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Abstract

The use of microholes is a potential approach to enhance fluid flow and heat exchange 
within thermal power plants, especially for the turbines. Ascribed to eco environmental 
competition, micropunching is extremely suitable for the mass production of micro fea-
tures with friendly eco effects. Therefore, the morphology variation of micropunch and 
microhole during the punching with WC/Co micropunches was investigated by scan-
ning electron microscopy (SEM), energy dispersive spectrometer (EDS) and confocal 
laser. Results reveal that due to the optimal joint contribution of WC and Co, the formed 
microholes satisfy with the practical requirements in the quasi stable period. Moreover, 
the serious wear of micropunch occurs with the wear loss both of Co and WC when the 
punching number exceeds 1525. With the further increment in punching numbers, the 
dominant factors of the wear loss would mainly rely on the easily peeled off WC due 
to the serious loss of Co. In addition, the microholes can be adequately processed after 
about 30 min by natural sand grains. The quality of the hole would decrease with further 
increase in processing time and sand accumulation becomes severe.

Keywords: microhole, thermal power plants, WC/Co, micropunch, morphology

1. Introduction

It is well known that the thermal power plants can be classified by the source of the energy 
used to generate the steam that it is expanded in the turbine to produce electricity, which are 
listed as follows classified by heat source: (1) heat sources for fossil fuel power stations: (i) a 
steam turbine generator and (ii) the natural gas-fired plants. They may use a combustion tur-

bine. To date, a coal-fired power station produces heat by burning coal in a steam boiler. The 
steam drives a steam turbine coupled to a generator producing electricity. It is well known 
that the fossil fuel power stations are still currently the dominating plants for generation 
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of energy production around the world. (2) A nuclear power plant is a steam turbine plant 
where the steam is generated by a nuclear reactor. Up to now, about 10% of all electric gen-
eration worldwide is produced by nuclear power plants. It should be noted that after the 
Fukushima disaster, all the plants are scheduled to be shut down in a few years, and the rest 
of the world is very hesitant with respect to what role nuclear energy should have in future 
energy planning. (3) Geothermal power plants use steam extracted from hot underground 
rocks. This kind of energy plant only contributes a minor energy output compared with the 
global demand. (4) Biomass-fueled power plants are fueled with wood pellets, wood chips, 
straw and waste from the agricultural industry such as sugar cane and nut scale, municipal 
solid waste, landfill methane or other forms of bio gas. (5) In integrated steel mills, blast 
furnace exhaust gas is a low cost, although low energy-density, fuel. This recycled gas is avail-
able to produce about 60% of the total electricity consumption. (6) Waste heat from industrial 
processes is occasionally concentrated enough to use for power generation, usually in a steam 
boiler and turbine. (7) Solar thermal electric plants use sunlight to boil water and produce 
steam, which turns the generator. (8) IGCC (integrated gasification combined cycle) with car-
bon capture and storage (CCS) technology allows coal to be used to generate power as cleanly 
as natural gas [1, 2].

In most of the countries, thermal power plants are playing an important role in the energy 
production. Therefore, the research work should be taken enough attention toward the opti-
mization of these power plants. In the developing countries, energy supplies are less secure 
because of its costlier price. Indeed, there is a need to reconsider lowest cost energy options 
and the relevant techniques. Since, from an energy performance point of view, first law analy-
sis has been found to be insufficient. So, in thermodynamic analysis of various thermal pro-
cesses and plant systems, exergy analysis is getting its own importance. It is well known that 
the total conversion of heat into work is not possible.

Consequently, that part which is available for conversion is termed as exergy. It is a property 
associated with the state of system and environment, nowadays a useful tool to differentiate 
between internal irreversibility and energy losses in a process [2]. Thermal power plant perfor-
mance can be evaluated through energetic performance criteria, which are electrical power and 
thermal efficiency. In recent decades, exergy analysis of plant has been found as a useful method 
in the design, evaluation, optimization and improvement of thermal power plants [3–5]. Exergy 
analysis helps in finding the losses taking place in a system. By this method, energy conversion 
at different points, various component efficiencies and points of largest losses are easily obtain-
able and hence it helps in taking necessary action to decrease them [6, 7].

