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Abstract

Computed tomography (CT) is a very valuable imaging method and plays an important 
role in clinical diagnosis. As people pay more and more attention to radiation doses these 
years, decreasing CT radiation dose without affecting image quality is a hot direction 
for research of medical imaging in recent years. This chapter introduces the research 
status of low-dose technology from following aspects: low-dose scan implementation, 
reconstruction methods and image processing methods. Furthermore, other technologies 
related to the development tendency of CT, such as automatic tube current modulation 
technology, rapid peak kilovoltage (kVp) switching technology, dual-source CT technol-
ogy and Nano-CT, are also summarized. Finally, the future research prospect are dis-
cussed and analyzed.

Keywords: low-dose CT, spectral CT, dual-source CT, nano-CT, image reconstruction, 
image enhancement

1. Introduction

Computed tomography (CT), also referred to as computerized axial tomography (CAT), is a 

noninvasive and high-tech medical examination that uses X-ray to produce cross-sectional 

images of the body. With these cross-sectional images, doctors can visualize anatomical 

structures and tissues inside the body, like small nodules or tumors, which they cannot see 

with a plain film X-ray. This does not violate the outer surface of the body, in other words, 
non-invasively. Since the first practical CT instrument developed in the 1970s by Godfrey 
N. Hounsfield (he received the Nobel Prize in 1979), X-ray CT technology has developed 
dramatically and become a standard imaging procedure for virtually all parts of the body in 

thousands of facilities throughout the world. Nowadays, CT scanners are used for a variety 

of reasons, for example, diagnostic and treatment planning, therapeutic and interventional 

purposes.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Generally, X-ray CT go through six generations [1]. The first generation, with parallel-beam 
geometry, only has single X-ray source and single X-ray detector cell to collect all the data for 

a single slice. The projection data were acquired in approximately 5 minutes, and the tomo-

graphic image was reconstructed in approximately 20 minutes. The second generation scan-

ner uses fan-beam geometry and has multiple detectors, thus multiple projections obtained 

during each traversal past the patient with the acquisition time for one tomogram 1 minute. 
Both the first and second generation CT works in a translate/rotate model. In the third genera-

tion CT, a fan beam of X-rays is used and a curved detector array consisting of several hun-

dred independent detectors is mechanically coupled to the X-ray source, and both rotate in 

synchrony, that is, rotate/rotate mode. The fourth generation CT also uses fan-beam geometry 
but with ring of stationary detections array. Only the X-ray tube revolves around the patient, 

namely, rotate/stationary mode. For third and fourth generation scanners, acquisition times 
are similar, less than 10 seconds for one tomogram. In the fifth-generation CT, the detector 
array remains stationary, while a high-energy electron beams is electronically swept along 

a semicircular tungsten strip anode. Its scanning time is about 50 ms, which is fast enough 
to image the beating heart without significant motion artifacts. The sixth generation CT is 
emerged due to the requirement for faster scan times, and in particular, for fast multiple 
scans for three-dimensional imaging. Both third and fourth generation fan-beam geometries 

achieve this using self-lubricating slip-ring technology to make the electrical connections with 

rotating components. It can produce one continuous volume set of data for entire region.

From the first generation to the sixth generation, CT pursues higher speed, spatial resolution 
and density resolution. At present, these three aspects are still goals of CT manufacturers, but 

beyond that low-dose scanning is the fourth aspect that CT manufacturers pay real attention 
to, and become the development direction of CT technology. Overall, the trend of X-ray CT 

now is mainly in low-dose CT, ultra-low-dose CT and spectral CT, to obtain clear positioning 

and qualitative diagnosis using the least X-ray radiation.

2. Low-dose CT

The application requirements for CT have almost covered all clinical departments, and have 
been commonly used in medical institutions. However, by the nature of CT scanning, larger 

radiation doses are involved compared to conventional X-ray imaging procedures, which 

may lead to adverse health effects. Many literatures show that X-ray radiation will increase 
radiation-induced cancer risks in adults and particularly in children. The research published 

in “New England Journal of Medicine” in 2007 shows that 1.5–2% of the tumors may be due to 
CT radiation. For example, when the effective dose is 10 mSv in an adult abdominal examina-

tion, the risk of cancer will increase 1/2000 [2]. And, more remarkable, children are particularly 

