtering of symmetry matrices near cubic borders results in a rather big number (7 × 24)  
of quantitative data. As Table 3 shows, deviations are interrelated, not random. A maxi-
mal unsigned deviation well reflects this situation. Moreover, strict hR symmetry including  
2 isometries denoted geometrically as 3+(−)[−1–13](001) and pseudo-cF symmetry suggest that 

all deviations can be explained by a rhombohedral deformation. According to (3), the uniaxial 
deformation along direction [−1–13] orthogonal to planes (001) modifies metric G:

  G   ′  =   (   
2
  

1
  

1
  1  2  1  

1
  

1
  

2.1
  )    + ε  (   

0
  

0
  

0
  0  0  0  

0
  

0
  

1
  )    .

It is clear from Table 1 that G’ with cF symmetry should be cF
1
 = (2, 2, 2, 1, 1, 1). The above 

symmetric matrix equation can be rewritten in a vector form:

(2, 2, 2, 1, 1, 1) = (2, 2, 2.1, 1, 1, 1) + ε(0, 0, 1, 0, 0, 0)

with the solution ε = −0.1. As a result, distance ε between hR and cF cells is −0.1. This new 
concept is more informative in comparison with maxdev parameter; the deformation type is 
explicitly given by ε·(hkl) and can be converted into Δd(hkl)/d(hkl), shortly Δd/d, and related with 
diffraction line shifts in XRD patterns. The ε distances depend not only on a rhombohedral 
angle but also on the lattice scale, and thus for practical purposes, the Δd/d distance is more 

appropriate, since it can be compared with experimental Δd/d resolution. The interplanar 
distance may be calculated from the following formula:

   d  
 (hkl)    = 1 /   [ (hkl)  · G ·   (hkl)    T )    1/2   (4)

The sign of ε or Δd is also important; it informs on which side of the higher symmetry border 
the analyzed lattice is located.

For rhombohedral lattices, two kinds of ε distances to the border (based on rhombohedral or 
monoclinic deformations) are generally analyzed. In more complicated cases, like cubic lattices 
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modified by simultaneous rhombohedral and tetragonal distortions, few ε distances can be 
derived. Calculations are also possible in the presence of experimental errors, if they are smaller 
than distortions.

The concept of a quantitative measure between the probe cell and cells with higher symmetry 
based on monoaxial deformations is thus outlined, but for practical applications this idea 
should be thoroughly investigated in s.r.d. This study provides analyses and two real-life 
examples limited to rhombohedral lattices.

Δa/a% Δb/b% Δc/c% Δα° Δβ° Δγ° δ° Operation

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1[]()

0.00 0.00 0.00 0.00 0.00 0.00 0.00 2[010](121)

0.00 0.00 0.00 0.00 0.00 0.00 0.00 2[1–10](1–10)

0.00 0.00 0.00 0.00 0.00 0.00 0.00 2[100](211)

0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 + [−1–13](001)

0.00 0.00 0.00 0.00 0.00 0.00 0.00 3-[−1–13](001)

0.00 2.47 −2.41 0.00 −0.79 0.79 1.95 2[01–1](01–1)

2.47 2.47 0.00 −2.38 −2.38 −1.59 1.95 2[001](112)

2.47 0.00 −2.41 −0.79 0.00 0.79 1.95 2[−101](−1–1)

0.00 2.47 −2.41 0.00 −0.79 0.79 1.95 2[−111](011)

2.47 0.00 −2.41 −0.79 0.00 0.79 1.95 2[1–11](101)

2.47 2.47 0.00 −2.38 −2.38 −1.59 1.95 2[11–1](110)

0.00 2.47 −2.41 0.00 −0.79 0.79 1.30 3 + [111](111)

2.47 0.00 −2.41 −0.79 0.00 0.79 1.30 3-[111](111)

0.00 2.47 −2.41 0.00 −0.79 0.79 1.30 3+ [3-1-1](100)

2.47 2.47 0.00 −2.38 −2.38 −1.59 1.30 3-[3-1-1](100)

2.47 2.47 0.00 −2.38 −2.38 −1.59 1.30 3 + [−13–1](010)

2.47 0.00 −2.41 −0.79 0.00 0.79 1.30 3-[−13–1](010)

2.47 0.00 −2.41 −0.79 0.00 0.79 1.95 4 + [−111](011)

2.47 2.47 0.00 −2.38 −2.38 −1.59 1.95 4-[−111](011)

2.47 2.47 0.00 −2.38 −2.38 −1.59 1.95 4 + (1–11](101)

0.00 2.47 −2.41 0.00 −0.79 0.79 1.95 4-[1-11](101)

2.47 0.00 −2.41 −0.79 0.00 0.79 1.95 4+ [11-1](110)

0.00 2.47 −2.41 0.00 −0.79 0.79 1.95 4-[11-1](110)

Items with zero deviations define true hR symmetry (a,b,c = 1.41421, α,β,γ = 60.7941°) with maxdev = 0, while all 24 
operations correspond to pseudo-cF symmetry (a,b,c = 2.025, α,β,γ = 91.3976°) with maxdev = 2.47.

