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Abstract

Bio-based phenolic compounds available from lignin are promising candidates for indus-
trial application, e.g., within polymer resins or as biogenic fuel substitutes. Among numer-
ous conversion methods for the valorization of lignin, the base-catalyzed depolymerization 
(BCD) has considerable advantages with respect to other processes. By this method, lig-
nin and lignin-containing biorefinery streams can be catalytically transferred to valuable, 
defined products with tailored specifications. Continuous process operation allows con-
versions at short residence times and, thus, enables its industrial implementation more 
easily due to economic reasons. This review reflects the development in the field of BCD on 
various types of lignin. A historical overview will be given and the principal application of 
the method is shown. Challenges for operations are addressed, mainly to the development 
of efficient and selective methods for product separation and purification of the alkylphe-
nolic moieties and the reduction of char formation during the process. An outlook will 
be given by showing trends and perspectives, especially in the field of industrial applica-
tions. Here, hydrotreatment methods for refining BCD intermediates for fuel and platform 
chemical production are shown. Furthermore, the application of BCD for the conversion of 
woody biomass and black liquor is discussed.

Keywords: lignin, base-catalyzed depolymerization BCD, bio-based aromatic 
compounds, bio-based phenols, downstream processing, hydrogenolysis, 
hydrodeoxygenation

1. Introduction

Lignin is one of the major components in lignocellulosic biomass together with cellulose 

and hemicellulose and the world’s only naturally occurring polymers, which is available as 
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a renewable resource in large quantities. Lignin is obtained as a major by-product during 
second-generation bio-ethanol production and also isolated as Kraft black liquor or lignosul-
fonates during pulp production. Also new lignocellulose bio-refinery processes for the pro-

duction of chemicals or fuels will release an enormous amount of different kinds of lignin. 
Apart from its use in the form of wood, lignin is mainly used as energy source as a by-product 

of the paper and pulp industry. Every year, around 50 million tons of lignin are currently 

produced in this way worldwide. Conventionally, lignin is employed for the generation of 

heat and power in these industry processes [1]. Utilizations of lignin with regard to material 

application are only established to a limited extent. Increase in application depends solely 

on the availability of valuable chemicals synthesized from lignin that have a corresponding 

market value higher than their fuel value.

However, valorization of lignin is one of the most important challenges for the development 

of sustainable and cost-effective biorefinery processes based on lignocellulosic biomass. The 
alkylphenolic structure of the lignin molecule can be cleaved into low molecular weight 
compounds such as phenols, alkylphenols and phenol resins and replacing those obtained 
from fossil resources [2, 3]. The products are highly promising fuels or fuel additives [4, 5] 

or antifungal components [6] or can be used for the preparation of polyols and polyure-

thane resins [7]. Yet, the natural complexity and high stability of intramolecular bonds make 
lignin depolymerization a challenging task. Moreover, effective technologies for cleavage 
product separation from the reaction solutions are still subject of developments and have  

not been satisfactorily resolved. A prerequisite for industrial implementation are techno-economic  
feasible processes, which can be integrated into existing process chains. So far, low selec-

tivity to defined products, subsequent separation and purification and char formation are 
the main hurdles for effective conversion of lignins. Among different methods, the so-
called base-catalyzed depolymerization (BCD) is one option to transfer lignin and lignin-

containing streams catalytically into valuable products even to those with narrow product 

specification. It can be operated in continuous process mode allowing conversions at short 
residence times (≤1 h) and low char formation. The latter is as phenomena, which might 
occur during hydrothermal conversion of lignin feedstock, and is an effect of concurrent 
repolymerization processes of lignin fragments during processing under the harsh reaction 

conditions needed [8].

This chapter comprehensively reviews the state-of-the-art applications and challenges for 

BCD processes of different kinds from solid lignin and lignin-containing feedstocks. It also 
points out future trends and perspectives in this field of research and development. Besides 
scientific approaches, methods and concepts for industrial implementation of this technol-
ogy, e.g., in the pulp and paper industry or the chemical and process industry, are touched 

and discussed. In this context, patent applications on this subject are also mentioned, as well 

as processes and applications are discussed. In order to increase the technology readiness 

level of the BCD process and, thus, to develop an industry-relevant process, it is necessary to 

establish an overall approach regarding material and energy efficiency as well as to examine 
its technical and economic feasibility.

Lignin - Trends and Applications100



2. Methods on lignin depolymerization

Research in the field of lignin depolymerization is of strong interest. The number of scien-

tific publications has developed exponentially in recent years and increased a hundredfold 
worldwide since 1980 starting with 2 to 1998 with 25 and until 2016 with 221 publications 

annually [9]. From this, it is evident that the viability of recovering of hydrocarbons and 

aromatics from lignins has been under intensive investigation over the past years. Literature 

and publications have been reviewed and extensively discussed in terms of the generation 

of valuable chemicals and fuels [1, 4, 5, 10–12] as well as derivatives for polymer resins [7]. 

Along with this and beyond, mechanistical aspects of chemical, biological and biotechnologi-

cal depolymerization strategies are compared in detail and advantages and disadvantages 

as well as limits in their applications are presented [3, 13, 14]. The focus is primarily on the 

presentation of scientific work and innovations. Trends and new methods are partially pre-

sented in detail and summarized clearly. These include, above all, the current developments 

in transition-metal-catalyzed conversion of lignins for catalytic cracking, oxidation and/or 
hydrogenolysis for the utilization of lignin feed streams as fuels or fuel additives and bulk 
chemicals, respectively [2, 4, 13, 15].

