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Abstract

Cardiovascular diseases are the leading cause of morbidity and mortality in the elderly 
population all over the world. Arterial aging is the earliest manifestation and a key risk fac-
tor for age-induced cardiovascular abnormalities. The longevity regulator Sirtuin 1 (SIRT1) 
is abundantly expressed in the endothelium of the arteries and elicits potent protective func-
tions against arterial aging. Targeting endothelial SIRT1 represents a promising approach for 
the prevention and treatment of cardiovascular diseases. This chapter provides an overview 
of SIRT1’s regulation and function in endothelial cells and discusses the potential applica-
tions of targeting endothelial SIRT1 for arterial aging-related cardiovascular diseases.

Keywords: sirtuins, endothelium, cellular senescence, vasodilatation, arterial 
remodeling, hypertension, atherosclerosis

1. Arterial aging

Chronological age is associated with a progressive alteration of arterial structure and func-

tion, herein referred to as arterial aging, which contributes to the development of a wide range 

of cardiovascular diseases including hypertension, atherosclerosis, heart failure, and stroke 

[1–3]. Arterial system is composed of three types of arteries including large elastic or conduit 

arteries, medium-sized muscular arteries, and small arteries referred to resistance arteries. 

Arterial aging is characterized by endothelial dysfunction and arterial remodeling, indicating 

a decline in arterial elasticity/distensibility, decreased arterial compliance, and increased arte-

rial stiffness. Physiological alterations of the vascular wall are dynamic and occur throughout 
life [4]. During aging, gradual thickening of the arterial wall, changes in wall composition 

(i.e., elastin fragmentation and collagen deposition), and an increase of artery diameter 

are observed in conduit arteries [2]. Increased intimal-to-media thickness (IMT) is a valid 
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 indicator of arterial aging supported by the finding that the IMT of the carotid artery increases 
twofold to threefold between 20 and 90 years of age [4]. Pulse wave velocity (PWV) is a nonin-

vasive measure of vascular stiffness. Stiffening of the conduit arteries leads to increased aortic 
pulse pressure and increased PWV, which occurs in both sexes along aging [5].

The endothelium, a monolayer of flattened, polygonal cells lining the inner surface of arter-

ies, plays an important role in regulating arterial structure and function. The endothelium can 

respond to pathophysiological signals by producing various factors that regulate vascular tone, 

cellular adhesion, thromboresistance, smooth muscle cell proliferation, and inflammation. 
During arterial aging, senescence, activation, and dysfunction of endothelial cells (ECs) repre-

sent the earliest abnormalities that lead to an impaired endothelium-dependent vasodilatation 

and adverse arterial wall remodeling [6]. Senescent ECs undergo permanent growth arrest, get 

enlarged and flattened in morphology, and also display positive staining for senescence-associ-
ated β-galactosidase (SA-β-gal) [7]. There are mainly two types of senescence. One is caused by 

successive cell duplication as a kind of natural aging process termed as “replicative senescence” 

and characterized by shortening of telomere [8]. The other is called “premature senescence” 

and induced by several stress conditions such as oxidative stress, radiations, and exposure to 

oncogenes [9]. Endothelial activation is defined as the initial event in atherogenesis. Circulating 
proinflammatory molecules including cytokines (i.e., tumor necrosis factor-α (TNF-α)) or mod-

ified lipoproteins (i.e., oxidized low-density lipoprotein (oxLDL)) activates ECs to express che-

mokines, cytokines, and adhesion molecules, thus attracting and recruiting inflammatory cells 
such as macrophages and T cells. Both endothelial senescence and activation can induce endo-

thelial dysfunction which is reflected by impairment of endothelium-dependent vasorelaxation 
caused by a loss of nitric oxide (NO) bioavailability in the vessel wall and altered anticoagulant 
and anti-inflammatory properties of the endothelium. Impaired endothelium-dependent vaso-

dilation in the coronary circulation of humans has profound prognostic implications in that it 

predicts adverse cardiovascular events and long-term outcomes [1, 2, 10, 11].