Table 3. Geometric images (7 discrepancy parameters + geometric description) of filtered matrices for the lattice 
G = (2, 2, 2.1, 1, 1, 1) and illustration of maxdev distances.
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5. Distances between hR and cubic lattices

In the case being considered, the semi-reduced hR lattice should be viewed as a rhombohe-
drally distorted cF, cI, or cP pseudo-lattice with exact hR symmetry. It is also assumed that 
every equivalent description is equally distanced from a cubic lattice, and thus only one rep-
resentation of a lattice is necessary to properly derive such distance. This assumption validity 
may be carefully checked by creating all semi-reduced variants of hR lattices in the neighbor-
hood of cubic lattices.

5.1. hR-cF border

Let us have hR lattice in a standard description (a,b,c = 1,449,138; α,β,γ = 58,41,186°). It is obvi-
ously relatively close to cF lattice. The analysis of pseudo-symmetry outlined in Section 4 reveals 
that the distance ε to the higher symmetry is equal to −0.1. An opposite deformation of 16 cF 

descriptions in Table 1 according to 4 threefold axes allows to generate all 64 semi-reduced hR 

variants of the given lattice and thus relations in Table 4 ‘hR metric’ + ‘deformation’ = cF are 

obvious. But, as verified by computer tests, the same deformations can be extracted also from 
the geometric images of pseudo-symmetry without any relation to the predefined cF metrics.

The interpretation of 4 × 16 items in Table 4 is very easy due to the fact that Miller indices of 
planes perpendicular to the unique threefold axis are given explicitly in the deformation sym-
bols. In the considered situation, the operation on G vectors is as follows: GcF = G

hR
 - 0.1·(hh, kk, 

ll, kl, hl, hk). For example, the last three items give:

(2.1, 2, 2.1, 0, −1.1, 1) - 0.1·(−1·-1, 0·0, 1·1, 1·0, 1·-1, −1·0) = (2, 2, 2, 0, −1, 1)

(2, 2.1, 2, 0. -1, 1) - 0.1·(0·0, 1·1, 0·0, 0·1, 0·0, 0·1) = (2, 2, 2, 0, −1, 1)

(2, 2, 2.1, 0, −1, 1) - 0.1·(0·0, 0·0, 1·1, 1·0, 1·0, 0·1) = (2, 2, 2, 0, −1, 1)

Assigning the symmetry group to the final G metric or comparing it with Table 1 reveals cF sym-
metry in cF

16
 description. In consequence, distance ε from hR(a,b,c = 1.449138; α,β,γ = 58.41186°) 

to cF(a,b,c = 2; α,β,γ = 90°) is equal to −0.1 and does not depend on the actual description. The 
original d spacing along threefold axis is changed from 1.1972 (hR lattice) to 1.1577 (cF lattice) 
and Δd/d = −0.0355. Such values characterize not only each item in Table 4 but also all hR lattices 
with rhombohedral angle 58.41186°. Since ε corresponds with the rational part of G components 
in Table 4, similar tables of equivalent descriptions of hR (other ε) can be simply constructed. 
For example, the modification of rational parts from 0.1 to −0.01 will result in obtaining new 
hR lattice (a,b,c = 1.410674; α,β,γ = 60.1661°) with a shorter ε distance to cF border equal to 0.01.

5.2. hR-cI border

The hR lattice close to cI border seems to be less populated. The metrical relationships between 
the length of cell vectors look more complicated in comparison with cF neighborhood (Figure 1), 

but the analysis of pseudo-symmetries is similar. The same distance ε = −0.1 gives hR lattice with 
the rhombohedral angle 106.8773°. All semi-reduced descriptions together with deformations 
needed in order to obtain higher cI symmetry are compiled in Table 5.
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hR metric deformation hR metric deformation

2.1 2.1 2.1 1.1 1.1 1.1 −0.1·(111) 2.1 2.1 2 1 0 1.1 −0.1·(110)

2 2 2.1 1 1 1 −0.1·(001) 2 2.1 2.1 1.1 0 1 −0.1·(011)

2 2.1 2 1 1 1 −0.1·(010) 2 2 2.1 1 0 1 −0.1·(001)

2.1 2 2 1 1 1 −0.1·(100) 2.1 2 2 1 0 1 −0.1·(100)

2.1 2.1 2.1 −1 −1 1.1 −0.1·(−1–11) 2.1 2.1 2 0 1 1.1 −0.1·(110)

2 2 2.1 −1 −1 1 −0.1·(001) 2.1 2 2.1 0 1.1 1 −0.1·(101)