Some researchers have contributed review paper on exergy analysis, which helps the young 
researchers to get in touch with the previous year’s problems [8]. In power plants, insights 
have been provided into various energy and exergy efficiencies which are helpful for design 
engineers [9, 10]. As a result, improvement in thermal performance of power generation units 
and consuming devices can be achieved significantly by combining exergy analyses with the 
related techniques upgraded.

In recent years, microtechnology has become one of the key disciplines with a significant 
effect on the development of new products and production technologies [11–14].
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It is well known that microtechnology describes the technological approach, directed to the 
miniaturization of components and systems, down to micrometer scale. Microtechnological 
components, such as distributed holes, bear the potential to provide further functionality, for 
example, enhancing fluid flow and heat exchange within thermal power plants, especially for 
the turbine blades [15–18].

Up to now, the ever increasing demand for smaller, higher quality and lower priced products 
from almost all fields of industry, household equipment and entertainment electronics involves 
the optimisation of already existing and the development of new manufacturing methods 
which are tailor-made for the micro systems technique with higher precision [19, 20].

However, these kinds of micro devices are mainly fabricated by using micromachining tech-
nique, and fabrication technology with stable and low cost as one of the important issues [11, 
12, 14, 19].

Therefore, the microholes formed by micropunching at low cost and in large quantities, applied 
for thermal power plants application and micro-parts fabrication have been researched. This 
research aims at investigating the wear characteristics of micropunch (150 μm in diameter) and 
the morphology variation of microholes formed by punching pure titanium (Ti) in various pro-
cessing periods to overcome current problems in the micro-metal-forming technology. In the 
long run, this research can lead to making microholes distributed in the thermal power mate-
rials (both non-metals and metals) at low cost and in large quantities with this eco-friendly 
technique.

2. Experimental materials and procedures

2.1. Experimental material

Micropunch with 75% volume fraction WC particle and 25% volume fraction Co particle of 
50 μm mean size, 150 μm in diameter, is shown in Figure 1. Figure 2 shows the surface texture 
of micropunch. Pure titanium sheet with 200 μm in thickness was used as the substrate.

Figure 1. Profile of micropunch.
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2.2. Experimental procedures

In order to clean the contaminants in the prepared pure titanium sheet, it was carefully 
washed by acetone and pure ethyl alcohol before putting into the microdie. After that, the 
microprocessing machine MP50 (made in Japan) was taken to punch the titanium sheet with 
20 pulses per minute, and feedrate of 2 mm.

The wear of the micropunch and the variation of the morphology of microholes in different 
processing periods were investigated using confocal microscopy, scanning electron micros-
copy (SEM), energy dispersive spectrometer (EDS) and confocal laser.

3. Results and discussion

3.1. Initial wear characteristic of micropunch

The relationship between the wear loss of micropunch and punching numbers is shown in 
Figure 3. It illustrates that the weight of micropunch (each for five times) has an obvious 
decrease with the increment of punching number in the initial. Its corresponding surface tex-
ture is expressed in Figure 4. It depicts that the particles distributed more uniformly than that 
of parent material (cf. Figures 2 and 4).

According to Figures 3 and 4, it shows that the wear of micropunch in the initial increases 
significantly, and WC particles cannot be easily observed. Consequently, the dominant fac-
tor of the wear loss in the initial period is mainly due to Co. The morphology of the formed 
microhole is expressed in Figure 5. Some substrate debris is distributed sparsely in the back-
side as shown in Figure 5b, and its EDS results are illustrated in Figure 6.

3.2. Quasi stable wear characteristic of micropunch

With the increment of punching numbers, the phenomena of the initial distinct wear of micro-
punch disappears, the wear loss of the micropunch becomes relatively stable with a little variation 

Figure 2. Surface texture of micropunch.

Thermal Power Plants - New Trends and Recent Developments82



as depicted in Figure 3, particularly for punching number from 500 to 1200. The surface texture 
of micropunch is shown in Figure 7 correspondingly. It expresses small pieces of WC particles 
on the surface. Meanwhile, WC particles distribute uniformly on the micropunch surface.

