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Abstract

In recent years we have witnessed an explosion of interest in two dimensional (2D) 
materials, due to their unique physical properties. Excitement surrounds the promise of 
replacing conventional bulk photodetectors with devices based on 2D materials, allow-
ing better integration, flexibility and potentially improving performance. However, the 
low inherent light absorption of 2D materials is an outstanding issue to be solved. In this 
chapter we review two independent approaches to tackling this problem, which have 
the potential to be combined to find a robust solution. The first approach involves pat-
terning the substrate with a rod-type photonic crystal (PhC) cavity structure, which is 
shown to increase the light absorption into a 2D material flake coupled spatially to the 
cavity mode. Secondly, we review 2D–compatible solid immersion lenses (SILs) and their 
ability to increase both the optical magnification of the structures they encapsulate, and 
the longevity of the material. SILs have been shown to reduce the requirements for com-
plex optics in the implementation of 2D materials in optoelectronic devices, and also in 
preserving the photodetector’s optical performance over long periods of time. Finally, 
we show how by combining rod-type PhC cavities with SILs, we can improve the perfor-
mance of 2D material-based photodetectors.

Keywords: rod-type photonic crystals, quality factor, solid immersion lenses, epoxy

1. Introduction

Two-dimensional transition metal dichalcogenides (TMDs) are a class of semiconducting 
materials, which can be exploited for a range of diverse applications [1]. Their ultra-thin 
dimensions and novel properties can provide unique advantages in fields such as energy 
[2, 3], computing [4–6] optoelectronics [7, 8], sensing [9, 10] and security [11, 12]. Current 

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



bottlenecks in commercialising devices formed from TMDs are their relatively poor quantum 
yield, low optical absorption and high rate of degradation in ambient conditions. The quan-

tum yield of TMDs, namely the number of excitons generated divided by the number of pho-

tons impinged on the device, is typically between 0.01 and 6% [13], which is exceptionally low 

in comparison to other emitters such as III-V based structures that can have quantum yields 
reaching close to 100% [14, 15].

TMD monolayers such as MoS
2
 have excellent absorption characteristics [16], and high photo-

responsivity [9] relative to their dimensions. However, their extreme thinness of just 0.65 nm 
means that the absolute absorption is usually relatively low (typically less than 6% at 450 nm) 

[17] severely limiting the efficiency of TMDs in real implementations such as detectors and 
solar cells. This value can be increased by using multiple monolayers, [17] or by careful prepa-

ration of the incident light [18]; however such methods may not be practical for specific opto-

electronic applications.

Multiple existing approaches have been developed to circumvent these limitations. One 
method involves the use of superacid treatment to obtain near a 100% photoluminescence 

quantum yield from these materials [13, 19]. Currently, reports of superacid treatment have 

all involved using Bis(trifluoromethane) sulfonimide as the superacid material for treating 
MoS

2
. The photoluminescence intensity of MoS

2
 monolayers have been shown to increase 

up to 190-fold after treatment [13]. While the explanation of the enhancement in light emis-

sion as a result of superacid treatment is still not very clear, recent studies demonstrated that 

enhancement could be caused by the transformation of trions into neutral excitons combined 

with a reduction in the density of mid-gap trap states for CVD grown monolayers [20].

Improved monolayer absorption can be achieved by coupling TMD monolayers to an 
engineered structure that confines plasmonic modes such as gold nanostructures [21, 22], 

nanoparticles [23] and nanorods [24, 25]. This phenomenon stems from the fact that plasmonic 
resonance couples to both excitation and emission fields, hence boosting the light-matter 
interaction at the nanoscale. For example, Johnson et al. have observed a giant enhancement 

in the luminescence intensity of tungsten diselenide (WSe
2
) by coupling it to plasmonic struc-

tures, resulting in an increased light absorption [26]. They report achieving an enhancement 
factor of up to 200 using silver nanotriangle arrays coupled to the monolayers. Sobhani et al. 

in [23] have observed that by tuning plasmonic core-shell nanoparticles to the direct bandgap 

of monolayer MoS
2
 and depositing them sparsely onto the monolayer’s surface, the photocur-

rent achieved through the monolayer increases 3-fold, hence promising a model for more 

sensitive TMD based photodetectors. Other structures such as nanocubes [27] and bowtie 

antennae [28, 29] have also been utilized for enhancing light emission, resulting in up to 2000 

fold increase in material’s absorption.