2 2.1 2 −1 −1 1 −0.1·(010) 2 2.1 2 0 1 1 −0.1·(010)

2.1 2 2 −1 −1 1 −0.1·(100) 2 2 2.1 0 1 1 −0.1·(001)

2.1 2.1 2.1 −1 1.1 −1 −0.1·(1–1 − 1) 2 2.1 2.1 1.1 -1 0 −0.1·(011)

2 2 2.1 −1 1 −1 −0.1·(001) 2.1 2 2.1 1 −1.1 0 −0.1·(−101)

2 2.1 2 −1 1 −1 −0.1·(010) 2 2.1 2 1 −1 0 −0.1·(010)

2.1 2 2 −1 1 −1 −0.1·(100) 2.1 2 2 1 −1 0 −0.1·(100)

2.1 2.1 2.1 1.1 −1 −1 −0.1·(−11–1) 2 2.1 2.1 1.1 0 −1 −0.1·(011)

2 2 2.1 1 −1 −1 −0.1·(001) 2.1 2.1 2 1 0 −1.1 −0.1·(1–10)

2 2.1 2 1 −1 −1 −0.1·(100) 2.1 2 2 1 0 −1 −0.1·(100)

2.1 2 2 1 −1 −1 −0.1·(010) 2 2 2.1 1 0 −1 −0.1·(001)

2 2.1 2.1 −1 −1 0 −0.1·(01–1) 2.1 2 2.1 0 1.1 −1 −0.1·(101)

2.1 2 2.1 −1 −1 0 −0.1·(−101) 2.1 2.1 2 0 1 −1.1 −0.1·(1–10)

2 2.1 2 −1 −1 0 −0.1·(010) 2 2.1 2 0 1 −1 −0.1·(010)

2.1 2 2 −1 −1 0 −0.1·(100) 2 2 2.1 0 1 −1 −0.1·(001)

2 2.1 2.1 −1 0 −1 −0.1·(01–1) 2.1 2 2.1 −1 1.1 0 −0.1·(101)

2.1 2.1 2 −1 0 −1 −0.1·(1–10) 2 2.1 2.1 −1.1 1 0 −0.1·(01–1)

2.1 2 2 −1 0 −1 −0.1·(001) 2 2.1 2 −1 1 0 −0.1·(010)

2 2 2.1 −1 0 −1 −0.1·(100) 2.1 2 2 −1 1 0 −0.1·(100)

2.1 2.1 2 0 −1 −1 −0.1·(1–10) 2.1 2.1 2 −1 0 1.1 −0.1·(110)

2.1 2 2.1 0 −1 −1 −0.1·(−101) 2 2.1 2.1 −1.1 0 1 −0.1·(01–1)

2 2.1 2 0 −1 −1 −0.1·(010) 2.1 2 2 −1 0 1 −0.1·(100)

2 2 2.1 0 −1 −1 −0.1·(001) 2 2 2.1 −1 0 1 −0.1·(001)

2 2.1 2.1 1.1 1 0 −0.1·(011) 2.1 2.1 2 0 −1 1.1 −0.1·(110)

2.1 2 2.1 1 1.1 0 −0.1·(101) 2.1 2 2.1 0 −1.1 1 −0.1·(−101)

2.1 2 2 1 1 0 −0.1·(100) 2 2.1 2 0 −1 1 −0.1·(010)

2 2.1 2 1 1 0 −0.1·(010) 2 2 2.1 0 −1 1 −0.1·(001)

The illustration of hR lattice is represented by semi-reduced descriptions. Every four descriptions are close to one of the 
cF lattice variants given in Table 1, what is easily seen by rejecting a rational part in metric elements. The distance to the 
border hR – cF is −0.1, or −0.035514356 given in Δd/d units, where d is an interplanar distance between a family of planes 
perpendicular to the threefold axis.

Table 4. Sixty-four semi-reduced descriptions of the same hR lattice (a,b,c = 1,449,138; α,β,γ = 58,41,186°) and its 

rhombohedral deformations to the cF lattice (a,b,c = 2; α,β,γ = 90°).
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The last three lines give:

(4.4, 3.9, 3.1, −1.3, 2.2, −2.6) − 0.1·(−2·−2, 3·3, −1·−1, −1·3, −1·−2, −2·3) = (4, 3, 3, −1, 2, −2)
(4.4, 3.1, 3.1, −0.9, 1.8, −2.2) − 0.1·(−2·−2, 1·1, 1·1, 1·1, 1·−2, −2·1) = (4, 3, 3, −1, 2, −2)
(4.4, 3.1, 3.1, −0.9, 2.2, −1.8) − 0.1·(2·2, 1·1, 1·1, 1·1, 1·2, 2·1) = (4, 3, 3, −1, 2, −2)

hR metric deformation hR metric deformation

3.1 3.1 3.1 −1 −1 −1 −0.1·(111) 3.1 4.4 3.9 −2.6 1.3 −2.2 −0.1·(1–23)