vulnerable to radiation dose damage [3, 4]. There is a growing concern on the significance of 
minimizing the radiation dose delivered to patients during X-ray CT. It is worth noting that 
the relative noise in CT images will increase as the radiation dose is decreased. And a tradeoff 
should be found between radiation dose and imaging quality. At international conferences 
on radiology in recent years, such as the radiological society of north American (RSNA), the 
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topics of several speakers are related to dose protection. The International Commission on 
Radiation Protection (ICRP) also recommended that radiation doses should all be kept as low 
as reasonably achievable (ALARA). This means that radiation dose should be as little as pos-

sible on the premise that CT images can meet clinical requirement. “Low-dose” has emerged 
as one of the important direction of CT development.

Low-dose CT was first proposed by Naidich in 1990 and applied to the lung [5]. Their experiments 

showed that high-quality lung images could be obtained with less radiation doses. But, due to lim-

itations of hardware and software, the image quality are not completely meet the requirements of 
clinical diagnosis at that moment. Fortunately, the developments of science and technology laid 

solid foundations for all kinds of low-dose CT technology, and more and more radiologists and 

researchers have applied themselves to low-dose CT imaging, for example, CT lung screening [6] 

and CT cardiac screening [7]. In addition, low-dose scan for children has received more attention 
[8]. On one hand, CT radiation dose reduction is partly dependent on the hardware optimization. 

On the other hand, it is related to personalized scan parameters, including the number of scans, 

the tube current and scanning time in milliampere-seconds (mAs), the tube voltage in the kilovolt 

peaks (kVp), the size of the patient, the axial scan range, the scan pitch (the degree of overlap 

between adjacent CT slices) and the specific design of the scanner being used.

For any CT scan, the most direct factors that affect the radiation dose are X-ray intensity and 
exposure time. The clinically common way to achieve the low-dose scan is to lower milliam-

pere-seconds (mAs) or peak kilovoltage (kVp) setting in the scanning protocol, to reduce the 
intensity of X-ray. Figure 1 shows a CT phantom reconstruction at standard dose, while lower-

ing the mAs leads to a lower signal-to-noise ratio (SNR) and the decrease of density resolution 

due to the introduction of noise and streak artifacts [9], such as in Figure 2. Thus, it is difficult 
to distinguish similar density regions. Lowering the kVp causes a worse penetration, greatly 

reducing SNR. For example, if the tube voltage drops from 120 to 80 kVp, the tube current 
must be increased by four times to maintain the same SNR [10]. The differences between the 
two approaches therefore make them used in different applications, for instance, the way of 

Figure 1. CT phantom reconstruction at standard dose (120 kV, 240 mAs).
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lowering tube current is often used for lesions with high contrast, such as calcifications, while 
the way of lowering tube voltage is often used for iodine-based contrast imaging [11].

In order to remove noise and artifacts mentioned above, researchers studied a lot of recon-

struction algorithms based on the existing CT equipment, hoping to improve the image qual-
ity by designing the appropriate algorithm under the limited hardware conditions. Based on 

this, many techniques have been proposed to remove noise and artifacts in low-dose CT [12]. 

They are generally categorized into three major types such as projection restorations, iterative 

reconstruction (IR) and post-processing methods.

2.1. Projection restorations

Since the advent of the CT system, the analytic reconstruction algorithm, represented by fil-
tered back projection (FBP), is the mainstream algorithm for two-dimensional CT system and 
the Feldkamp-Davis-Kress (FDK) algorithm is still the first selection of three-dimensional 
CT system. This is because the analytic algorithms are simple, thus fast and easy to realize. 

However, in a low-dose scanning, the projections are contaminated with excessive quantum 
noise, while the analytic algorithms lack effective ability for noise suppression; this makes the 
reconstructed images from a low-dose scan that are severely degraded with noise and artifacts. 