Absorption of TMD monolayers can also be increased when they are coupled to photonic 

crystal (PhC) structures such as cavities, which can greatly aid in improving the efficiency of 
photodetectors [30, 31]. Like plasmonic structures, the strong localization of electromagnetic 

radiation in photonic cavities increases the light-matter interaction, leading to higher absorp-

tion efficiency. For example, by monolithically integrating graphene with a Fabry-Perot 
microcavity, the optical absorption can be enhanced by 26-fold, reaching absorption values 
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greater than 60% [32]. Combining graphene with hole-type PhC cavities, has been shown 

to increase light reflectivity from graphene by 4.0x [33]. A photodetector can be realized by 

fabricating metal contacts above sheets, through which a circuit current can be amplified and 
measured when the device is illuminated.

An alternative method for enhancing monolayer light absorption using PhCs was proposed 

by Noori et al. in [31]. In this method, a rod-type PhC is used to achieve an increased light to 

monolayer coupling. This PhC can be combined with a high refractive index solid immersion 
lens (SIL) [34, 35], which is placed directly above the cavity. This has two effects: the first is 
to act as a reflective interface to redirect any leaking light back into the cavity, increasing the 
chance of light absorption by the monolayer. The second is to increase the coupling of light 
into/out of the cavity, increasing the probability that an applied photon gets into the cavity, 

which SILs are considered especially effective at [36, 37]. SILs are commonly made out of glass 

[36], which can pose a problem when integrating into delicate structures such as PhCs and 2D 

materials. Recent work forming SILs out of photopolymers, has shown progress in solving 

this issue [38–40].

For the rest of this chapter, we will focus on the concept of a rod-SIL photodetector. We will 

review the rod-based PhC structure and compare it to the more common method of coupling 

monolayers to uncapped hole-type PhCs. We will then look at photopolymer based solid 

immersion lenses, and their effectiveness at both coupling light into/out of a material, as well 
as protecting it from the ambient environment. Finally, we discuss how the combination of 

the two structures can provide an efficient optical package for use in photodetection.

2. Enhancing light absorption using photonic crystal cavities

2.1. Coupling 2D materials to photonic crystals

In 1987, Yablonovitch proposed the theoretical concept of using periodic optical structures 

to create photonic bandgap systems, now popularly known as photonic crystals [41]. A PhC 

structure comprises of a series of periodic changes in refractive index that creates a range of 

disallowed states for a photon, effectively forming a photonic bandgap. This effect is very 
similar to electronic bandgaps experienced by electrons in an atomic lattice, thus PhCs are 
sometimes describes as ‘optical lattices’.

Experimental realization of manmade PhCs occurred a decade later [42, 43]. Ever since that 

time, PhCs became a potential platform for making integrated photonic components such as 

cavities, waveguides, mirrors and wavelength/polarization multiplexers [44, 45]. This allows 
the realization of technologies such as single photon sources, lasers, filters, interferometers, 
modulators and slow light waveguides.

Coupling 2D materials to photonic cavities can lead to substantial improvements in the mate-

rial’s absorption efficiency, opening the doors for their use in the development of ultrathin 
but highly efficient detectors. TMD monolayers have also been coupled to hole-type PhC cavi-
ties, resulting in lasing and enhancement in the spontaneous emission rate for light emitted 
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from these 2D materials [46–50]. Hole-type PhC cavities can have high Q-factors due to their 
reduced mode losses in the vertical direction due to the refractive index contrast at the bridge-

air interface. However, the hole-type PhCs have distinct disadvantages when being used with 
non-embedded emitters such as 2D materials, because the cavity mode is confined within 
the bridge structure; a region where the TMD monolayer cannot realistically be placed. This 
causes reduced coupling between the photo-absorber monolayer and the cavity mode’s maxi-

mum, leading to a reduction in light-matter interactions. Secondly, the large dielectric-to-air 
volume ratio that exists in the structures of hole-type PhCs results in undesirable light absorp-

tion by the dielectric material. This becomes critical when a high absorption material, such as 
GaAs, is used with an operating wavelength that lies in the visible regime. However, a lot of 
these issues can be solved by changing the PhC structure from a hole-type to a rod-type [31].