Similar development can be overserved in the status on patent publications. Over the last 

decades, IP applications increased strongly in the last few years, whereas approximately 

80% of patent applications have been made within the last 10 years [16]. The first application 
of BCD was published in 1983 by Stake Technology LTD as “process for depolymerization 
and extraction of lignin utilizing steam explosion technology” [17]. Technology applications 

might be found in the production of bioaromatic compounds for platform and fine chemicals 
[18, 19], as gasoline and biofuels [20, 21] or blending components [22].

2.1. Lignin structure

Lignin is a cross-linked amorphous three-dimensional copolymer synthesized from radical, 
random polymerization of the three primary phenylpropene units: coumaryl-, coniferyl-, and 

sinapyl-alcohols, joined by C─O─C (ether) and C─C bonds and collectively called monolign-

ins (Figure 1). Structure and, thus, ratio of these three primary monomer units vary among 

different plants and species. In native lignin, the most abundant linkage is β─O─4 ether bond, 

which comprises around 45–60% of all linkages within lignin, whereas hardwood lignin con-

tains roughly 1.5 times more compared to that of softwood. In total, approximately two third 

of linkages are ether bonds, while the others are C─C bonds [4, 11, 23]. The polyphenolic 

aromatic structure of lignin is ideally suited to obtain aromatic molecules, either as oligomeric 

derivatives or as low molecular weight monomeric compounds.

2.2. Strategies for lignin conversion

Chemical and enzymatic conversion strategies have been developed in recent years aiming to 

synthesize aromatic substructures or valorized chemicals from lignin. Lignin can be cleaved 
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by thermochemical processes that means by thermal treatment in the presence of various 

solvents, chemical additives or catalysts. Alternatively, there are approaches for enzymatic 

depolymerization using laccases or manganese peroxidases [24, 25]. A simplified summary 
of processes for chemical lignin conversion is given in Figure 2. Here, applied process tem-

peratures are compared to the degree of functionalization within the product lignin spe-

cies. Essential processes are pyrolysis, gasification, hydrogenolysis, chemical oxidation and 
hydrolysis. Depending on the process, the products of the depolymerization possess different 
proportions of gaseous (gas), liquid (oil) and/or solid (oligomers and/or char) products with 

Figure 1. Details of the lignin structure with its varying phenylpropene units connected by β─O─4 ether bond.

Figure 2. Summary of thermochemical processes for conversion of lignin; temperature applied vs. degree of function-

alization within the product species.
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specific compositions. With pyrolysis, the thermal treatment at 300–600°C with exclusion of 
oxygen, mainly gaseous and volatile hydrocarbons, such as methane, ethane, acetone, metha-

nol, acetaldehyde, phenol and carbon mono- and carbon dioxide, is formed. Gasification is a 
process in which lignin is converted at temperatures between 700 and 1000°C into a gas mix-

ture of hydrogen, carbon monoxide, methane and carbon dioxide (syngas) [26]. The reduc-

tive cleavage with hydrogen (hydrogenolysis) leads to a mixture of differently substituted 
phenols and benzenes, whereas products of oxidative cleavage are mostly phenolic aldehydes 

such as vanillin and syringyl alcohol [11]. With hydrolysis, the ether bonds in the lignin are 
cleaved by a homogeneous or heterogeneously catalyzed aqueous reaction. The hydrolytic 
cleavage can be further categorized according to different chemicals applied in the depoly-

merization process, namely base-catalyzed, acid-catalyzed and metal-catalyzed or with the 

aid of ionic liquids or supercritical fluids. Wang et al. summarized recent scientific devel-
opments with regard to this classification [14]. Depolymerization methods have also been 

reviewed according to the product specification, which is either gaseous as methane, carbon 
dioxide and formaldehyde or liquid as a so-called bio-oil [27]. This view is very product-

driven and above all illustrates the scope of application of lignin-derived products. From the 

point of view of chemists and process engineers, classification is also carried out according to 
the mode of chemical conversion. Homogeneous and heterogeneous catalytic conversions are 

in this case considered separately and thus condition the process design and process imple-

mentation [5, 12].

3. Base-catalyzed depolymerization of lignin

3.1. Nature of base-catalyzed depolymerization of lignin

All degradation strategies have the objective of reducing the complexities of the natural 

lignin molecule, lowering its molecular weight and, moreover, increasing the chemical 

reactivity of the degradation products. Three fractions are formed: liquid oil; oligomers, 
often called tar fraction; and higher polymeric lignin species called char. Side products 

are formic acid, acetic acid, methanol and carbon dioxide. This is compared to degrada-

tion processes such as pyrolysis and hydropyrolysis, which lead to a mixture of oligomer 

and polymer oxyaromatic fractions. The later is caused by the initiation of radical forma-

tion inside the lignin molecule during the cleavage of weak phenolic bonds. Subsequently, 
recombination of radical moieties may lead to the formation of new kinds of carbon-carbon 
bonds and ultimately to oligomers and higher condensed structures named as char. The 

BCD of lignin is carried out in dilute alkaline solution at temperatures between 250 and 
350° C, high pressures (150–300 bar) and short residence times (5–15 min), preferably per-

formed in a continuous flow tube reactor to ensure short residence times and, thus, to 
avoid repolymerization.

In principle, lignin is cleaved into a mixture of aliphatic degradation products (methanol, 

formic acid and acetic acid), phenolic mono- (e.g., guaiacol, syringol and catechol), di- and 

oligomers and carbon dioxide. This reaction mode is simplified in Figure 3.