3.1 3.9 3.1 −1 −1 −1 −0.1·(−13–1) 3.1 4.4 3.1 −1.8 0.9 −2.2 −0.1·(−121)

3.1 3.1 3.9 −1 −1 −1 −0.1·(−1–13) 3.1 4.4 3.1 −2.2 0.9 −1.8 −0.1·(12–1)

3.9 3.1 3.1 −1 −1 −1 −0.1·(3–1-1) 3.9 4.4 3.1 −2.2 1.3 −2.6 −0.1·(3–21)

3.1 3.1 3.1 0.9 0.9 −1 −0.1·(−1–11) 4.4 3.9 3.1 1.3 −2.2 −2.6 −0.1·(−231)

3.1 3.1 3.9 1.3 1.3 −1 −0.1·(113) 4.4 3.1 3.9 1.3 −2.6 −2.2 −0.1·(−213)

3.1 3.9 3.1 1.3 0.9 −1 −0.1·(−131) 4.4 3.1 3.1 0.9 −2.2 −1.8 −0.1·(21–1)

3.9 3.1 3.1 0.9 1.3 −1 −0.1·(3–11) 4.4 3.1 3.1 0.9 −1.8 −2.2 −0.1·(2–11)

3.1 3.1 3.1 0.9 −1 0.9 −0.1·(−11–1) 3.1 3.1 4.4 −1.8 2.2 −0.9 −0.1·(112)

3.1 3.1 3.9 1.3 −1 0.9 −0.1·(−113) 3.1 3.1 4.4 −2.2 1.8 −0.9 −0.1·(−1–12)

3.1 3.9 3.1 1.3 −1 1.3 −0.1·(131) 3.1 3.9 4.4 −2.6 2.2 −1.3 −0.1·(−13–2)

3.9 3.1 3.1 0.9 −1 1.3 −0.1·(31–1) 3.9 3.1 4.4 −2.2 2.6 −1.3 −0.1·(3–12)

3.1 3.1 3.1 −1 0.9 0.9 −0.1·(1–1-1) 3.1 4.4 3.9 −2.6 −1.3 2.2 −0.1·(−1–23)

3.1 3.1 3.9 −1 1.3 0.9 −0.1·(1–13) 3.1 4.4 3.1 −1.8 −0.9 2.2 −0.1·(121)

3.1 3.9 3.1 −1 0.9 1.3 −0.1·(13–1) 3.1 4.4 3.1 −2.2 −0.9 1.8 −0.1·(1–21)

3.9 3.1 3.1 −1 1.3 1.3 −0.1·(311) 3.9 4.4 3.1 −2.2 −1.3 2.6 −0.1·(32–1)

3.1 3.1 4.4 2.2 1.8 0.9 −0.1·(−112) 4.4 3.1 3.9 −1.3 −2.6 2.2 −0.1·(−2–13)

3.1 3.9 4.4 2.6 2.2 1.3 −0.1·(132) 4.4 3.9 3.1 −1.3 −2.2 2.6 −0.1·(23–1)

3.1 3.1 4.4 1.8 2.2 0.9 −0.1·(−11–2) 4.4 3.1 3.1 −0.9 −1.8 2.2 −0.1·(211)

3.9 3.1 4.4 2.2 2.6 1.3 −0.1·(312) 4.4 3.1 3.1 −0.9 −2.2 1.8 −0.1·(2–1-1)

3.1 4.4 3.9 2.6 1.3 2.2 −0.1·(123) 3.1 3.9 4.4 2.6 −2.2 −1.3 −0.1·(−132)

3.1 4.4 3.1 2.2 0.9 1.8 −0.1·(1–2-1) 3.1 3.1 4.4 1.8 −2.2 −0.9 −0.1·(11–2)

3.1 4.4 3.1 1.8 0.9 2.2 −0.1·(12–1) 3.1 3.1 4.4 2.2 −1.8 −0.9 −0.1·(112)

3.9 4.4 3.1 2.2 1.3 2.6 −0.1·(321) 3.9 3.1 4.4 2.2 −2.6 −1.3 −0.1·(3–1-2)

4.4 3.1 3.9 1.3 2.6 2.2 −0.1·(213) 3.1 4.4 3.1 1.8 −0.9 −2.2 −0.1·(−12–1)

4.4 3.1 3.1 0.9 2.2 1.8 −0.1·(2–11) 3.1 4.4 3.9 2.6 −1.3 −2.2 −0.1·(−123)

4.4 3.1 3.1 0.9 1.8 2.2 −0.1·(−2–11) 3.1 4.4 3.1 2.2 −0.9 −1.8 −0.1·(121)