In order to solve this problem, some researchers treat the projection data as an image (called 
sinogram) and suppress excessive quantum noise in it by kinds of methods, making the pro-

jection data close to that at standard dose. Thus, reconstructions with suppressed noise and 

artifacts can be reconstructed from the denoised projections by analytical reconstruction meth-

ods. To cope with the excessive quantum noise in projection data, researchers have proposed 
different techniques to restore noise-corrupted projections. Hsieh modeled the noise in projec-

tion data and proposed an adaptive filtering to achieve streak artifact reduction in CT recon-

struction [13]. In the study of Elbakri, the detected photon numbers are considered to follow 
a Poisson distribution plus a background Gaussian noise with zero mean, and then a penal-
ized Poisson likelihood maximization algorithm was then proposed [14, 15]. Li statistically 

Figure 2. CT phantom reconstruction at low dose (120 kV, 30 mAs).
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analyzed the large sample of projection data and considered that noise in the low-dose CT 

sinogram after logarithm transform and calibration could be modeled as a signal-dependent 

variable and the sample variance depended on the sample mean by an exponential relation-

ship [16]. Then Wang proposed several penalized weighted least-squares (PWLS) approaches 
on the noisy sinogram based on this model to adaptively remove non-stationary noise [17–19]. 

Ma designed a generalized Gibbs prior that exploited nonlocal information of the projection 
data and used the FBP method to finish the final CT reconstruction [20]. To obtain a more 

accurate model, Zhang studied the property of the projection data and found an important 

character that isolated noise points may exist in some areas of the sinogram [21]. Soon he 

proposed a noise reduction scheme which includes isolated data removal and segmentation-

based filtering [22]. Denoising techniques based on wavelet transformation are also applied to 
projection restorations. Sahiner and Yagle showed how to restore noisy projections in wavelet 

domain (using wavelet transformation) [23]. Wang proposed wavelet coefficient local adap-

tive (WCLA) for the noisy sinogram and their method was proved to be effective in removing 
noise while maintaining the diagnostic image details [24]. Mahmood proposed a graph-based 
sinogram denoising method, which makes the sinogram as an ideal candidate for graph-based 

denoising since it generally has a piecewise smooth structure [25]. In addition, many sophisti-
cated denoising techniques are used and improved for projection space denoising, for exam-

ple, bilateral filtering [26–28], nonlocal means filtering [29, 30] and fuzzy filter [31, 32].

In this category, filtering process and reconstruction process are independent of each other, 
thus it is well facilitated for system integration. Furthermore, the calculation amount is usu-

ally far less than iterative reconstruction and advantages on computing speed is obvious. 

Projection denoising takes noise properties in projections into account, this makes filters 
restore the projection data effectively, yet has the potential disadvantage that the definition of 
edge in projection data is not definite, resulting in sharpness loss in image domain.

2.2. Iterative reconstruction

With rapid advances in computing power and the reduction in costs for that power, all the major 

CT vendors now offer iterative reconstruction (IR). It benefits from Shepp and Vardi who intro-

duced maximum likelihood expectation maximization (MLEM) into the field of reconstruction 
[33]. Nowadays iterative reconstruction algorithm has been a hot issue in the field of CT recon-

struction with one important reason that IR enables diagnostic image clarity on low-dose scans 
[34–36]. An IR algorithm first establishes a statistical model of Gaussian or Poisson distribution 
based on the physical model of the imaging system and statistical characteristics of projection 

data. Then, the corresponding energy equation is solved in the image space by an iterative 
algorithm. The reconstructed image quality is better than that reconstructed by the traditional 
analytic method. Another important algorithm, maximum a posterior (MAP) [37, 38], is very 

popular and frequently used in IR. MAP is based on Bayesian theory, and introduces the prior 
information of image space as a penalty term, thus can effectively suppress noise and keep the 
edge. MAP improves the quality of reconstruction obviously and is far superior to analytical 
reconstruction algorithms on scattering noise and artifacts elimination, so it is very suitable for 
low-dose CT reconstruction. How to design an efficient prior is the key point of MAP and has 
been one of the research hotspots of iterative reconstruction algorithm. The traditional iterative 
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reconstruction algorithm usually uses the neighborhood correlation of image space to con-

struct a Markov field prior model [39, 40]. In this model, noise suppression is greatly affected 
by the noise level of projection data, and the constraint ability is declined when the projection 

data is seriously noisy. While some prior constructed by non-convex potential function may 

introduce additional staircase artifacts [41]. Bian proposed a total variation minimization low-

dose CT reconstruction method based on a divergence constraint, which eliminates the block 

artifacts of the traditional total variation priors [42]. Chen considered the excellent denoising 

capability of nonlocal algorithm and proposed an adaptive-weighting nonlocal prior statistical 

reconstruction approach [43]. The proposed prior imposes an effective resolution-preserving 
and noise-removing regularization for reconstructions, and specially has a good recovery abil-

ity for region of gradated density. Zhang explored an adaptive Markov random field (MRF)-
based penalty term which utilizes previous normal-dose scan to obtain the MRF coefficients 
and incorporated it into the PWLS image reconstruction framework [44]. Li proposed a hybrid 

nonlocal means regularization model for iterative reconstruction of low-dose CT perfusion to 

overcome the limitation of the conventional prior-image-induced penalty [45].