Base-Catalyzed Depolymerization of Lignin: History, Challenges and Perspectives
http://dx.doi.org/10.5772/intechopen.72964

103



Mechanism of bond-breaking and product formation: Lignin is solved in alkaline water, 
whereas the alkaline or earth alkaline metal ions polarize the ether bond. At reaction condi-
tions, bond-breaking occurs mainly at the β─O─4 bond (aryl-glyceryl-β-aryl ether bond) and 
the 4─O─5 bond (diaryl ether bond) as aryl-alkyl-ether bonds are the weakest bonds in lignin. 
According to the structure of the lignin molecule, up to 25% of monomer units, i.e., phenol, 

guaiacol, syringol and catechol derivatives, are formed. The ideal process would be a reaction 

affording high yields in monomers and, thus, a nearly entire cleavage of all aryl-ether bonds 
within the lignin molecule [28].

A detailed description and analytical characterization of the monomeric aromatic compounds 

is given in [28–31]. In addition to these monomers, a large proportion of dimeric and oligo-

meric structures are obtained having the following types of bonds: 5-5 (biphenyl bond), β-5 
(phenylcoumaran), β-β (THF or resinol type) and β-1 (1, 2-diarylpropane). These compounds 
accumulate in the liquid product (BCD-oil) depending on the processing method for separa-

tion. The BCD-oligomer fraction contains oligomeric polyphenols, higher condensed struc-

tures and unreacted lignin. Short-chain acids formed during the reaction neutralize the base 

and can hinder the hydrolysis process. At worst, the pH in the reactor drops to such an extent 

that dissolved phenolates precipitate in the reactor, which can lead to clogging and blockages 
of the reactor. For this reason, the pH value, due to a sufficiently high base concentration, 
must be at least pH 12 at all times [32].

Demethoxylation and demethylation reaction also occur at more harsh process parameters 

resulting in the formation of catechol-type molecules with simultaneous formation of metha-

nol, formic acid and acetic acid. A shift in the yield to catechols with simultaneous decrease 

in syringol concentration was clearly demonstrated by BCD of beech wood organosolv lignin 

Figure 3. Reaction scheme for cleavage via base-catalyzed depolymerization (BCD) at β─O─4 ether bonds (red) with 

structures of lignin, BCD-oil (phenolic mono- and dimers), BCD-oligomers (phenolic oligomers) and BCD-by-products 

(organic acids, alcohols and gases).
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and kraft lignin operating above 300°C. Here, the formation of catechol-type monomers by 
BCD, in the absence of a H

2
 donor, mainly depends on retention in the reactor and the process 

temperature [28]. Investigations on hardwood organosolv lignin showed demethoxylation 

processes starting at 280°C by decreasing syringol concentration in the monomeric product 
phase [33]. Kinetic studies on lignin model compounds mimicking the alkyl-aryl or aryl-aryl-
ether linkages have shown that BCD is a rapid reaction that occurs within minutes under 
appropriate conditions [2, 32].

In general, the presence of alkali and earth alkali in base media modifies the reaction routes, 
facilitates bond-breakings and in some cases enhances the formation of formic or acetic acid 
during the depolymerization process. Moreover and as already reported earlier, base cata-

lysts are required in water to solubilize the lignin feedstock, to avoid coke formation and 
to increase liquid product yield. Condensation reaction is conspicuously suppressed during 
BCD processes compared to process in acid or neutral media [34].

3.2. State of the art and overview

Bond-breaking and recombination are strongly defined by process conditions, namely tem-

perature, pressure, residence time and base concentration along with the type of feedstock 
used. Equally important is the chemical nature of the base. Table 1 shows selected examples 

of BCD strategies and compares striking process parameters. In this case, only reactions in 
liquid homogeneous phase without the use of additional catalyst systems or other reaction 
agents were considered.

3.2.1. Lignin nature

The catalytic reagents are cheap and commercially available bases such as LiOH, NaOH and 

KOH. Its nature is important for the oil yield and product composition. Usually, stronger 

base gives higher conversion since the polarization of the base governs the kinetics and the 
mechanism of the depolymerization reaction. Highest BCD-oil yield could be observed with 

NaOH. Utilizing Ca(OH)
2
 results in low BCD-oil formation when processing olive tree prun-

ing lignin at 300°C [34]. Another example also describes that using strong bases (KOH and 

NaOH) converts more of the lignin to low molecular weight products than weak bases (LiOH, 
Ca(OH)

2
 and Na

2
CO

3
). Here, maximum conversion was achieved at a NaOH/lignin ratio of 

1.5–2. Higher ratios increased the conversion rate but not the conversion degree to lower 

molecular weights and higher BCD-oil yields. The optimum was given with 8 wt.% of insolu-

ble material at a reaction time of 1 h at 330°C in batch microreactor system using up to 10 wt.% 
of lignin in solution. Further, depolymerization is more efficient and less dependent on tem-

perature at higher base concentration [35]. This observation was also reported by Miller et al. 
and Roberts et al. who had found less insoluble products (unconverted lignin) with increas-

ing NaOH/lignin ratios [32, 33]. In general, base concentration has to be sufficient in order to 
fully polarize and deprotonate the phenolic and catecholic species to alcoholates. This must 

be taken into account, in particular, in that the base concentration decrease during the cleav-

age process, as new hydroxyl groups, reactive organic acids and carbon dioxide are formed.
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3.2.2. Nature of the catalyst

Similarly, it can be said that, besides, the base concentration temperature is the most impor-

tant factor and has the strongest influence on the yield of oil and solid fractions. By cleaving 
organosolv lignin and sulfur-containing kraft lignin, it was shown that higher process  intensity 

Feedstock Base catalyst Reaction parameters Products and 

composition

Reference

Reaction 

conditions

Reaction system

Alcell/indulin lignin 10 wt.% lignin in 

MeOH or EtOH/
CsOH, NaOH, KOH, 

LiOH Ca(OH)
2
 or 

Na
2
CO

3
- sol.