4.4 3.9 3.1 1.3 2.2 2.6 −0.1·(231) 3.9 4.4 3.1 2.2 −1.3 −2.6 −0.1·(3–2-1)

3.1 3.1 4.4 −2 −2 0.9 −0.1·(−112) 4.4 3.1 3.9 −1.3 2.6 −2.2 −0.1·(2–13)

3.1 3.9 4.4 −3 −2 1.3 −0.1·(13–2) 4.4 3.9 3.1 −1.3 2.2 −2.6 −0.1·(−23–1)

3.1 3.1 4.4 −2 −2 0.9 −0.1·(−112) 4.4 3.1 3.1 −0.9 1.8 −2.2 −0.1·(−211)

3.9 3.1 4.4 −2 −3 1.3 −0.1·(31–2) 4.4 3.1 3.1 −0.9 2.2 −1.8 −0.1·(211)

The illustration of hR lattice is represented by semi-reduced descriptions. The distance to the border hR – cI is −0.1, which 
corresponds to −0.123 given in Δd/d units.

Table 5. Sixty-four semi-reduced descriptions of hR lattice (a,b,c = 1.7607; α,β,γ = 106.8773°) and its deformations to the 
cI lattice (a,b,c = 2; α,β,γ = 90°).
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The assigning of a symmetry group to a modified metric or comparing it with Table 1 reveals 
cI symmetry in cI

16
 description. As a result, the distance from hR lattice (a,b,c = 1.760682; 

α,β,γ = 106.8773°) to cI lattice (a,b,c = 2; α,β,γ = 90°) is equal to −0.1 (Δd/d = −0.123) and as 
expected does not depend on the selected description. Theoretical descriptions of other hR lat-
tices may be easily obtained: for example, by lowering ε 10 times (4, 3, 3, −1, 2, −2) + 0.01·(2·2, 
1·1, 1·1, 1·1, 1·2, 2·1) = (4.04, 3.01, 3.01, −0.99, 2.02; −1.98), which corresponds to the Bravais 
description: (a,b,c = 1.734935; α,β,γ = 109.2022°), ε = −0.01 and Δd/d = −0.01467.

The presence of random errors complicates the derivation of ε and Δd/d. If G approximately 
describes hR lattice, the distances to the borders will be also approximate. Assuming that 
G = (4.41, 3.08, 3.12, −0.98, 2.23, −1.9) a threefold pseudo-symmetry axis can be found parallel 
to the [110] direction, which is nearly orthogonal to (211) planes. Least squares “best solution” 
of following equation

(4.41, 3.08, 3.12, −0,98, 2,23, −1.9) + ε·(2·2, 1·1, 1·1, 1·1, 1·2, 2·1) = (4, 3, 3, −1, 2, −2)

gives ε = −0,093, which can be considered as a rather interesting result.

5.3. hR-cP border

To all cells contained in Tables 4, 5 exact hR and approximate cF or cI symmetries are easily 
assigned by filtering V set only. No additional process of cell manipulation is necessary. But 
it is not true near hR – cP border: the exact hR symmetry can be recognized, but pseudo cP 

symmetry generally not. This discontinuity on the hR– cP border is caused by the fact that 
there is a unique semi-reduced description of cP lattice, namely, cP

0
 (metric = 1,1,1,0,0,0). Any 

additional description of this lattice is not semi-reduced and its symmetry group contains 
symmetry matrices outside the considered V set. We are interested in finding such descrip-
tions, which contain at least one hR subgroup in V. The problem, attacked from the cF and cI 
sides, leads to results included in Table 6.

Symbol cP metric Symbol cP metric

cP
1

1 1 2 −1 0 0 cP
49

1 1 2 −1 0 0

cP
2

1 1 2 0 −1 0 cP
50

1 1 2 0 −1 0

cP
3

1 1 2 0 1 0 cP
51

1 1 2 0 1 0

cP
4

1 1 2 1 0 0 cP
52

1 1 2 1 0 0

cP
5

1 2 1 −1 0 0 cP
53

1 2 1 −1 0 0

cP
6

1 2 1 1 0 0 cP
54

1 2 1 0 0 −1

cP
7

1 2 1 0 0 −1 cP
55

1 2 1 0 0 1

cP
8

1 2 1 0 0 1 cP
56

1 2 1 1 0 0

cP
9

2 1 1 0 1 0 cP
57

2 1 1 0 −1 0

cP
10

2 1 1 0 0 1 cP
58

2 1 1 0 0 −1

cP
11

2 1 1 0 0 −1 cP
59

2 1 1 0 0 1

cP
12

2 1 1 0 −1 0 cP
60

2 1 1 0 1 0

cP
13

1 2 2 1 1 1 cP
61

1 1 3 −1 −1 0

cP
14

1 2 2 −1 −1 1 cP
62

1 1 3 −1 1 0

cP
15

1 2 2 −1 1 −1 cP
63

1 1 3 1 −1 0
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Symbol cP metric Symbol cP metric