The morphologies of the formed microhole are shown in Figure 8. It expresses that although 
some substrate debris still distribute in the backside (Figure 8b), the quality of the quasi 
stable-period-microhole is definitely superior to the initial period (compared Figure 5 with 
Figure 8). It illustrates that because of the joint contribution of WC and Co, the wear loss of 
micropunch in the quasi stable period is little.

3.3. Severe wear characteristic of micropunch

The surface texture of micropunch with punching number over 1525 is shown in Figure 9. It 
shows that large amounts of WC particles distributes on the micropunch surface because of 

Figure 3. Relationship between wear loss of micropunch and punching numbers.

Figure 4. Surface texture of micropunch in the initial condition (punching number lower than 500).
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Figure 6. EDS results of debris in the backside.

Figure 5. Morphology of microhole. (a) Front side, (b) back side.
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Figure 7. Surface texture of micropunch with punching number between 500 and 1200.

Figure 8. Morphology of microhole. (a) Front side, (b) back side.

Figure 9. Surface texture of micropunch in the severe wear condition.
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serious wear loss of Co, which matches well with Figure 3. As a result, the wear of micropunch 
increases distinctly (Figure 3). Furthermore, with the punching numbers increasing further, 
the dominant factors of the wear loss would mainly rely on WC (which is easily peeled off 
during the micropunching) as shown in Figure 9. Meanwhile, the quality of the machined 
microhole decreases distinctly (cf. Figures 5, 8, 10 and 11). It illustrates that a large amount 
of micropunch materials are peeled off and adhered to the Ti substrate. At the same time, the 
substrate material could not be punched successfully and it would stick to the substrate. Also, 
with the effect of feedrate, the unsuccessfully removed materials would be sheared and form 
the larger debris as shown in Figure 11.

3.4. Profile of the microhole punched by micropunch

The diameter of the punched microhole by micropunch was measured by LEXT confocal laser-
OLS3000 as shown in Figure 12. Its corresponding results (each for five times) are shown in 

Figure 11. Morphology of microhole in the intensively severe wear condition. (a) Front side, (b) back side.

Figure 10. Morphology of microhole in the severe wear condition. (a) Front side, (b) back side.
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Figure 13. Compared with Figure 3, it indicates that the diameter of microhole changes in the 
different micropunching periods. At the beginning of the micropunching, the obvious decre-
ment of the diameter of microhole varies with the punching number increasing, which surely 
matches well with results expressed in Figure 3. The attractive results are addressed with the 
relatively stable diameter of microhole when the micropunching number varies from 500 to 
1200. When the punching number increases further, the obvious decrement of the diameter of 
microhole becomes more and more clear on account of the serious Co loss, especially for the 
punching number over 1525 as depicted in Figure 13. As a result, in the severe wear period 
of micropunching, due to the serious loss of bonding material Co, the wear of micropunch 
mainly relies on the easily peeled off WC particles. Simultaneously, because the temperature 
of the micropunch increases with the increment of the punching number, WC particles are 
more easily detached off from the micropunch. Consequently, the wear loss of the micro-
punch becomes more intensive. Furthermore, if the pulses per minute increases, the wear of 
micropunch will drastically lose. In order to improve the quality of the micropunch, besides 
the abovementioned, the microstructure of micropunch should be considered further with the 
composition of the micropunch, especially for the distribution of WC and Co particles.

Figure 12. Profile of microhole punched by micropunch measured by OLS3000.

Figure 13. Relationship between diameter of microhole and punching number.
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4. Post-treatment for microholes by natural sand grains

Features of microholes (such as Figures 5 and 8) in the micropunching include debris (for 
example, shear marks and burrs). Because of the combination of shear and ductile fracture 
in the micropunching, the debris produced. Moreover, the property of the processing mate-
rials is also one of the crucial effective influence factors on the final features of the micro-
hole. In the meantime, the uniformity of the clearance can affect the microhole features 
during the micropunching (cf. Figures 5, 8, 10 and 11). The debris can hinder the normal 
functionality of micro features and prevent the proper assembly of micro components to 
form micro systems. Therefore, the microholes shall be post treated to improve its finishing.