Age-related loss of arterial functions has been demonstrated, and underlying mechanisms 

were studied in human studies. Reduced NO bioavailability in older age was reported by 
observing diminished forearm vasoconstrictor response to infusion of NO-synthase inhibi-
tor L-NMMA in resistance arteries [12]. In older adults, supplementation of NO precursor, 
l-arginine, improves coronary artery blood flow response to acetylcholine [13] and skin blood 

flow response to whole body heating [14]. Moreover, age-related decline in synthesis of tet-

rahydrobiopterin, a co-factor in NO production, provides further evidence for impairment 
of vasodilation NO-pathway during aging [15]. In the aspect of vasoconstrictor pathways, a 

greater lower limb vasodilatation response to endothelin (ET)-receptor blockade in old men 

was reported [16]. A small but significant age-related impairment in vascular smooth muscle 
function was also observed in conduit and resistance arteries in a meta-analysis [17].

2. SIRT1 in endothelial cells: expression and regulation

Sirtuin 1 (SIRT1) is the mammalian orthologue of the yeast longevity regulator Sir2 [18]. 

Members of the Sirtuin family share a highly conserved core domain to catalyze deacetylation,  

Endothelial Dysfunction - Old Concepts and New Challenges76



ADP-ribosyltransferation, desuccinylation, and demalonylation [19]. Sirtuins regulate energy 

homeostasis, stress resistance, circadian rhythmicity, mitochondrial functions, and embry-

onic development, which in turn contribute to increased lifespan [20].

Human SIRT1 gene is located at chromosome 10q21.3 containing 11 exons with a total length 

of 33,715 base pair [21]. SIRT1 is composed of 747 amino acids including a core catalytic 

domain consisting of 275 amino acids and both N- and C-terminal extensions spanning about 
240 amino acids [22]. There are two nuclear localization signals and two nuclear exportation 

signals located in the extensions whose balanced functionality determines the presence of 

SIRT1 in either the nucleus or cytoplasm and explains the distinct location of SIRT1 among 

different cell lines and tissues [23].

Regulation of SIRT1 enzymatic activity occurs at various levels including post-translational mod-

ification, protein complex formation, transcriptional regulation, and concentrations of enzymatic 
substrates [19, 24]. Phosphorylation of SIRT1 represents the major form of post-translational 
modifications. Independent studies report multiple phosphorylation sites by distinct proteins, 
including c-Jun N-terminal kinase 1 (Ser27/47), cyclin B/cyclin-dependent kinase 1 (Thr530, 
Ser540), casein kinase 2 (Ser659/661), and adenosine 5′-monophosphate-activated protein kinase 
(AMPK) (Thr344) [25–28]. Additional post-translational modifications include methylation by 
SET7/9 [29], nitrosylation by glyceraldehyde-3-phosphate dehydrogenase [30], and sumoylation 

by sentrin-specific protease 1 [31]. In addition, several endogenous protein-binding partners of 

SIRT1 are found to regulate its function via forming protein complex. For example, the active 
regulator of SIRT1 can bind to amino acids 114–217 in the N-terminus of SIRT1 and stimulate 
deacetylation of p53 in vivo [32]. On transcriptional level, SIRT1 was reported that nicotinamide 

phosphoribosyltransferase (NAMPT) upregulated the expression of SIRT1 and SIRT1 antisense 
long noncoding RNA, thus regulating senescence, proliferation, and migration of endothelial 
progenitor cells (EPCs) [33]. SIRT1 activity is also thought to be affected by the levels of intracel-
lular co-substrate nicotinamide adenine dinucleotide (NAD+) and its product nicotinamide [34].

With age, SIRT1 expression in ECs is progressively downregulated. Overexpression of SIRT1 in 
the endothelium prevents cellular senescence, enhances vasodilatory responses, and attenuates 
aging-induced vascular damages [35–37]. The subsequent review will summarize the recent 

progresses related to the molecular regulation of SIRT1 expression in ECs and the anti-vascular 

aging effects of SIRT1 by focusing on endothelial dysfunction and arterial remodeling.