cP
16

1 2 2 1 −1 −1 cP
64

1 1 3 1 1 0

cP
17

1 2 2 −1 −1 0 cP
65

1 3 1 −1 0 −1

cP
18

1 2 2 −1 0 −1 cP
66

1 3 1 −1 0 1

cP
19

1 2 2 1 1 0 cP
67

1 3 1 1 0 −1

cP
20

1 2 2 1 0 1 cP
68

1 3 1 1 0 1

cP21 1 2 2 1 −1 0 cP
69

3 1 1 0 −1 −1

cP
22

1 2 2 1 0 −1 cP
70

3 1 1 0 −1 1

cP
23

1 2 2 −1 1 0 cP
71

3 1 1 0 1 −1

cP
24

1 2 2 −1 0 1 cP
72

3 1 1 0 1 1

cP
25

2 1 2 1 1 1 cP
73

2 1 3 −1 −2 1

cP
26

2 1 2 −1 −1 1 cP
74

2 1 3 −1 2 −1

cP
27

2 1 2 −1 1 −1 cP
75

2 1 3 1 −2 −1

cP
28

2 1 2 1 −1 −1 cP
76

2 1 3 1 2 1

cP
29

2 1 2 −1 −1 0 cP
77

2 3 1 −1 −1 2

cP
30

2 1 2 0 −1 −1 cP
78

2 3 1 −1 1 −2

cP
31

2 1 2 1 1 0 cP
79

2 3 1 1 −1 −2

cP
32

2 1 2 0 1 1 cP
80

2 3 1 1 1 2

cP
33

2 1 2 1 −1 0 cP
81

3 1 2 −1 −2 1

cP
34

2 1 2 0 1 −1 cP
82

3 1 2 −1 2 −1

cP
35

2 1 2 −1 1 0 cP
83

3 1 2 1 −2 −1

cP
36

2 1 2 0 −1 1 cP
84

3 1 2 1 2 1

cP
37

2 2 1 1 1 1 cP
85

1 2 3 −2 −1 1

cP
38

2 2 1 −1 −1 1 cP
86

1 2 3 −2 1 −1

cP
39

2 2 1 −1 1 −1 cP
87

1 2 3 2 −1 −1

cP
40

2 2 1 1 −1 −1 cP
88

1 2 3 2 1 1

cP
41

2 2 1 −1 0 −1 cP
89

1 3 2 −2 −1 1

cP
42

2 2 1 0 −1 −1 cP
90

1 3 2 2 −1 −1

cP
43

2 2 1 1 0 1 cP
91

1 3 2 2 1 1

cP
44

2 2 1 0 1 1 cP
92

1 3 2 −2 1 −1

cP
45

2 2 1 1 0 −1 cP
93

3 2 1 −1 −1 2

cP
46

2 2 1 0 1 −1 cP
94

3 2 1 −1 1 −2

cP
47

2 2 1 −1 0 1 cP
95

3 2 1 1 −1 −2

cP
48

2 2 1 0 0 1 cP
96

3 2 1 1 1 2

Small rhombohedral deformations change descriptions in the table into semi-reduced forms of hR lattices. Positive 
deformations allow to continuously transform cP into cF (cP1 – cP48cF1 – cF16). Similarly, negative deformations 
transform cP into cI (cP49 – cP96cF1 – cF16). Twelve metrics (cP1 – cP12 and cP49 – cP60) coincide. The cP0 case links 
all primitive and centered cubic lattices by rhombohedral deformations.

Table 6. Non-semi-reduced descriptions of cP lattices close to semi-reduced hR.
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For all cP descriptions in Table 6, the filtering of V fails in obtaining a complete set of symme-
try matrices and assigning cP Bravais type, but in all cases the matrices comprise at least one 
complete hR group, indicated geometrically by symbols of threefold axes with correspond-
ing directions and Miller indices. Rhombohedral deformations based on obtained (hkl)’s and 
assumed ε > 0 transform cP

1
-cP

48
 into 60 semi-reduced variants of some hR lattice. Together 

with 4 variants arising from cP
0
 (1,1,1,0,0,0), the total number is again 64. All are equi-dis-

tanced from the cP lattice. Similar analysis leads to 64 semi-reduced hR descriptions obtained 
from cP

49
-cP

96
 and cP

0
 by rhombohedral distortion with ε < 0.

In the neighborhood of cubic symmetry, the semi-reduced hR lattices reveal distorted 
rhombohedral cF, cI, or cP pseudo-symmetries and exact hR symmetry. The distortion can 
be extracted from the lattice metric using the geometric information from the ‘strict’ three-
fold axis. The distance to the border given by ε or Δd/d value does not depend on the lattice 
description (64 semi-reduced variants). Such distance corresponds to the angular differences: 
α-60°, α-90°, α-109.47° for a conventional description of hR lattice.