Figure 14 shows the post treated microhole realized with the agitation of abrasive grains 
through planetary stirring, where natural sand was used as the abrasive due to its  environmental 

Figure 14. Morphology of a microhole after 20 min processing. (a) Front side, (b) back side.
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friendliness. It expresses the results of a 20 min processing microhole. The hole is basically free 
from loosely attached debris. Burrs at the back side edge are further lowered. Those flattened 
fragments are slimmer than before. More aggregation of the microscopic grains is observed, 
both the fragment regions and the edge regions (Figure 14a, insets). Their sizes range from the 
micron to sub-micron. Continued aggregation might possibly be on account of van der Waals 
or inter-molecular forces.

With further increment of the processing time, the quality of the hole continues to improve. 
Figure 15 reveals that the burrs in the back side edge are no longer existed, except for some small 
isolated pieces (Figure 15b, inset). Burrs are protrusions from the edge. Their bonding with the 
substrate is much stronger than that of the re-attached debris. Tiny burrs are particularly hard to 
be removed. It is well known that the impact energy from a grain of sand depends on the grain 
size besides its velocity. Those burrs could not be effectively cleaned by the impact from smaller 
grains. Yet, the chance that tiny burrs are impacted by the larger sand grains is relatively low.

The fragment terraces on the front side become very thin. As a result, they are noticeable 
mainly under higher magnification (Figure 15a, right inset). In addition, more grains are gath-
ered around the edge of the hole as well as stuck to the inner wall of the hole through attrac-
tion forces (Figure 15a, left inset).

The quality of the holes cannot improve with further processing. Spontaneously, more sand 
aggregates after 40 min (Figure 16). The attachment of sand grains to the edge regions and 
inner wall could be visible from the back side as well as from the front side.

Figure 15. Morphology of a microhole after 30 min processing. (a) Front side, (b) back side.
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A band of jagged foil material is detected around the front surface near the edge of the hole. 
It is mainly produced as substrate material breaks from the punch when it is pulled back 
from the hole. It cannot be clearly detected before because (1) the feature size is relatively 
small compared with those fragments detected at earlier times and (2) parts of the band are 
rolled back against the surface of the substrate material. Apparently sand abrasion could 
only reduce the width of the band to a few microns. Occasionally, parts of the band are bent 
toward the microhole. On account of the support of sand gathered underneath, it is unlikely 
that their posture could be reversed in subsequent processing.

5. Conclusion

The wear characteristic of the WC/Co micropunch used for micromachining microhole 
potential for thermal power plants application had been researched. It shows that the wear 
of micropunch increases significantly in the initial and the dominant factor of the wear loss 
mainly relies on Co. With the punching number increasing, the quasi stable wear of WC/Co 
micropunch varies with a little wear loss. However, when the punching number exceeds 1525, 
the serious wear loss of Co and WC of micropunch takes place. Moreover, with the increment 
of the punching numbers further, the dominant factor of the wear loss would mainly rely on 
the easily peeled off WC. Meanwhile, the quality of microhole decreases intensively. In addi-
tion, the microholes can be adequately processed after about 30 min by natural sand grains. 
The quality of the hole would decrease with further increase in processing time and sand 
accumulation becomes severe and no further improvement is observed.

Acknowledgements

The work is supported by the Strategic Research Grant (SRG) from City University of Hong 
Kong (Grant No.: 7004860).

Figure 16. Morphology of a microhole after 40 min processing. (a) Front side, (b) back side.