2.2. Photonic crystal cavity design

PhC structures are commonly formed from a hexagonal array structure, rather than a square 

array because, they are easier to fabricate in practice [51]. For rod-type cavities, square lat-

tice arrays exhibit a transverse magnetic (TM) bandgap with Q-factors that may exceed 1000. 
However, confining light in the visible wavelength range using the square lattice PhC requires 
the structure to have feature sizes that may be difficult to fabricate using conventional lithog-

raphy techniques. For example, assume a square lattice PhC is designed for the optical band-

gap of monolayer molybdenum disulfide (MoS
2
), i.e. approximately 660 nm [52]; Villeneuve 

et al. in [51] showed that for a rod-type PhC lattice with material index  n = 3.4 ,  a = 1  and  r = 0.2a , 

a H1 cavity would have its cavity mode at  λ = 2.56a . In other words, a PhC cavity with a mode 

at  λ = 660 nm , requires its lattice constant to be,  a = 258 nm  and the radius to be,  r = 52 nm , with rod 

heights of at least 660 nm. Designing rods with such dimensions is challenging and requires 

extreme controllability of the fabrication process. Furthermore, small fabrication uncertain-

ties that change the rods’ radius, the lattice constant, sidewall roughness and/or their vertical 
height can shift the cavity mode and change its Q-factor. An H1 hexagonal lattice PhC cav-

ity of similar dimensions has its cavity mode at a much smaller wavelength. Hence, a cavity 
designed to have a mode wavelength at 660 nm will have larger dimensions, making it less 

dependent on fabrication limitations. The cavity that will be discussed in this chapter can 
achieve this goal using  a = 595 nm  and  r = 95 nm , which are easier to achieve in practice.

The PhC studied here consists of a hexagonal lattice of rods surrounded by air for, optimum 
index contrast. Since MoS

2
 has an absorption wavelength at 660 nm, due to its direct band-

gap, rods made from common substrates such as silicon or GaAs can have a refractive index 

that exceeds 3.5 at this wavelength. To make the photonic cavity, a rod is omitted from the 
PhC lattice allowing a photonic state to be created within the lattice’s photonic bandgap. The 
confined wavelength of the cavity is also known as the cavity mode. In previous work by 
Kay et al. [53], 2D materials have been shown to dip when transferred onto hollowed regions 

such as etched trenches on a substrate. Through exploiting the flexibility of TMD monolayers, 
spatial coupling between the cavity and the material is possible by suspending the mono-

layer over the rods; Figure 1 illustrates this concept. Having a sufficient lattice separation, 
the cavity region, can allow the suspended flake to sag within the cavity such that the flake’s 
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topological minimum spatially matches the cavity mode’s antinode. Optimized alignment in 
both position and energy optimizes absorption by the 2D material. The PhC hexagonal lattice 
is surrounded by air for optimum index contrast. MoS

2
 is the material considered here for 

this work because of its large neutral and charged exciton binding energies, making it a great 

candidate for room temperature photodetection. Nevertheless, the PhC design is universal, as 

the normalized parameters may be scaled and adjusted to match any light absorptive TMD. It 
consists of rods with a lattice constant,  a = 1 , and a radius,  r = 0.165a , where the rods are made 

by etching the silicon substrate.

2.3. Cavity performance

2D PWE simulations of the PhC structure (Figure 2a), have shown that a bandgap exists in the 

frequency range  1.05a < λ < 1.17a.  Once the photonic band diagram was simulated, a H1 cavity 
was formed in the centre of the array. Subsequently, FDTD is commonly used to test the cav-

ity’s performance. 2D simulations can confirm the presence of the cavity mode and used to 
analyze its central wavelength. Performing 2D simulations at this point can usually save a lot 

of computation time and power that may be spent with exhaustive 3D simulations. Q-factor 
measurements from 2D simulations typically show astronomical values since leakage in the 

vertical direction is not included.