However, IR techniques such as algebraic reconstruction technique (ART) always have high 
computation loads (e.g., up to several hours per data set), which have prevented fast clinical 

applications. It is urgent to improve the reconstruction speed and researchers have proposed 
a variety of methods to speed up the convergence rate of IR algorithms, for example, ordered-
subsets image reconstructions [46–48]. However, the practical application of IR is still limited 
by hardware level. Fortunately, the development of parallel computing technology has played 

an important role in the application of IR. The computation time of IR can be greatly reduced by 
using the graphics processing units (GPUs) [49–51]. It is worth noting that IR techniques require 
access to the raw projection data (projection restoration also has this problem) and are highly 

dependent on special scanner model, that is, requiring more detailed information such as scan-

ning geometry, photon statistics, data-acquisition, correction physics, thus highly dependent on 
specific scanner models. Its limitation appeals a more broadly used denoising method that can 
perform on different systems, and leads us to think more about denoising after reconstruction.

2.3. Post-processing method

Image post-processing techniques, working on the image space alone, are retrospectively 
applied and relatively simple to implement without access to the raw projection data. Since 

post-processing methods directly enhance the existing CT images, they do not need to 

improve or replace the existing equipment, thus easy to be used and promoted. The main 
difficulty comes from the non-stationary mottle noise and streak-like artifacts, which often 
distribute over the whole CT image. These mottle noise and streak artifacts are caused by 
the back-projection process within the FBP algorithms, and are difficult to remove because 
they do not obey to specific distribution models. Various sophisticated techniques, considering 
the strong structural and statistical properties of objects in image space, have been proposed 

for improving the quality of low-dose CT images. In [52, 53], the low-dose CT reconstruction 

images are filtered by nonlinear or anisotropic filters, which can smooth the image effectively 
meanwhile preserve edges to some extent. But this kind of algorithms is easy to reduce the 
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image contrast and blur the image edge. Furthermore, since such filters are usually defined in 
small scale regions, it is impossible to suppress high-frequency noise in projection data, typi-
cally with almost no effect on metal artifacts. Wavelet-based method to a certain extent can 
remedy the defects of small scale spatial filtering, and effectively preserve the texture infor-

mation while suppressing high-frequency noise [54, 55]. Zhong presented wavelet coefficient 
magnitude sum (WCMS) and experiments showed that 60% of the noise could be removed 
[56]. Borsdorf proposed a correlation-based wavelet method for noise reduction in low-dose 

CT images [57]. Large-scale nonlocal mean filter is another commonly used post-processing 
algorithm, which carry out the nonlinear filtering correction in the current position by search-

ing the matching information according to the self-similarity of the tissues under various doses 

in a large scale. This method has good performance in noise elimination and edge preserva-

tion. Chen proposed a large-scale nonlocal means (LNLM) filter to improve abdomen low-
dose CT images by exploiting large-scale structure similarity knowledge, which was further 

combined with a multiscale directional diffusion scheme to reduce the streak artifacts in tho-

racic CT images [58]. Ma proposed a new nonlocal mean algorithm by combining nonlocal 
mean and the results obtained from previous normal-dose scans to deal with low-dose CT, 

and the image artifacts are solved in a certain extent by means of image guidance techniques 
[59]. In [60], feature knowledge in available CT database is incorporated into weight update in 

LNLM strategy, and a notable image quality enhancement was reported. Dictionary learning 
and sparse representation were also used for reconstruction and enhancement for low-dose 