6. Distances between hR and monoclinic lattices: composed 
deformations

As mentioned earlier, the symmetry axis splits orthogonally 3D lattice into union of 1D lattice 
and 2D lattice and is stable during uniaxial deformation in 1D direction. But a twofold axis 
is less restrictive in comparison with higher order axes, and in this case 2D lattice can also 
be modified. This complicates the modeling of mC–hR border and the calculation of distance 
from mC to hR lattices. The modeling is simplified if the hR lattice description is restricted to 
the conventional form (a = b = c, α = β = γ < 120°). The geometric interpretation of symmetry is 
characterized by dual symbols: 3+[111](111), 3⁻[111](111), 2[01–1](01–1), 2[1–10](1–10), 2[−101]
(−101). The dot product [uvw]·(hkl) is 2 for all twofold axes, which means that deformation ε 

(hkl), where (hkl) = (01–1), (1–10), (−101), transforms an hR lattice to the centered monoclinic, for 
example, mC. Other ε deformations are also possible. For a twofold axis in [uvw] direction, any 

deformation ε (hkl), where [uvw]·(hkl) = 0, retains the given twofold symmetry. Moreover, small 
deformations are additive and their (hkl)-type can be recognized by geometric images (Table 7).

Δa/a [%] Δb/b [%] Δc/c [%] Δα [°] Δβ [°] Δγ [°] δ [°] Operation

Deformation 0.001·(01–1) mC (1, 1.0320, 1.7143, 90°, 123.2094°, 90°)

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2[01–1](01–1)

0.0500 −0.0500 0.0000 −0.0800 0.0800 0.0000 0.0934 2[1–10](1–10)

0.0500 0.0000 −0.0500 −0.0800 0.0000 0.0800 0.0934 2[−101](−101)

0.0500 0.0000 −0.0500 −0.0800 0.0000 0.0800 0.0000 3 + [111](111)

0.0500 −0.0500 0.0000 −0.0800 0.0800 0.0000 0.0000 3-[111](111)

Deformation 0.001·(011) mC (1, 1.0301, 1.7155, 90°, 123.1840°, 90°)

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2[01–1](01–1)

0.0500 −0.0500 0.0000 0.0496 −0.0496 0.0000 0.0556 2[1–10](1–10)
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The ε-deformations are additive by the definition, but this feature is also valid for geo-
metric images (excluding δ) in the vicinity of a border, as was exemplified in Table 7. This 
feature means that more complicated images can be decomposed and explained by a few 
ε-deformations, at least in theory. In this situation, the goal is to obtain maxdev ≈ 0 by uniaxial 
deformations of a probe cell, where deformation types (hkl)’s can be predicted from the geo-
metric images. The introductory application of such analysis is shown in the following two 
real-life examples.

7. The distances for phospolipase A
2

For a comparative study of different distances between a probe cell and the items in protein 
database (PDB), McGill and others [2] used unit cells of phospolipase A

2
 discussed in [12], 

which concluded that items 1g2x, 1u4j, and 1fe5 describe the same structure. Study, among 
other interesting conclusions, showed a similarity only between 1g2x and 1u4j cells for all 
applied distances. This result is also confirmed by analysis based on ε distances (Table 8).

Δa/a [%] Δb/b [%] Δc/c [%] Δα [°] Δβ [°] Δγ [°] δ [°] Operation

0.0500 0.0000 −0.0500 0.0496 0.0000 −0.0496 0.0556 2[−101](−101)

0.0500 0.0000 −0.0500 0.0496 0.0000 −0.0496 0.0532 3 + [111](111)

0.0500 −0.0500 0.0000 0.0496 −0.0496 0.0000 0.0532 3-[111](111)

Deformation 0.001·(01–1) + 0.001·(011) mC (1, 1.0320, 1.7155, 90°, 123.1840°, 90°)

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2[01–1](01–1)

0.1000 −0.0999 0.0000 −0.0304 0.0304 0.0000 0.0774 2[1–10](1–10)

0.1000 0.0000 −0.0999 −0.0304 0.0000 0.0304 0.0774 2[−101](−101)

0.1000 0.0000 −0.0999 −0.0304 0.0000 0.0304 0.0532 3 + [111](111)

0.1000 −0.0999 0.0000 −0.0304 0.0304 0.0000 0.0532 3-[111](111)

Geometric images of monoclinic simple deformations 0.001·(01–1), 0.001·(011) and composed deformation 0.001·(01–1) 
+ 0.001·(011) = 0.002·(010). Resulting monoclinic lattice parameters are given explicitly.

Table 7. Examples of the border hR-mC models for hR lattice (a,b,c = 1, α,β,γ = 62°).