3D FDTD simulations of the cavity mode are shown in Figure 2b and c. Initially, an E
x
 pola-

rised source was placed at the center of the cavity, with a central wavelength λ of  1.1a  and 

a full-width at half maximum (FWHM) of  dλ = 0.1a . Using Meep, a visual image of the light 
propagation can be produced. After allowing enough time to pass following initialization of 

the dipole, to allow edge states and propagating modes to leak, the cavity standing mode’s 

field was observed on its own, as shown in Figure 3a. The cavity is later simulated with an E
y
 

Figure 1. Cross-sectional illustration of a silicon rod PhC cavity with a monolayer transferred on top. Declining of the 

monolayer within the cavity region can increase coupling between excitons and the cavity modes.
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polarised dipole, which showed an electric field distribution for the cavity mode, as shown in 
Figure 3b. Using the harmonic inversion (harminv) tool embedded in Meep, the cavity mode 
was found to have a wavelength  λ = 1.12a  with a Q-factor of 300. On the other hand, Figure 3c 

shows the field distribution for a cross-sectional slice along the x-direction through the cav-

ity. Unsurprisingly, the PhC rod’s height also influences the mode’s confinement. If the rods 
are too short, the cavity mode’s shape can extend into the air above the PhC. This results in 
a reduction in the spatial interface between the mode and the rods, lowering the light collec-

tion ratio. Conversely, if the rods are too long, higher order and propagating modes can form 

within the cavity structure. Furthermore, etching high aspect ratio rods will always require 

complex dry etching techniques to achieve the desired degree of anisotropy. It has been 

revealed that maximum gap size for a square-lattice rod-type PhC is achieved for rod heights 
of approximately  2.3a , corresponding to approximately two cavity modes wavelengths [51].

The Q-factor of a cavity can be defined as the ratio of the energy stored in the resonating cavity 
to the energy dissipated per cycle. For a cavity with a Q-factor of 300, such as the rod-type PhC 
cavity discussed here, a resonating photonic mode inside a cavity is expected to oscillate 300 

times before it leaks half of its energy outside the cavity. For a MoS
2
 monolayer with an absorp-

tion coefficient of 0.05, coupled to a rod-type PhC cavity the absorption of the monolayer can 
be enhanced to almost unity [52]. This can be calculated using the following equation:

Figure 2. (a) An x-y cross-section of the simulated PhC cavity structure. x-y (b) and y-z (c) screenshots of the simulated 

structure from Lumerical FDTD package showing the PM layers and flux region.

Figure 3. 3D FDTD simulation of the photonic cavity mode showing time slice images of the confined E
x
 (a) and E

y
 (b) 

components. (c) Cross section of the E
y
 field within the microcavity. Red (blue) represents positive (negative) components 

of the electric field.
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   α  
c
   = 1 −   ( α  

m
  )     Q  

c
     (1)

where   α  
c
    is the absorption of a monolayer that is coupled to a cavity,   α  

m
    is the absorption of 

a monolayer that is not coupled to a cavity and   Q  
c
    is the cavity’s Q-factor. Note that in this 

approximation, absorption due to the dielectric host material (in this case considered silicon) 

was not taken into account. It is expected that absorption due to the material can reduce the 

cavity’s Q, however this becomes less critical for cavities designed to have low-mid Q-factors 
such as the ones shown here where light is allowed to leak into the cavity to enhance absorp-

tion for optimized photodetection.

A series of simulations were carried out with a source inside a PhC cavity containing rods 

with different radii. The aim is primarily to investigate the robustness of this design to fabrica-

tion imperfections that are likely to occur due to the relatively small structure. Causes of shifts 

in the radius of the fabricated rods could be due to the inaccurate selection of exposure dosage 

in the electron-beam (e-beam) writing process. Other reasons could be due to non-anisotropic 
sidewall profile development of the exposed regions of the resist, due to temperature varia-

tions of the developing solution and/or the samples themselves. Hence, the radius was varied 
between  0.155a  and  0.170a . Figure 2b and c show screenshots taken directly from Lumerical’s 

user interface for the simulation cell. The mesh resolution used in this simulation is 20 ele-

ments per one lattice constant, a, in every dimension. Corresponding to approximately one 

element per 30 nm in real units. To measure the cavity mode, a flux region was setup above 
the cavity, collecting light from the cavity mode radiated vertically upward. A maximum 

Q-factor of 341 was achieved for a PhC cavity having rods with a radius,  r = 0.161a , where the 

cavity mode’s central wavelength is  λ = 1.104a , as shown in Figure 4. As the radius deviates 

from  r = 0.161a , the collected power flux starts to decrease, which results from a decrease in 
the Q-factor, recording a minimum of 155 at  λ = 1.138a  for  r = 0.170a . It is clear from Figure 4 to 

note that reducing the radius of the rods tends to blue-shift the cavity mode’s energy, hence 

reducing its wavelength. This is expected, as the relationship between the PhC’s cell radius 
(hole-type or rod-type) and the cavity mode’s wavelength was anticipated through previous 

studies [54]. Figure 4 plots a comparison between the obtained fluxes for two cases. The first 
case is when a flake is exfoliated directly onto a flat substrate. The second case is when the 
flake is transferred on top of the PhC structure, dipping to half the height of the rods where 
the cavity’s field maximum exists for rods with  r = 0.161a . Later, the effect of having the source 
away from the cavity’s centre will be discussed.