290°C, 60 min Batchwise Ether-soluble 

products ≤93 wt.%
[32]

Beech wood 

organosolv lignin 

and lignoboost kraft 
lignin

5 wt.% lignin in  

1–5 wt.% NaOH-sol.

250–340°C, 
250 bar; 5, 10, 

15 min

Continuous mode, 

plug-flow reactor
Oil content 

≤23 wt.%
[28, 39]

Organosolv lignin 2.5–10 wt.%, 

2.5 wt.% NaOH-sol.

240–340°C, 
250–315 bar, 

retention time 

2–15 min

Continuous mode, 

plug-flow reactor
~ 15 wt.% 

oligomers, ~ 

22 wt.% oil

[33]

Steam explosion 

hemp-lignin

5 wt.-% lignin in 

NaOH-sol.

300–330°C, 
90–130 bar

Batchwise Up to 11 wt.% 

monomer species

[29]

Softwood indulin 

lignin

10 wt.% lignin in 

5 wt.% NaOH sol.

270–315°C, 
LHSV 

1.4–4 h−1

Continuous mode, 

plug-flow reactor
Small organic 

compounds 

≤19 wt. %, solid 
products ≤70 wt.%

[37]

Organosolv lignin 

from olive tree 

pruning

4 wt.% lignin in 

NaOH, KOH, LiOH 

or K
2
CO

3
 – sol.

300 °C, 
900 bar

Batchwise Oil (monomers 

and dimers), yield 

5–20 wt.%

[34]

Olive tree pruning 

organosolv lignin

5 wt.% lignin, 4 

wt.% NaOH-sol.

300 °C, 90 bar, 
80 min

Batchwise Oil components 

≤18.5 wt.%
[36]

Lignin-rich residue 

from corn stover

10 wt.% lignin, 

2–4 wt. % NaOH sol.

270–300°C Batchwise Aqueous soluble 
fraction ≤78 wt.%

[31]

Gray ironbark 
organosolv lignin

5 wt.% lignin, 

4 wt.% NaOH sol.

300 °C, 40 min Batchwise, 

microreactor

Oil components 

≤21.9 wt.%, 
solid products 

≤58.3 wt.%

[6]

Beech wood 

organosolv lignin 

and kraft lignin

2.5–10 wt.% lignin 

in 2.5–7.5 wt.% 

NaOH-sol.

300–340°C, 
250 bar; 

retention time 

450–900 s

Continuous mode, 

plug-flow reactor
Oil content 

≤14.5 wt.%
[8, 38]

Lignin-rich residue 

from corn stover

10 wt.% lignin, 

1–2 wt. % NaOH sol.

60–240°C, 
0.7–20 bar

Batchwise Aromatic acids [35]

Table 1. Selected examples and comparison of BCD of different kinds of lignin at various process conditions.
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(temperature, pressure and residence time) results in higher depolymerization degree and, 

thus, in growing formation of monomeric and dimeric phenolic products and also of gas-

eous and liquid degradation products. Temperature influences not only the yield but also the 
molecular composition caused by the already mentioned successive reactions such as decar-

boxylation and demethoxylation at the substituent and side chains of the aromatic ring in the 

lignin molecule [8, 38].

Usually, the ether hydrolysis starts at 250°C. Ideal process conditions are described between 
300 and 340°C in order to achieve complete cleavage of the ether bonds and to obtain a high 
yield of liquid products (see Table 1). Investigation on BCD at lower temperatures down to 

60°C showed a poor yield on liquid products. On the other hand, at very mild reaction tem-

peratures of up to 140°C, the exclusive formation of coumaric and ferulic acid can be observed 
[35]. Low yields are not surprising due to the manufacturing process of the lignin. Nearly all 

lignin preparation methods are thermochemical processes using temperatures between 150 

and 180°C (e.g., kraft-, organosolv- and steam-explosion lignin).

3.2.3. Influence of the processing conditions

The composition of softwood and hardwood lignin is varying in the relative abundance of 

coumaryl, coniferyl and sinapyl alcohol units. Coniferyl alcohols constitute approximately 

90% of softwood lignin, whereas roughly equal proportions of coniferyl alcohol and sinapyl 
alcohol appear in hardwood lignin [2]. These structural differences significantly influence 
the product composition. This was clearly showed in the comparison of BCD of hardwood 

organosolv lignin with softwood kraft lignin. Syringol and dimethoxyphenols are found 
almost exclusively in the BCD-oil of organosolv lignin with a significant amount in the mono-

mer phase [8, 28, 30]. Other studies focused on the investigation of one type of wood but with 

different pretreatment methods applied. Erdocia et al. investigated the BCD of lignin from 
olive tree pruning fractioned by different organosolv processes, namely acetosolv, formosolv 
and acetosolv/formosolv. It could be summed up that low molecular weight lignin leads to 
more monomeric phenolic compounds, whereas the amount of obtained residual lignin is 

independent of the lignin nature [36]. The pretreatment method of the lignin stream has a 

significant influence on the product yields and nature since successability to BCD is strongly 
influenced by lignin structure and the amount of impurities, like carbohydrates, in the feed-

stock. Different mechanically refined substrates and acid-pretreated lignin-rich feedstock 
have been examined by Katahira et al. and the product dependence on the pretreatment has 

been demonstrated [31].