3. SIRT1 in endothelial cells: molecular targets and biological 

functions

Apart from histones, SIRT1 can mediate the deacetylation of various signaling substrates to exert 

vasoprotective functions. SIRT1 is abundant in ECs mediating postnatal blood vessel growth 

via Foxo1 and helps to maintain endothelial function [38]. In vitro experiments showed that 

downregulation of SIRT1 using small interfering RNA (siRNA) uniquely inhibited endothelial 
sprout formation via a three-dimensional assay, while other mammalian sirtuin family mem-

bers (SIRT2–SIRT7) could not [38]. In addition, the reduction of matrix metalloproteinase-14  
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(MMP-14), a membrane-anchored MMP essential for tip cell activity during sprouting angio-

genesis, was found in siRNA-SIRT1-treated endothelial sprouts [39]. Decreased expression 

of SIRT1 either by mRNA silencing or pharmacological inhibition could induce premature-
senescence-like phenotypes in ECs [40, 41]. SIRT1 displays anti-senescence activity in ECs by 

inducing the deacetylation of diversified signaling substrates [42]. For example, SIRT1 can 
deacetylate tumor suppressor protein p53 to downregulate its stability and activity as to pro-

mote cell survival in response to cellular stress [43]. SIRT1 also plays an important role in 

enhancing the endothelial NO synthase (eNOS) transcription and translation by deacetylating 
eNOS on lysine 496 and 506 to generate more NO, thus enhancing vessel dilatation, mediating 
vessel tone regulation, and providing athero-protective effects [44, 45]. Recent study demon-

strated that SIRT1 activation could help reduce traction forces and reorganize actin localiza-

tion (increased peripheral actin) in aged ECs, which is also a sign of anti-senescent effect [46]. 

Moreover, while senescent porcine aortic ECs (PAECs) showed decreased expression of SIRT1 
compared to young PAECs, the protein level of liver kinase B1 (LKB1), a serine/threonine 
kinase and tumor suppressor, was dramatically increased as well as the phosphorylation of 

its downstream target AMPK (Thr172). In this case, SIRT1 can antagonize LKB1-dependent 
AMPK activation by promoting the deacetylation, ubiquitination, and proteasome-mediated 
degradation in order to retard PAEC senescence which also correlated with the Akt survival 
signaling pathway [41]. Furthermore, it was reported that SIRT1 can bind to the DOC domain 
of HERC2 [HECT and RLD domain containing E3 ubiquitin protein ligase 2] and then ubiquiti-
nate LKB1 in the nuclear compartment of ECs [37]. SIRT1 can also negatively modulate Notch 
signaling in ECs via deacetylation of the Notch1 intracellular domain (NICD), in which loss of 
endothelial SIRT1 activity leads to impaired growth and sprout elongation [47]. Intracellular 

NAMPT-NAD+-SIRT1 cascade was shown to improve post-ischemic neovascularization 
through modulation of Notch signaling pathway [48]. Adapter protein p66Shc which can 

directly stimulate mitochondrial reactive oxygen species (ROS) generation was discovered 

downregulated by SIRT1 in mice with hyperglycemia-induced endothelial dysfunction [49]. 

Moreover, in vitro experiments using human aortic ECs (HUVECs) demonstrated that SIRT1 
can deacetylate RelA/p65 to diminish tissue factor expression and suppress nuclear factor-κB 
(NF-κB) signaling, thus preventing atherothrombosis [50]. In EPCs, SIRT1 was implicated to 
protect against oxidative stress-induced apoptosis by inhibiting Foxo3a via ubiquitination and 
degradation [36]. microRNA-34a (miR-34a), regulated by p53 and able to control cell cycle 
arrest, has been reported to promote cardiac, endothelial, and EPC senescence via down-

regulation of SIRT1 [51]. Also, visfatin (an adipocytokine closely associated with human cell 

senescence) was reported to attenuate the oxLDL-induced senescence of EPCs by upregulat-
ing SIRT1 expression through the PI3K/Akt/ERK pathway [52].