Throughout the scope of this work, the simulations were made with the assumption that 
the flake is dipped to about half the height of the rods. This is expected to be the ideal case 
since the flake will be coupled to the field’s antinode, creating maximal spatial coupling to 
the cavity. Performing simulations to anticipate the amount of dipping of a monolayer over 

a typical structure depends on many factors. These include the monolayer material, the rods’ 
surface roughness, temperature, etc. These typically require setting up finite element simula-

tions while taking into account the van der Waals, Coulombic and gravitational forces, which 

is very exhaustive. Hence, a series of simulations were run to investigate the effect of dip-

ping of the monolayer emitter on the monolayer-cavity coupling. These simulations are done 
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by placing the dipole at different heights along the vertical direction inside the cavity. Even 
though the source position in the vertical direction was changed along the height of the cav-

ity, it is important to mention that the flux region height above the photonic structure was 
not changed. The cavity spectra for the different heights are shown in Figure 5. It is expected 

that maximum absorption of the monolayer should be achieved when the source is spatially 

aligned with the cavity mode’s electric field maximum. This exists at the center of the cavity, 
one wavelength above the substrate, as was previously shown in Figure 3c. The intensity of 
the cavity mode was found to decrease as the source is moved toward the top of the rods due 

to reduced spatial coupling between the dipole source and the cavity mode’s antinode, which 

exists in the center of the cavity.

Figure 4. The effect of changing the rods’ radii r from 0.155a to 0.170a on the cavity mode, showing a maximum Q for  
r = 0.161a  and an increase in the cavity’s central wavelength when  r  is increased, and vice versa.

Figure 5. Comparison of the flux spectra for emission from the cavity as the dipping of the material is varied along the 
z-axis. The drawing on the right illustrates the degrees of bowing of the 2D material from the surface of the structure into 
the cavity for each of the cases shown on the left.
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Compared to H1 cavities, L3 cavities are usually favored for better coupling to PhC wave-

guides and tend to have lower confinement quality factors of roughly 150. In L3 cavities, the 
Q-factor is expected to reduce due to increased coupling of the cavity mode to radiative modes.

Having an engineered structure that can improve absorption of monolayers is essential, in the 
next section we will describe how a different structure such as a micro-lens can help increase 
the light collection efficiency to these monolayers/cavity systems.

3. Enhancing light collection using photopolymer lenses

A solid immersion lens (SIL) is an optical element with a high refractive index that can be 

placed on the surface of a semiconductor to increase the optical extraction efficiency of a sur-

face/subsurface emitter. SILs are typically formed from high index glass [55] and are placed 

directly on the surface of an optical structure to increase the light being coupled into and/

or out from it. SILs can also be formed from photopolymers such as UV-curable epoxy [40], 

which gives the SIL unique properties such as easy tunability and mounting. The rest of this 
section will focus on these types of SILs.

Two different geometries of SIL have been predominantly studied; those with a hemispheri-
cal shape (h-SILs) and those with a Weierstraß shape (s-SILs) [55], as shown Figure 6. S-SILs 

have a higher magnification than h-SILs, scaling as the refractive index of the SIL squared as 
opposed to a direct linear relationship for a h-SIL. In subsurface emitters such as quantum 
dots (QD’s), s-SILs have a higher input/output coupling efficiency over h-SILs, due to them 
being able to refract a higher number of rays at the SIL-air boundary, thus collecting/deliv-

ering a greater solid angle of light ( 𝜃s ) to and from a device. In the case of a surface emitter 
such as a 2D material this SIL-air boundary refraction in the s-SIL is essential to increase the 

input/output coupling, as there is no contribution to light coupling from the substrate-SIL 

boundary.