3.3. Challenges

3.3.1. Repolymerization and char formation

It is also proposed that in early stage of the hydrothermal treatment, lignin was decomposed 

to water-soluble fragments, and with the increase of the reaction time, the soluble products 

were transformed to insoluble products by recondensation reactions. Investigations on model 

compounds confirmed the theory that the two processes of lignin depolymerization and 
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 repolymerization are concurrent. The latter often leads to products that are more resilient 
than the initial lignin due to C─C bond formation [40, 41]. In the case of lignoboost kraft lig-

nin processed at 350°C and 250 bar, high molecular weight fractions were found consisting 
of repolymerized macromolecules with new structural networks based on guaiacol, disubsti-
tuted aromatic ethers and polyaromatic hydrocarbon structures bound tightly together [42].

In order to overcome this phenomenon, the reaction parameters that determine the amount 

of repolymerization need to be optimized and the amount of lignin in the mixture should be 

carefully balanced [8, 12]. In addition, there is a need to scavenge and deactivate the reac-

tive species possessing phenol, carbonyl or alkene functionalities. Boric acid acts as an excel-
lent protecting or capping agent by forming esters with phenolic hydroxyl groups and, thus, 

reducing concurrent reaction of polymerization. The highest oil yield of 52 wt.% was found 

at an NaOH/boric acid ratio of 0.75 at 300°C and boric acid/lignin weight ratio of 2. Oil yield 
could be doubled relative to the standard NaOH-catalyzed process [33]. Similar results have 

been found utilizing phenol as capping agent. Interestingly, this method was proven to favor 

phenolic compound production (cresol, catechol and ferulic acid) and, at the same time, to 

avoid repolymerization [43].

3.3.2. Separation, purification and analytical characterization strategies

The assessment of process efficiency and selectivity requires the application of separation 
and purification methods for sample preparation and accurate analytical protocols for the 
specification and characterization of main and by-products. The methods described in litera-

ture are just as multivarious as depolymerization strategies. Kozliak et al. recently reviewed 
the efficiency, selectivity and product analysis of thermal liquefaction processes of lignin to 
aromatics [41]. Overall objectives are the detection and quantification of specific structural 
changes altered by depolymerization reaction, the separation and identification of individual 
phenolic compounds/fractions and attempts to close the mass balance.

Solid product fraction: Conventionally, downstream processing of the reaction outlet starts 

by precipitating the solid BCD fraction by adding a strong acid, e.g., sulfuric or hydrochloric 

acid. If possible, this quench must be carried out immediately after BCD in order to prevent 
further reaction and repolymerization of the phenolic compounds. The product slurry is sub-

sequently treaded to separate water-soluble and water-insoluble products by centrifugation 
and/or filtration. Heating the precipitated suspension to 70°C for 15 min can significantly 
improve the filterability of the suspension [29]. This strategy is especially recommended 

for gravimetric determination of the BCD-oligomer fraction, since minor yield losses, water 

and ash contents compared to centrifugation. Analytical methods for structure identifica-

tion include GPC, FT-IR, TGA, 1H-NMR, 13C-NMR and elemental analysis. Furthermore, 
an organic solvent solubilization is often used for further fractionation of the solid fraction. 

Toledano et al. used THF in order to separate lignin-derived oligomers (THF-soluble fraction) 

and coke (THF-insoluble fraction) [34].

Liquid product fraction: Strategies for the separation of value-added monomers from the 

BCD cleavage have been done by Vigneault et al. utilizing a steam-exploded aspen lignin. In 

addition to the described downstream strategy, a concept for the isolation of 12 monomeric 
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lignin derivatives was shown. The strategy combines liquid-liquid extraction with subsequent 
vacuum distillation of monomers and liquid chromatography and crystallization for purifica-

tion of the products like catechol, phenol, guaiacol derivatives, syringol derivatives and vanil-
lin [44]. Unkelbach et al. evaluated organic solvents of different polarity (DCM, EtOAc, MIBK 
and toluene) for the extraction of different phenols from acidified/filtered BCD reactor water 
(pH value = 3). The extracts were analyzed gravimetrically and by GC- and LC-MS. The high-

est amount of oil was achieved with MIBK (28 wt.% of lignin). Extraction with EtOAc, DCM 
and toluene led to lower oil amounts (23, 12 and 9 wt.%) [39]. The results of Greminger et al. 

from measurements of equilibrium distribution coefficients for phenol, dihydroxybenzenes 
and trihydroxybenzenes also lead strongly toward the use of MIBK as a preferred solvent, 
especially for polyhydric phenols [45].

Extraction methods are particularly suitable for identification and quantification of individual 
phenolic compounds by gas chromatography and gravimetrical determination of selectivities 

referring to the used organic solvent. Additional characterization methods of the phenolic 

fraction are thin-layer chromatography, IR, 1H- and 13C-NMR. Total carbon (TC) measure-

ment of BCD reactor water is recommended for mass balance, including all inorganic and 

organic compounds.