X-ray imaging [61–64]. The dictionary technique studies from normal-dose CT images (fea-

ture extraction) guide the low-dose CT image processing. Dictionary technology combines 

the advantages of large-scale nonlocal filtering and image guidance technology, and has very 
good extendibility. However, they have the limitation of computation time. Recently, the deep 

learning technology is popular and shows great potential in image denoising. Chen trained a 

deep convolutional neural network (CNN) to transform low-dose CT images toward normal-

dose CT images, patch by patch and visual and quantitative evaluation demonstrates a com-

peting performance of the proposed method [65]. Wu proposed a cascaded training network 

for low-dose CT image denoising, where the trained CNN was applied on the training dataset 

to initiate new trainings and remove artifacts [66]. Wolterink proposed to train a CNN jointly 

with an adversarial CNN to estimate routine-dose CT images from low-dose CT images and 

hence reduce noise [67]. Kang applied a CNN to wavelet coefficients of low-dose CT images 
and showed that wavelet domain CNN was efficient in removing the noises from low-dose CT 
compared to an image domain CNN [68, 69].

In addition to X-ray intensity, to shorten scanning time can also reduce the radiation dose dra-

matically, which can be achieved by reducing projection angles (sparse angles or incomplete 

angles) in acquisition process. Due to the projection, data of CT systems usually have high 
redundancy, under the condition of less sampling angles, the missing data can be repaired to 

get a complete projection data set, and the reconstruction quality can be improved using the 
repaired data. In the decade, dictionary learning and TV (total variance) constraint are two 
effective techniques to estimate the missing projection data [70–76]. Recently, the convolu-

tional neural network was also performed in sparse-view reconstruction (down to 50 views) 
on parallel-beam X-ray CT [77].
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2.4. ATCM technology

In addition to adjusting scanning parameters, GE, Philips, Siemens and Toshiba introduced 
automatic tube current modulation (ATCM) to realize low-dose CT scanning. ATCM is based on 
differences of attenuation characteristics of human anatomy structure, and adjusts the tube cur-

rent automatically according to the X-ray attenuation change. ATCM controls the tube current by 
using a certain algorithm and an optimized mode in the X-Y plane or along the scanning direc-

tion (Z-axis), thereby radiation doses are reduced in unnecessary projection direction. Another 

way, ATCM can achieve imaging with the minimum radiation dose by setting the image quality 
that meets certain criteria in advance. For example, the anteroposterior diameter of the chest 

and pelvis is significantly smaller than its right-and-left diameter. The anteroposterior tissue is 
thinner and the X-ray attenuation is lower, while the side is thicker and the X-ray attenuation is 
higher. Studies have shown that the total radiation dose can be reduced by 29.4% by using the 
ATCM technique for full-body scan, and the abdominal radiation dose can be reduced by 29.7% 
[78]. At the annual conference on radiology in North America in 2008, some manufacturers intro-

duced selective shielding techniques that would allow the closure of X-ray when it rotates to the 
direct irradiation position of sensitive organs, such as eyes, thyroid and breast, thereby to avoid 

direct exposure to sensitive organs [79]. In addition, an asymmetric shielding acquisition system, 
called adaptive dose shield (ADS), can shield the invalid X-ray at the beginning and end of the 

Z-axis scan. Furthermore, it reasonably distributes the irradiation area with a cardiac bowtie. 

The radiation doses of cardiac scan are therefore reduced without increasing noise.

3. Ultra low-dose CT

In the decades, ultra low-dose CT, defined as a radiation dose ≤1.9 mSv, was studied and used 
[80, 81]. Accordingly, researchers pay attention to the reconstruction algorithms for high-qual-
ity ultra low-dose CT. Yu proposed a previous scan-regularized reconstruction (PSRR) method 
for ultra low-dose CT of lung perfusion [82]. His study demonstrated that approximately 90% 
reduction in radiation dose is achievable using PSRR without compromising quantitative com-

puted tomographic measurements of regional lung function. Xu compared the effect of differ-

ent reconstruction algorithm applications for ultra low-dose CT on image quality improvement 
using a phantom study [83]. Rob investigated whether ultra low-dose CT and low-dose CT 

KUB (kidney, ureters and bladder) for acute renal colic impacted upon the specificity, sensitiv-

ity and detection of urolithiasis, and found that both ultra low-dose CT and low-dose CT yield 

comparable results against standard-dose CT KUB in detecting alternative diagnoses (they 
may not be as effective in detecting stones <3 mm in size or in patients with a body mass index 
of >30 kg/m2) [84]. For the foreseeable future, ultra low-dose CT with the tendency of CT devel-

opment and more commonly used in clinical, especially for several months baby, and pregnant 

female. In a word, CT technologies have entered into low-dose imaging times.