Figure 6. Diagram showing the difference in shape between a s-SIL and h-SIL on a sample with embedded emitters 
(quantum dots) in the above case (yellow features). The dashed lines highlight how a larger angle of emitted light is 
collected in the s-SIL relative to the h-SIL.
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3.1. SIL fabrication

The process of creating an epoxy SIL onto a 2D material is described in this chapter. The 
sample containing the 2D material is immersed into a glycerol bath, which provides the liq-

uid phase medium needed to enable the formation of droplets with high contact angles, such 

as the SILs those shown in Figure 6. This arises due to a modification of the surface tension 
experienced by the droplet, and can be explained by considering the Young equation given in 

(2) [56] and illustrated in Figure 7.

  cos  θ  
y
   =   

 γ  
sf
   −  γ  

sl
  
 _____  γ  

lf
      (2)

where   γ  
sf
    ,   γ  

sl
    and   γ  

lf
    are the solid-filler, solid–liquid and liquid-filler surface tensions, respec-

tively. When the filler solution is air,   γ  
sf
    is greater than both   γ  

sl
    , and   γ  

lf
    . This makes  cos  (𝜃y)  > 0 ,  

resulting in a small equilibrium contact angle ( 𝜃y ). However, when a filler solution such as 
glycerol is used,   γ  

sf
    reduces dramatically, allowing  cos  (𝜃y)  < 0 ; this allows droplets with a con-

tact angle over 90 degrees to form. Glycerol is an ideal filler solution due to it being relatively 
inert with respect to the epoxy. Other filler solutions such as water are less ideal as they are 
known to be absorbed by the epoxy, leading to a significant reduction in the SIL’s transpar-

ency [40].

The dispensed UV-curable polymer can be tuned, using one of two methods. The first and 
most simple is to exploit the polymer’s relatively strong attraction to the substrate to create a 
larger than required SIL with the correct sized base. The SIL can then be tuned by withdraw-

ing epoxy from the center of the dispensed droplet, allowing the volume to reduce whilst 

the base’s dimensions stay relatively constant. Another method of tuning the shape involves 

applying a bias between the needle and sample, and using the principle of electro-wetting to 
change the droplets shape [38–40]. Once the desired shape is obtained the SIL can be cured 
by exposure to UV light, permanently fixing its location, and shape. The sample can then be 
removed from the glycerol bath and washed with deionized water to remove any remaining 

glycerol. Further details on the fabrication process of an epoxy SIL, can be found from [39].

Figure 7. Diagram illustrating Young’s equilibrium contact angle (  θ  y   ), due to the balancing of the solid–liquid (  γ  sl   ), 

liquid-filler (  γ  lf   ) and solid-filler (  γ  sf   ) surface tensions.
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3.2. Enhanced light coupling

Figure 8a shows how a SIL enhances the coupling of light out of a TMD based device. The SIL 
on the RHS of the blue dashed line refracts the light rays produced by the TMD at the SIL-
air boundary closer to the normal leading to more rays entering the lens (shown as a double 

ended red arrow).

The increase in the coupling of light can be used to increase the light output of a TMD by 
increasing the solid angle of light that can be observed rather than lost to the environment. 

Figure 9a shows the measured photoluminescence (PL) spectra for a monolayer at 10 μW of 

excitation power. Comparing the integrated intensity of the flake both before and after the 
application of a SIL, an increase in PL intensity of 4.0× is observed. This enhancement arises 
from the SIL refracting light at the SIL-air boundary. A SIL with the dimensions shown in 

Figure 8b should increase the solid angle of light emitted vertically by 1.33×, the SiO
2
 layer 

underneath it will also reflect light back, creating a virtual source which will, in turn be 
enhanced by the SIL. Calculating these values, we find that the theoretical solid angle of the 
reflected light would be increased by 3.15×, which when scaled to take account of the percent-
age of light that would be reflected and added to the vertical emission we get a total enhance-

ment of 2.0 × .