Gaseous product fraction: Joffres et al. characterized liquid, solid and gaseous products after 
batch catalytic (NiMo/Ag

2
O

3
) hydroconversion of a wheat straw soda lignin (Protobind 1000) 

for 5 h at 350°C, 8 MPa in tetralin solvent. Gaseous products were carbon dioxide (major gas), 
carbon monoxide, methane and light hydrocarbons (ethylene, ethane and propane), identi-

fied by GC-TCD/MS [12]. Long et al. analyzed gaseous products after batch depolymerization 

of pine lignin (220–280°C, 15–60 min) in MgO/THF solvent but did not take them into mass 
balance account, as the total amount was less than 1% of raw lignin [46]. BCD of commercial 

kraft lignin (indulin AT) was performed at 270–315°C, 130 bar and 15–45 min residence time 
(flow reactor) by Beauchet et al. quantifying gases (13,2–25,5%) by difference [37].

Generally, the chemical composition of the BCD reaction product mixture depends on the 

type and concentration of the lignin feedstock, the solvent and catalyst and the reaction condi-
tions (temperature, pressure and retention time). A wide spectrum of gaseous (mainly CO

2
), 

liquid (monomeric/dimeric oxyaromatics and low MW compounds, e.g., formic acid, acetic 
acid and methanol) and solid products (oligomeric oxyaromatics) formed during BCD degra-

dation. Commonly used and promising separation, purification and analytical strategies are 
summarized at Figure 4.

3.3.3. Increasing the technology readiness level for industrial implementation

Industrial implementation of the processes requires fast processing in continuous operated 
reactors and plant equipment that can be implemented in existing infrastructures. Here, an 
economically sensible mode of operation is a prerequisite for the application of BCD in the 
process industry. A full commercial application where the technology is proven in operational 

environment and available for customers has not been launched so far (equal to technology 
readiness level TRL 9) [47]. Research activities in the field of BCD of lignin mostly range from 
applied research activities to small-scale prototypes in laboratory environment (TRL 3-4). 
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Large-scale prototypes for plant equipment tested in intended industrially relevant environ-

ment close to expected performance (TRL 5-6) have been reported only by Rößiger et al. so far 

[8]. This includes not only the cleavage but also the corresponding downstream processing 

for the isolation and purification of the two product fractions BCD-oil and BCD-oligomers.

Commonly used batch reactors have inherent disadvantages including the alternation of 

heating and cooling, pressurization and depressurization, with inevitable energy losses 

[41]. Moreover, it can be pointed out in literature that char formation caused by repoly-

merization can be minimized by continuous operation of the BCD process due to a precise 

setting of the reaction parameter temperature and residence time. A customized engineer-

ing design of the reactor results in precise heating and cooling rates, residence time dis-

tribution and adjusted material design. Dedicated reactor systems have been described 

at laboratory and technical lab scale [18, 28, 33, 48] and also at a more upscale and direct 

approach [37] and in pilot scale [8]. The comparisons of the individual technologies are 

shown in Table 2.

Figure 4. Strategies of separation, purification and analytical characterization of BCD cleavage products (W, water; L, 
lignin; B, base solvent; ML, modified lignin; C, coke; MDO, phenolic mono-,di-, and oligomers; WSO, water-soluble 
organics; S, salts).
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Heterogeneous catalysis has been performed in a continuous batch reactor applying a fixed 
bed of ZrO

2
 catalyst [48]. For homogeneous base/aqueous feed streams, plug-flow reactor 

models are used. The heat input is predominantly realized via electrical preheaters and elec-

trically operated heating jackets, whereby the lignin solution might be fed directly into the 
reactor. Figure 5 shows the flow sheet of a pilot plant (feed rate up to 20 kg/h) for BCD cleav-

age operating with lignin feed streams up to 10 wt.% and subsequent isolation of the liquid-
base product solution [8]. Cofeeding of the lignin/base solution to a water stream heated to 
operational temperature is an alternative approach that has been described several times in 

technical lab scale design [18, 28, 33]. Here, the two streams, water and lignin/base solution, 
are mixed right before entering the reactor. This procedure allows a precise heating of the 

lignin solution to the reaction temperature, thus, leading to a more exact and precise tempera-

ture control and also avoiding overheating in the system caused by preheating the lignin solu-

tion. As a consequence, the enhanced formation of higher molecular weight lignin fragments 
with a broad molar mass distribution is reduced, but the whole reaction solution is diluted 

due to the necessary secondary water stream. However, downstream-processing might be 

more consuming and expensive.

Feedstock BCD process Reaction and reactor parameters Reference

Reaction 

conditions

Reaction system

Hardwood 

organosolv lignin

In NaOH/aqueous solution 
with and without boric acid as 

capping agent, homogeneous 

phase

240–340°C, 250–
315 bar, retention 

time 2–15 min

Plug-flow continuous 
mode, lab scale*,**

[33]

Beech wood 

organosolv lignin 

and kraft lignin

In NaOH/aqueous solution 
with and without formic acid as 

hydrogen donor, homogeneous 

phase

300–340°C, 
250 bar, retention 

time 5, 10, 15 min

Plug-flow, continuous 
reactors, 0.25 L reactor 

volume**

[28]

Softwood indulin 

lignin

In NaOH/aqueous solution, 
homogeneous phase

270–315°C, LHSV 
1.4–4 h-1

Plug-flow, continuous 
reactors, 1.0 L reactor 

volume

[37]