Thermal Power Plants - New Trends and Recent Developments90



Author details

Kelvii Wei Guo* and Hon Yuen Tam

*Address all correspondence to: kelviiguo@yahoo.com

Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 
Hong Kong

References

[1] Bogmansa CWJ, Dijkemab GPJ, van Vliet MTH. Adaptation of thermal power plants: 
The (ir)relevance of climate (change) information. Energy Economics. 2017;62:1-18

[2] Utlu Z, Hepbasli A. A review on analyzing and evaluating the energy utilization efficiency 
of countries. Renewable & Sustainable Energy Reviews. 2007;11(1):1-29

[3] Wang LG, Voll P, Lampe M, Yang YP, Bardow A. Superstructure-free synthesis and 
optimization of thermal power plants. Energy. 2015;91:700-711

[4] Alobaid F, Mertens N, Starkloff R, Lanz T, Heinze C, Epple B. Progress in dynamic simu-

lation of thermal power plants. Progress in Energy and Combustion Science. 2016;59: 
79-162

[5] Gonzalez-Salazara MA, Kirstena T, Prchlik L. Review of the operational flexibility and 
emissions of gas- and coal-fired power plants in a future with growing renewables. 
Renewable and Sustainable Energy Reviews. 2018;82:1497-1513

[6] Dincer IY, Cengel Y. Energy, entropy concepts and their roles in thermal engineering. 
Entropy. 2001;3(3):116-149

[7] Rosen MA, Bulucea CA. Using exergy to understand and improve the efficiency of elec-

trical power technologies. Entropy. 2009;11(4):820-835

[8] Sciubba E, Wall G. A brief commented history of exergy from the beginnings to 2004. 
International Journal of Thermodynamics. 2007;10(1):1-26

[9] Kanoglu M, Dincer I, Rosen MA. Understanding energy and exergy efficiencies for 
improved energy management in power plants. Energy Policy. 2007;35(7):3967-3978

[10] Verkhivker GP, Kosoy BV. On the exergy analysis of power plants. Energy Conversion 
and Management. 2001;42(18):2053-2059

[11] Madou MJ. Microfabrication challenge. Analytical and Bioanalytical Chemistry. 2004; 
378:11-14

[12] Mark JJ. Microfabrication and Nanomanufacturing. Boca Raton, FL: CRC/Taylor & 
Francis; 2006

[13] Beau V, Chabassier G. Metrology of large optical components for high-power lasers. 
Microsystems Engineering: Metrology and Inspection III. SPIE. 2003;4411:197-203

Ti Microholes Potential for Thermal Power Plants Application Punched by WC/Co Micropunch
http://dx.doi.org/10.5772/intechopen.73308

91



[14] Fecht HJ, Werner M. The Nano-micro Interface: Bridging the Micro and Nano Worlds. 
Weinheim: Wiley-VCH; 2004

[15] Horn A, Weichenhain R, Albrecht S, Kreutz EW, Michel J, Niessen M, Kostrykin V, 
Schulz W, Etzkorn A, Bobzin K, Lugscheider E, Poprawe R. Microholes in zirconia 
coated Ni-superalloys for transpiration cooling of turbine blades. High-Power Laser 
Ablation III. SPIE. 2000;4065:218-226

[16] Lugscheider E, Bobzin K, Moes M, Lackner K, Poprawe R, Kreutz EW, Willach J. Laser 
drilled microholes in zirconia coated surfaces using two variants to implement the effusion 
cooling of first stage turbine blades. Advanced Engineering Materials. 2005;7(3):145-152

[17] Kaur N, Kumar M, Sharma SK, Kim DY, Kumar S, Chavan NM, Joshi SV, Singh N, Singh H.  
Study of mechanical properties and high temperature oxidation behavior of a novel 
cold-spray Ni-20Cr coating on boiler steels. Applied Surface Science. 2015;328:13-25

[18] Moon HW, Yoon YJ, Park JH, Myung BS, Kim DE. Dynamic wetting and boiling char-

acteristics on micro-structured and micro/nano hierarchically structured surfaces. 
Experimental Thermal and Fluid Science. 2016;74:19-26

[19] Knobloch H, Kaminorz Y. MicroNano Integration. Berlin Heidlberg: Springer-Verlag; 2004

[20] Mohamed GH. The MEMS Handbook. Boca Raton, FL: CRC/Taylor & Francis; 2006

Thermal Power Plants - New Trends and Recent Developments92