The theoretical enhancement value calculated is only half the power of the experimental 
results, however, this only considers the coupling of light out of the SIL, and does not con-

sider what happens to the excitation source entering the SIL. A beam of light travelling in 

Figure 8. (a) A ray trace simulation demonstrating how the SIL increases the coupling of light, (b): A render of the SIL 
in c and d from the side with dimensions, (c and d): Microscope images showing an isolated TMD flake both before (c), 
and after (d) being magnified by a SIL.
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air is normally diffraction limited in terms of its size, and can be described by the Rayleigh 
criterion. When considering a beam being focused through a lens onto a surface we can use 

the following equation to describe the half-width at half-maximum (FWHM) of the resultant 
airy pattern:

  FWHM =   0.52λ ______ 
n  NA  

obj
  
    (3)

where  n  is refractive index of the medium above the TMDC,   NA  
obj

    is the numerical aperture 

of the μPL system and  λ  is the excitation wavelength [57]. For a 532 nm laser travelling 

through the air we get a FWHM of 0.42 nm; in contrast a SIL with refractive index of 1.56 
(such as the one demonstrated in Figure 8) has a FWHM of 2.7 nm. Assuming light is not 
lost due to scattering/reflection from the SIL then the incident optical power is unchanged, 
meaning that the power density of the laser spot increases due to the same optical power 

being focused into a smaller area. This change in power density for the aforementioned SIL 
translates to a 2.4× increase in light per unit area. Unfortunately, this will not lead to a 2.4× 

increase in light output of the monolayer WSe
2
, as the quantum efficiency of WSe

2
 is typi-

cally low [13, 58, 59]. However, the increased excitation will lead to an increase in PL inten-

sity (providing the excitonic ground state does not become saturated), and may explain the 

difference observed between theory and experimental observations.

Figure 8c and d show a 2D flake before and after being magnified through the application of 
a SIL. This magnification increase arises from the SIL creating an optical lever effect [60] (i.e. 

moving the focal position laterally across the SIL produces a smaller lateral movement under 

the SIL). The magnification allows maps to be made with a higher number of measurements 
per unit area. This can be easily observed from Figure 9b and c which show PL maps of the 

emission of a flake without and with a SIL, respectively. Note that both maps have the same 
number of pixels despite Figure 9c showing a map of a smaller area. This increased resolution 

Figure 9. (a) Graph showing the room temperature photoluminescence of a WSe
2
 monolayer both with and without a 

SIL, demonstrating the influence of the SIL in improving light collection efficiency. (b and c) Photoluminescence map 
of the same flake as (a) both without a SIL (b) and with a SIL (c), the intensity scale in these maps are identical, and the 
orange square in b shows the area in c that has been magnified by the SIL.
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is especially important, when pushing the limits of micro-photoluminescence, and can have 

many optoelectronic applications. In the example of a photodetector, the increased magnifica-

tion can enable the size of the detector to be reduced, whilst maintaining the same collection 

area, giving potential reductions in response times and jitter.

The magnification increase from Figure 8c–d was found to be 1.8×, indicating that the SIL 

has a shape between that of a hemisphere (linear dependence with n giving 1.56×) and an 

ideal super-sphere (quadratic dependence with n giving 2.43×). This result shows that SILs in 
between the h and s-SIL geometries (shown in Figure 6), can give optical properties that are a 

combination of the two, with the studied SIL showing a greater magnification than an h-SIL 
without introducing strong chromatic aberrations.

4. Improved device longevity

We have up to this point considered the properties of an epoxy SIL in terms of its optical 

performance, which although considerable is limited by the epoxy’s refractive index. SILs 

formed from materials like glass can have higher refractive indices, and thus can cause bet-

ter optical enhancement, and indeed are well suited to coupling light into/out of embedded 

structures with a flat surface over them. However, due to being solid and having a large 
hardness, glass SILs are unsuitable for coupling light into/out of sensitive photo-absorbers/

emitters like 2D materials, as their presence risks damage to the flake and is likely to leave 
an air gap that will significantly degrade its optical performance. Epoxy formed SILs do not 
suffer from this problem as the SIL can be formed over the sensitive structure as a liquid, then 
hardened into a solid to fully encapsulate the emitter. This hardening process causes no dam-

age to the emitter and fully seals the emitter away from any physical or chemical harm, giving 
the epoxy SILs a significant advantage over other types of SILs.