4. Spectral CT

CT manufacturers have tried their best to improve the hardware for the improvement of recon-

structed image quality for low-dose CT. For example, they improved the detection efficiency to 
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increase the SNR of acquired data and sequentially reduced the noise in CT images. They also 
designed wide-detector CT to improve time resolution and improved the detector material. 

One study reported that the wide-detector revolution CTA with 70 Kv tube voltage and pro-

spective ECG-gated technique can provide high accuracy for assessment of congenital heart 
disease (CHD) in infants and children, which can keep good image quality, with the low radia-

tion dose [85]. More significantly, it is the appearance of spectral CT, which can achieve high 
time resolution and high intensity resolution.

Advances in multi-detector technology, photon counting energy dispersive detectors and com-

puter-processing technology have made spectral CT imaging possible [86–94]. Spectral CT can 

convert the X-ray absorption coefficient of any material to absorption coefficient of any two base 
material and achieve the same attenuation effect. On the basis of the improvement of X-ray tubes 
and X-ray detectors, spectral CT can obtain two images at different levels of energy at the same 
time and at the same phase to reconstruct high-definition and monochromatic images from 
40 to 140 keV and even generate three materials decomposition images, virtual non-contrast 
images and specific spectrum curve. Thanks to innovations on the tube ball and detectors, spec-

tral CT not only achieves high resolution, high-definition images in the case of low radiation 
dose, but also uses the spectral imaging technology for the first time. Spectral CT uses different 
X-ray spectra and certain chemical elements to detect changes in the shape and function of the 

whole body, and can realize single photon imaging and physical separation, thus fundamen-

tally changes the traditional way of CT imaging based on a single CT value and provides reli-

able information to diagnose disease earlier and more accurately, showing a great advantage in 

imaging. As a new method of clinical application, spectral CT can be developed rapidly in the 

qualitative, quantitative diagnosis and prognosis evaluation of systemic diseases. Nowadays, it 
is a promising technique with clinical application potential and has become another direction of 
CT technology. At present, there are two clinical kinds of spectral CT equipment. One takes the 
rapid kVp switching as the core technique and another is the dual-source CT (DSCT).

The rapid kVp switching technology is first launched by GE, that is, Discovery CT750 HD [95], 

it has a double energy system but only with a single source, as shown in Figure 3. This system 

is composed of a special X-ray source which can switch kVp in a very short time (0.5 ms) and 
detectors can detect the high-energy and low-energy photons, thus obtaining two projection 

data sets. Discovery CT750 HD adopt gemstone as the detector materials (that has more sta-

bility than traditional materials), rapid kVp switching and adaptive statistical iterative recon-

struction (ASIR) technology, spectral grating imaging technology and so on, makes it has high 
resolution imaging with low radiation dose. Detectors made of gemstone ensure each image 

in a whole body scan reconstructed in a low-dose case from hardware. More importantly, 
ASIR is the key technology to achieve high resolution and low radiation dose at the same 
time. It can achieve the limit of 0.23 mm spatial resolution around the body, and find small 
lesions that cannot be found using a conventional CT scan, greatly improve the detection rate 

of the lesions and the identification of tumorous diseases [96]. Besides an approximate 50% 
reduction in radiation dose is achieved compare to routine dose.

DSCT is first launched by Siemens, at the moment, there are two clinical, commercially avail-
able DSCT scanners: the SOMATOM Definition (the first generation DSCT, launched in 2005) 
and the SOMATOM Definition Flash (the second generation DSCT, launched in 2019). Each 
of them contains two X-ray tubes and two detectors which are mounted so that the X-ray 
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Figure 4. Diagram of DSCT system.

beams are approximately perpendicular to each other, as shown in Figure 4. DSCT has two 

working model, that is, single source model and double source model. It works like an ordi-
nary CT when using the single source model, while two acquisition systems work simulta-

neously when using the double source model. Thus one can obtain two independent sets of 

images, mainly used for separation of bones and calcification, tissue and collagen component, 

Figure 3. Diagram of discovery CT750 HD system.
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etc., or one set of fusion image reconstruction, mainly used for high time resolution require-

ments such as the cardiac workup. DSCT has advantages on time resolution, only 83 ms in 

SOMATOM Definition and 75 ms in SOMATOM Definition Flash, thus lead to a low radiation 
dose. In a word, DSCT provides faster scanning speed and lower radiation dose, and com-

pletely broke the traditional idea of CT technology, leading to a new revolution in CT history.