4. Endothelial SIRT1 prevents arterial aging

Various animal studies demonstrated that SIRT1 plays a vital role in anti-endothelial senes-

cence and anti-atherogenesis. Infiltration of monocyte-derived macrophages into the suben-

dothelial space is a crucial step in atherogenesis [53]. SIRT1 can decrease cholesterol uptake 

especially oxLDL and prevent macrophage foam cell formation via suppressing the expression  
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of scavenger receptor Lox-1 [54] and reducing the expression of various pro-inflammatory 
molecules including TNF-α, monocyte chemotactic protein-1, and interleukins [55]. A recent 

discovery showed that treatment of the SIRT1 activator SRT3025 decreased plasma levels of 

LDL cholesterol and total cholesterol and attenuated atherosclerosis, owing to reduced secre-

tion of hepatic Pcsk9 and enhanced protein expression of LDL receptor in apolipoprotein 
E-deficient (ApoE−/−) mice [56]. In the meantime, SIRT1 was demonstrated to promote reverse 

cholesterol (mainly HDLs) transport into macrophages by directly deacetylating and subse-

quently regulating the transcriptional activity of liver X receptors, which play a significant 
role in lipid homeostasis and inflammation and can help express ATP-binding cassette trans-

porter 1 that transport cholesterol into pre-βHDL particles [57].

Some studies regarding upstream regulators of SIRT1 including cathepsin, caspase-1, and 

cyclin-dependent kinase 5 (CDK5) elucidate beneficial roles of SIRT1 in anti-endothelial 
senescence and anti-atherogenesis [58–60]. The cysteine cathepsins belong to the leaked lyso-

somal contents with the viability in cleavage and degradation of SIRT1, which lead to stress-

induced premature senescence [58]. Studies on ApoE−/−/caspase-1−/− double knockout mice 

have shown promising evidences that early hyperlipidemia promoted endothelial activation 

via a Caspase-1-SIRT1 pathway [59]. In this case, researchers found that inhibition of caspase-1 

resulted in SIRT1 accumulation in the ApoE−/− mouse aorta and ApoE−/−/caspase-1−/− mice had 

attenuated early atherosclerosis, decreased aortic expression of proinflammatory cytokines, 
and reduced aortic monocyte recruitment, as well as decreased endothelial activation [59]. 

Another upstream regulator of SIRT1 is CDK5, which was proved to increase the phosphory-

lation of SIRT1 especially at S47 during cellular senescence [60]. In this study, replacing S47 

with nonphosphorable alanin (S47A) elevated, while mutation of S47 to phospho-mimicking 

aspartic acid (S47D) abolished the beneficial effects of SIRT1 such as anti-senescence, growth 
promotion, and downregulation of LKB1 expression [60]. Interaction between SIRT1 and telo-

meric repeat-binding factor 2-interacting protein 1 was abolished when S47 was phosphory-

lated. NF-κB signaling pathway is activated to induce endothelial inflammation and leads 
to endothelial senescence and atherosclerosis. Downregulation of CDK5 by either knock-

down (by siRNA) or inhibition (by roscovitine) reduced percentage of senescent ECs and 
attenuated inflammatory gene expression. Meanwhile, long-term treatment of ApoE−/− mice 

with the CDK5 inhibitor, roscovitine, resulted in attenuated atherosclerosis in aortae [60]. As 

CDK5R1(p35/p25) is the crucial activator mediating the kinase activity of CDK5 [60, 61], fur-

ther research will be conducted to unveil the underlying mechanism of CDK5-p35/p25-SIRT1 
pathway in ECs.

Limited information is available concerning the role of endothelial SIRT1 in vascular remodel-
ing. In eNOS-deficient mice, overexpression of endothelial SIRT1 prevents hypertension and 
age-related adverse arterial remodeling [37].