Encapsulation can be essential for materials that have finite lifetimes in an ambient environ-

ment. The photoluminescence of emitters such as colloidal quantum dots (CQD’s) [61, 62] and 

monolayer TMD’s are strongly suppressed when exposed to oxidants and organic contami-
nants present in the air [63–65]. In the case of TMD’s this strong suppression of PL is accompa-

nied by a large change in the flake’s structure and morphology especially at grain boundaries 
[66]. Strategies such as encapsulation with hexagonal boron nitride (h-BN) have been shown 

to be effective at preventing this oxidization [67] however, this form of encapsulation adds 

complexity and cost to the potential manufacturing processes. Photopolymers such as UV 
cured epoxies are commonly used in the mass-manufacture of products [68] and should also 

seal the TMD from oxygen. To test this hypothesis, a monolayer of WSe
2
 was encapsulated 

within a SIL and its appearance and PL intensity measured over several months in ambient 

conditions (a time period known to cause a reduction in PL [69]). The results of this experi-
ment are shown in Figure 10, the total integrated PL of the peak was found to stay constant 

within error over 5 months. In addition, the inset microscope images show that there are no 

visible changes in the monolayers appearance, suggesting that the SIL encapsulation helps to 

prolong the emissive lifetime of a monolayer in ambient conditions.
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The enhanced light coupling provided by a SIL combined with the tunability and protective 
nature of the liquid epoxy that forms makes it an efficient, cheap and scalable solution for the 
capping of 2D TMD based optoelectronics. Their obvious use is to improve the emission of 
light emitting devices such as TMD based LED’s [8]. Their high magnification and ability to 
focus light into a structure as well as out of a structure make them valuable for photodetector 

applications. PhC cavities as we have previously explored are ideal for coupling light into a 

2D material based detector; however, they require high NA objective lenses to focus incoming 
light to a tight enough spot that they can be effectively coupled into the crystal by the output 
coupler. Mounting a SIL on-top of the PhC, and centered on the coupler can allow much sim-

pler optics to be used as the SIL is providing some of the required magnification.

5. Conclusions and outlook

2D materials have shown great promise for replacing conventional bulk semiconductors in 

optoelectronic applications such as photodetectors and light emitters [8, 70]. Unfortunately, 

their low absorption due to their inherent atomic thickness presents limitations in adapting 

the material for photodetection applications. Here we have reviewed a rod-type PhC cavity 
structure which increases the light absorption of a 2D material flake coupled spatially to a 
cavity mode. Coupling the flake to a cavity with a Q-factor of 300 has been shown to be able 
to increase the material absorption to almost unity which has the potential to eliminate the 

absorption limitation of 2D material based photodetectors.

Directing collimated light to such a small structure for photodetection applications requires 

complicated optics such as expensive, high-NA objective lenses. SILs formed using 
UV-cured epoxy have been shown to magnify a 2D material based structure, this can enable 

Figure 10. Graph showing the change in photoluminescence intensity with time, for a flake of WSe
2
 immersed within an 

epoxy SIL (the dashed blue line shows the peak intensity before application of the SIL).
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simpler coupling optics to be utilized. The higher refractive index of the SIL can also help 
reduce the diffraction limit of a focused spot, helping to couple more light into one area. 
Hence for optimum efficiency, our proposed scheme for a 2D material based photodetector 
involves the transfer of a flake on top of a rod-type PhC cavity, and spatial coupling of the 
monolayer and the cavity mode maximum via the flake’s declining into the cavity structure. 
A UV-curable epoxy SIL is then dispensed on top of the cavity. Dispensing the SIL above the 
cavity provides three advantages. The first is to help collimate light into a tighter focal spot 
and magnify the 2D flake to simplify coupling optics. The second is providing an encap-

sulation of the 2D material to isolate it from the external environment, thereby increasing 

its longevity and improving its optical performance. The third advantage of dispensing a 
UV-cured epoxy SIL over the PhC cavity is enhancing the Q-factor of the cavity by reflect-
ing vertically leaking light back into the cavity due to the refractive index contrast between 

the air and epoxy.

Recent work by Bie et al. [30] has shown that TMDs can be used to form a waveguide-inte-

grated light source and photodetector based on a p-n junction. This novel scheme enables 
the photoresponsivity of the detector to be tuned and the scheme reversed for realizing a 2D 

material coupled to hole-PhC LED. The advantage of this scheme is that one device can per-

form two roles. Using this concept with rod-type PhC coupled to SILs can provide an increase 

in material’s absorption for a photodetection mode as well as greatly increasing the light out-

put of the LED mode. Opening new doors to niche applications and technologies.
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