Lignoboost kraft 
lignin

In NaOH/aqueous solution with 
ZrO

2
 catalyst with and without 

phenol as accepting agent, 

heterogeneous phase

350 °C, 250 bar, 
feed rate 1 kg/h

Fixed-bed continuous 

batch reactor, reactor 

volume 0.5 L

[48]

Alkali lignin and 
ligno-sulfonic acid

In base/water system and 
additional reagents, e.g., 

oxygen, peroxides and copper 

nitrate, homogeneous phase

200–380°C, 
150–350 bar, 

residence times 

to 90 s

Plug-flow continuous 
reactors sequentially 
connected in series, total 

volume 9.8 ml**

[18]

Beech wood 

organosolv lignin 

and lignoboost kraft 
lignin

In NaOH/aqueous solution, 
homogeneous phase

250–340°C, 
250 bar, retention 

time 450–900 s

Plug-flow, continuous 
reactors, 2.2 L reactor 

volume

[8]

*Size and flow rate not depicted.
**Quenching of the lignin solution with hot aqueous solution.

Table 2. Compilation of publications on BCD in continuous operation.
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4. Trends and perspectives

The following chapter deals with developments beyond the original BCD in a homogeneous 

liquid phase. Innovative designs and processes include novel catalyst systems, subsequent 
and coupled reaction modes and the use of innovative reaction media. The depolymerization 

of lignocellulose-containing feedstocks by BCD has already been investigated and will also be 
discussed here exemplarily.

4.1. Solid-phase catalysts for improved lignin degradation

An efficient and economical catalytic system using the available industrial solid-phase cata-

lyst MgO has been described by Long et al. [46]. Conversion rates in water system operating 

at 250°C show satisfactory results in conversion of lignin. Due to its excellent dissolution 
capabilities and the promotion effect for the catalyst organic solvent, in particular THF, it 
is found to be an efficient reaction media and leads to a significant increase in conversion 
rate. It was also shown that zeolite catalysts (NaX, NaY and NaP) lead to improved yield on 

monomeric products compared to other catalysts like MgO or CaO. A maximum of 51 wt.% 
of low molecular weight products was achieved in an ethanol/water medium at 250°C [23]. 

Layered double hydroxides (LDH) as recyclable, heterogeneous catalysts have been intro-

duced recently for BCD of lignin. Such solid-base catalysts avoid the cost of liquid phase, 
nonrecyclable base and downstream processing steps like neutralization. LDH are prepared 

from Al and Mg salts and are stable in water and organic solvents at relatively high working 
temperature [49, 50].

Figure 5. Schematic flow sheet of the plant for BCD depolymerization in pilot scale [8].
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4.2. Upgrading of BCD products by catalytic refinement

Lignin-derived fractions cannot be utilized directly as fuels or fuel additives due to their high 

oxygen content, acidity, instability, high viscosity and complexity of constituent compounds. 

It should be mentioned at this point that O/C ratio and H/C ratio of fossil species are 0 to 
0.03 and from 1.6 to 2.1, respectively. In contrast, the O/C and H/C ratios of the BCD bio-oils 
range from 0.6 to 0.7 and from 1.0 to 1.35, respectively. Upgrading the cleavage products 

should therefore target oxygen removal, carbon preservation and hydrogenation of unsatu-

rated carbon bonds. Thus, catalytic upgrading processes to convert the alkoxyphenol species 
are required for further chemical transformation to the improved and enhanced products. 
Procedures typically focus on further reduction in the oxygen content via hydrodeoxygen-

ation (HDO) and/or further cleavage with larger oligomeric fragments of the oil, as so-called 
hydrocracking (HC). Solvolysis of lignin-utilizing reductive agents is summarized as hydro-

genolysis (HGL) [3, 40, 51].

Hydrogenolysis of lignin: HGL has been investigated for decades and combines C─O bond-

breaking with simultaneous hydrogenation at C and O moieties. Hydrogen-donating solvents 
such as tetralin, formiate or anthracene species have been successfully tested. Also alcohols 

have been widely used for in situ generation of hydrogen [5, 52]. These are highly attractive 
methods, especially considering that methanol or ethanol can be potentially derived from 

lignocellulose or other renewable resources. Hydrogen transfer from methanol over basic 

copper catalyst under supercritical or milder conditions reveals the formation of aromatic 

and aliphatic alcohols. The role of the multifunctional catalyst is to promote reforming of the 

methanol solvent to CO and H
2
 that serve thereby as a “liquid syngas” and to catalyze diverse 

hydrogenolysis and hydrogenation processes. The latter consumes the produced hydrogen 
equivalents [13]. Besides, hydrotreating and hydrothermal treatment of alkaline lignin in 
methanol over Ru/Al

2
O

3
 have been found to improve product yield and selectivity and reduce 

char formation at lower working temperatures and pressures [53].

Another approach is introducing hydrogen H
2
 directly into the reaction media within pres-

surized systems. Activation of H
2
 is mandatory and realized by using various heterogeneous 

catalyst systems. Supported Ni (on Al
2
O

3
) or Ru (on carbon) materials have been used for 

example to break down lignin into monomeric units by introducing hydrogen at pressure 
up to 70 bar [5, 54]. To mention at this point is also the use of ionic liquids as a solvent and in 
parallel as an acid catalyst for improved product refinement. The amount of total hydroxyl 
groups could be increased in the final cleavage product using 1-butyl-3-methylimidazolium 
chloride (BMIM Cl) in the presence of H

2
, compared to the original used soda lignin. As a 

result, lignin antioxidant activity was enhanced [55].