1g2x 80.949 80.572 57.098 90° 90.35° 90° C

1u4j 80.36 80.36 99.44 90° 90° 120° R

1fe5 57.98 57.98 57.98 92.02° 92.02° 92,02° P

1g2x 3260.18 3261.15 3261.15 15.22 14.12 14.12 original

ε = −1.04·(011) +0.07·(01–1) deformation: monoclinic

3260.18 3260.18 3260.18 14.12 14.12 14.12 hR

ε = −14.12·(111) deformation: rhombohedral

3246.06 3246.06 3246.06 0.00 0.00 0.00 cP
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The monoclinic deformation of 1g2x cell is very small. Rhombohedral distances ε to the cubic 
border are similar for 1g2x and 1u4j, but drastically different in comparison with that in 1fe5. 
Moreover, the different sign suggests that if one agrees that all three items describe the same 
structure it must also allow the possibility that the true symmetry is cubic. It is also visible that 
this method is sensitive for much smaller (then analyzed) deviations from the symmetry borders.

8. hR-mC dilemma in α-Cr
2
O

3
, α-Fe

2
O

3
, CaCO

3

The crystal structures of BiFeO
3
, as well as of α-Cr

2
O

3
, α-Fe

2
O

3
, CaCO

3
 are usually described 

as trigonal, but there are motivations that come from systematic (hkl) peak broadening and 
anisotropic microstrains, indicating monoclinic deformations, to assume that an average met-
ric structure reveals monoclinic, that is, broken symmetry. [3, 4] Such broadening is system-
atic and increases with the crushing polycrystalline powders in a planetary mill and thus, at 
least in theory, can modify symmetry. High-resolution synchrotron radiation powder diffrac-
tions and Rietveld refinement were used in [3, 4] to obtain precise cell parameters. Values of 
agreement factors obtained with the Rietveld refinement of the trigonal and monoclinic mod-
els were very similar. The authors concluded that the lowering of symmetry should result in 
splitting some diffraction lines, which was not observed.

Let us look at the published data obtained for the monoclinic model [3, 4]. Cell parameters 
were recalculated to the primitive form, which was not Niggli. The strict symmetry had geo-
metric description 2 [1–10](1–10). Therefore, it was assumed that composite deformation ε

1·
(1–

10) + ε
2·
(110) brings these monoclinic cells to the rhombohedral ones. The BiFeO

3
 cell data were 

not available but all the data for α-Cr
2
O

3
, α-Fe

2
O

3
, CaCO

3
 and different milling times reveal 

similar values ε
1
 = ε

2
 ≈ −0.004. Values do not depend on the milling time, even if systematically 

broadened peaks are shown. Deviations from hR borders in the form of Δd/d ≈ −0.0004 mean 
that it is practically not possible to observe the line splitting. A strict and systematic relation-
ship ε

1
 = ε

2
 seems to be nonphysical, rather a result of the monoclinic constrains in Rietveld 

refinements. Despite the high precision of synchrotron powder diffraction, a monoclinic lat-
tice deformation was not metrically determined.

1u4j 3251.28 3251.28 3251.28 22.41 22.41 22.41 original

ε = −22,41·(111) deformation: rhombohedral

3228.87 3228.87 3228.87 0.00 0.00 0.00 cP

1fe5 3361.68 3361.68 3361.68 −118.49 −118.49 −118.49 original

ε = 118,49·(111) deformation: rhombohedral

3480.17 3480.17 3480.17 0.00 0.00 0.00 cP

Upper lines give standard Bravais descriptions for three items. Corresponding three parts compare original metric 
tensors, ε distances to higher symmetry borders, and metric tensors of these borders for each item.

Table 8. Original cell data for PDB items (1g2x, 1u4j, 1fe5) and ε distances to higher symmetry borders.
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9. Summary

Generally, border problems cannot be overlooked in s.r.d. Small, but not negligible, values 
of discrepancy parameters indicate the border problem and give some measure to the higher 
symmetry border. Deviations in isometric actions on the investigated cell can be explained by 
monoaxial deformations measured by parameter ε or by Δd/d, which is more informative for 
powder diffraction investigations.

Moreover, ε is not dependent on the choice of lattice representation in s.r.d. It was explicitly 
shown in Tables 4 and 5. These data can be also used for testing other definitions of distances, 
because 64 items describe the same rhombohedral lattice (distances between items should 
be zero and between each item and the cubic cF and cI lattices should be fixed).The situation 
is more complicated in the vicinity of cP border. Pseudo-cP symmetry cannot be recognized 
for most s.r.d representations of hR lattices, since they are similar to non-semi-reduced cP 

descriptions listed in Table 6. But there is still a possibility to select such hR description, which 
is simultaneously Niggli-reduced, and to find the distance to cP

0
.

The concept is outlined and tested for hR lattices, but for wider applications other lattice types 
(especially cubic) should be investigated.
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