5. Nano-CT

In addition to technologies mentioned above, CT contrast agents that often used for distin-

guishing subtle changes of soft tissues with similar densities, also makes, or rather, requires 
a low kVp, that is, low-dose radiation. Studies have shown that a lower kVp can improve the 

enhancement degree of contrast agent and thus improve the contrast between different tis-

sues [97]. Especially in turn, using this low-dose CT, one can obtain good images with a low 

contrast agent dose, because contrast agent is harmful to human health. For example, often 

used contrast agent in angiography imaging, iodinated compounds, have relatively short 

circulation times in vivo and its rapid renal clearance may lead to serious adverse effects. 
Therefore, a variety of CT contrast agents are required to be developed.

A long-sought-after CT contrast agent is the nanoparticle, which has tunable composition, 

shape and size, and can be readily attached to bioconjugates with interesting biofunctionali-
ties on their surface [98, 99]. Nano-sized iodinated CT contrast agents have been developed 

that can increase the circulation time and decrease the adverse effects [100]. The classical 

nanoparticulate iodine-containing contrast agents include liposomal contrast agents, nano-

suspensions, nanoemulsions, nanocapsules and polymeric nanoparticles [101]. Despite 

prolonged in vivo circulation time as compared to iodinated molecules, iodine-conjugated 

nanoparticles are still limited by iodine loading through surface covalent conjugation [102]. 

Moreover, iodinated agents cannot be used for those patients who are iodine hypersensitive. 
These appeals to new CT contrast agents using nanoparticles composed of other elements 

with higher X-ray attenuation. In 2006, Hainfeld first introduced gold nanoparticles (AuNPs) 
as CT contrast agent [103], and caused a lot of attention since gold has a higher atomic num-

ber than iodine, and thus, has a larger X-ray attenuation. Moreover, the size and shape of 
gold nanostructures can be easily controlled, and their surface can be modified with various 
functional groups [102]. Besides, it has good biotolerability and nontoxicity. All of these make 

AuNPs attract intense interest as CT contrast agents. Over the past few years, many stud-

ies on Au nanoparticle design techniques are reported and show good significant CT image 
enhancement [104–108]. In addition to iodine and gold, other nanoparticles based on heavy 
atoms such as lanthanides, Bismuth and tantalum Bismuth-based contrast agents, have been 

used as more efficient CT contrast agents [109, 110].

With the progress of micro-nano processing technology, nano-ray source, micron grade CCD 

with nanoscale resolution, precise optical focusing imaging device, synchronous radiation 

source with high brightness, CT is being extended to the nanoscale, that is, nano-CT, bringing 

us startlingly accurate pictures of objects [111]. Nano-CT is derived from micro-CT but with 

higher resolution. At present, it has been widely used in many fields such as biology imaging, 
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pathological examination, integrated circuit testing and so on, and it is believed to have broad 

application prospects. For example, the phoenix nanotom® m, which is a nanoCT® system, 

has been used in industry and realized a unique spatial and contrast resolution on a wide 
sample and application range. Nano-CT also has been developed at the European synchro-

tron radiation facility (ESRF) to image bone tissue at the nanoscale [112].

6. Summary

In recent years, CT has been developing steadily and the scope of clinical application has 
been continuously expanded. Now we pay more attention on utility-driven CT instead of 
algorithm-driven CT. Low-dose CT, ultra low-dose CT and spectral CT are representative 

directions of CT application, and the rapid development of the hardware provides substan-

tial support. The future development of CT equipment is spectral CT, low-dose CT and even 
harmless CT. It is believed that with the progress of the ball tube and detector technology, the 
X-ray dose problem will be completely solved 1 day. The promotion of low-dose CT, combin-

ing the enhancement of time resolution, spatial resolution and density resolution, will make 

CT under the condition of safety and low-dose radiation, achieve more quickly in a clearer 
image display, making the disease more early and more clearly diagnosed. CT themselves 

will play an effective role clinical diagnosis and evaluation for more disease in such a high 
level of display. CT vendors shall stand to win in the fierce market competition if they step 
up such developments and win praise from the medical community and the whole people.
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