In a one pot system, lignin can also be directly transferred to some aliphatic hydrocarbons in the 

so-called lignin to liquid process (LTL process). Kleinert et al. have introduced this method for 
fully liquefying lignin using formic acid, ethanol and i-propanol [52].

Hydrodeoxygenation of BCD intermediates: Catalytic hydrodeoxygenations are mostly 

appended to the BCD process. They are used to produce aromatic hydrocarbons and 
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 alky-cycloalkanes with low oxygen content and high stability. Within these kinds of processes, 
C─O bond-breaking occurs, and C─O, C─C and C─H bonds as well as the aromatic rings will 

be saturated. While oxygen is partially and selectively removed, acidity of the intermediates 
is lowered resulting also in an inhibition of repolymerization. Hereby, mixtures of aromatics 

and alkanes with narrower product distribution are generated, which contain oxygen-poor, 
low molecular weight molecules, giving access to biofuels and bulk chemicals [3].

Consequently, a significant part of the developments is found in patent applications. Processes 
combining several internal steps are also published. Mild BCD at up to 240°C is followed by 
selective hydrocracking with superacid catalyst. The resulting oxygen-containing depolymer-

ized lignin of alkylphenols will further be catalytically etherficated with methanol or ethanol 
leading to reformatted partially oxygenated gasoline [20, 22]. Also the developments for liquid 
biofuel synthesis by subsequent BCD and HDO processes to C7-C11 alkylaromatic compounds 
and paraffins should be mentioned [21, 56]. Cobalt and molybdenum catalysts [21, 56] or iron 

oxides [57] in the presence of H
2
 are utilized. Subsequent catalytic oxidation with peroxides of 

BCD intermediates is rising the production of useful platform and fine chemicals [18].

4.3. Utilizing black liquor and lignocellulose feedstock

Depolymerization of black liquor without isolation of lignin might be advantageous over 
solid lignin processing since the stage of precipitation could be bypassed, reducing the costs 

of the whole process chain. As kraft black liquor presents an alkali medium, BCD depolymer-

ization of lignin can be carried out similarly to isolated lignin in order to obtain small phenolic 

compounds. A direct comparison for the conversion of solid soda lignin and soda black liquor 
revealed a higher conversion degree for black liquor. Yields of BCD-oil and BCD-oligomers 
were significantly higher, with less formation of char [36]. The application of catalytically 

active reagents, such as phenols or hydrogen peroxide, also markedly increases the amount of 
small phenolic compounds and prevents repolymerization to undesirable products (residual 

lignin and coke) [58].

Current developments also include the direct transformation of woody biomass and other 

lignocellulosic feedstock for the production of aromatic building blocks. An especially inter-

esting concept is the process of transferring hydrogen equivalents from cellulose fraction into 
lignin. Copper-doped basic heterogeneous catalysts are well suited for the conversion of both 

lignin and cellulose-derived feedstocks into alcoholic species where humin formation is sup-

pressed [13].

Furthermore and beyond the previous examples, we want to mention a remarkable devel-
opment for reductive lignocellulosic fractionation at this point. The innovative catalytic lig-

nin’s first LF process aims at the direct and selective conversion of lignin directly from wood 
pellets, allowing a high conversion into monomeric and some dimeric alkyl phenols next 
to small oligomers. In the presence of a Ru on carbon catalyst (Ru/C) in methanol under H

2
 

atmosphere at elevated temperature, lignocellulose sawdust is efficiently delignified through 
simultaneous solvolysis and catalytic hydrogenolysis, resulting in a carbohydrate pulp and 

a lignin oil [59, 60].
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5. Conclusion and closing remarks

Current research and development activities address the optimization of product specifica-

tions from BCD cleavage with regard to low molecular weight alkylphenols and alkylnaph-

thenes possessing narrow molecular weight distribution. Reactive additives, such as phenols or 

organic alcohols, are used to suppress repolymerization and condensation of product interme-

diates and, thus, to avoid char formation. However, complex mixtures consisting of molecules 

with relatively high oxygen content restricts its implementation in the usual process chains of 

the chemical and process industries. Therefore, concurrent or subsequent hydrodeoxygenation 
or hydrolysis of BCD-oils or BCD-oligomers is applied for further refinement and gives rise to 
the use as bulk chemicals or fuels. Significant effort has been made in recent years to advance 
developments in this area. But yet, industrial implementation has not taken place. Therefore, 
one has to ask at this point whether the utilization of lignin as low-priced products in the form 
of platform chemicals appears to be economical. Material use is usually in competition with its 
energetic use in the form of black liquor or other biorefinery lignin feedstocks. The production of 
fine chemicals and specificities by means of the BCD process might offer the possibility to pro-

vide even high-priced products made of lignin. In particular, functional monomeric derivatives, 

such as vanillin, syringaldehyde or apocynin, are interesting candidates. Even a cascade of uses, 

for example, low molecular weight aromatics in the field of fine and platform chemicals and 
medium and high molecular weight fractions as polymer additives, is worth mentioning here.

In order to increase the technology readiness level of the BCD process and, thus, to develop an 

industry-relevant process, it is necessary to establish an overall approach regarding material and 

energy efficiency as well as to examine its technical and economic feasibility. Still one of the big-

gest limitations for its commercial application is the obtainment of complicated product mixtures. 

The low selectivity to products and subsequent required separation and purification are the main 
hurdles for lignin cleavage processes. Therefore, new innovative approaches and technologies 

especially for downstream processing, like membrane techniques, have to be considered.
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