Laminar shear stress is an important stimulus for the endothelium-dependent control of vas-

cular tone and of vascular remodeling processes. In cultured ECs, laminar flow increases both 
the expression and activity of SIRT1, whereas oscillating flow decreases SIRT1 expression 
[62]. In mouse arteries, the formation of neointima is accompanied by a progressive down-

regulation of SIRT1 expression [63]. SIRT1 inhibition in ECs increases the expressions of p53 
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and its downstream target, plasminogen activator inhibitor-1 (PAI-1), which promotes the 
formation of neointima and vascular remodeling in response to vascular injury [40].

Loss of vascular smooth muscle cell (VSMC) function is an alarming sign of vascular dis-

ease. During the aging process, VSMCs undergo increased dysregulation, apoptosis, and 
senescence [64]. In VSMCs, SIRT1 can act as a modulator of neointima formation (associated 
with repression of activator protein-1 (AP-1) activity [63]) and protect against DNA dam-

age. Aging-related loss of SIRT1 expression correlates with lower capacity for vascular repair, 

abolished stress response, and elevated senescence [63].

Decreased expression of SIRT1 in VSMCs exerts its proatherogenic effects by the failure to 
deacetylate histones in DNA repair, response to oxidant stress and LDL, and therefore leads 
to VSMC senescence and apoptosis [63, 65]. As to atherosclerotic plaques, SIRT1 activity has 

been suggested to deacetylate the regulatory factor for X-box (RFX5) and antagonized repres-

sion of collagen type I (COL1A2) transcription in VSMCs, consequently stabilizing the plaque 
and avoiding rupture [66]. Another most recent finding relevant to destabilization of ath-

erosclerotic plaque is that SIRT1 participated in downregulation of platelet-activating factor 

receptor (PAFR) in VSMCs through β-arrestin 2-mediated internalization and degradation, 
resulting in the inhibition of PAF-induced matrix metalloproteinase (MMP-2) generation [67]. 

In addition, inhibition of miR-138 was found to increase SIRT1 expression in VSMCs sepa-

rated from diabetic (db/db) mice and in SMC lines C-12511 in recent study, which indicated 

miR-138 as another potential inhibitory target to attenuate the proliferation and migration of 
VSMCs and cure atherosclerosis [68]. Furthermore, SIRT1 was also found to inhibit angio-

tensin II-induced VSMC hypertrophy in rat embryonic aortic VSMCs [69]. Later on, SIRT1 
demonstrated antihypertensive activity in transgenic mice with selective overexpression of 

SIRT1 in VSMCs (SV-Tg). Alleviated vascular remodeling in mouse thoracic and renal aor-

tae induced by angiotensin II is observed, along with significantly decreased transforming 
growth factor-β1 (TGF-β1) expression, ROS generation, vascular inflammation, and collagen 
formation in the arterial wall of SV-Tg mice [70]. Similar to contribution in ECs, overexpres-

sion of miR-34a can upregulate p21 level and inflammation through SIRT1 downregulation 
and cause senescence-associated secretory phenotype factors induction (including pro-

inflammatory molecules such as cytokines, chemokines, proteases, growth factors, soluble 
receptors, etc.), promoting VSMC senescence and leading to arterial dysfunction [71].

5. Targeting endothelial SIRT1 for the prevention of arterial aging

Slowing down the vascular aging requires early intervention, lifelong treatment, and site-  

specific approaches. To reduce arterial stiffness, pharmacological agents, including  angiotensin- 
converting enzyme inhibitors, angiotensin II type 1 blockers, aldosterone antagonists, and 

statins, are currently available and in clinical use [35]. The evident vasoprotective effects of 
SIRT1 definitely pose great opportunities and challenges for drug discovery targeting endo-

thelial dysfunction. So far, a few natural and synthetic substances have been demonstrated as 

SIRT1 activators to promote vascular health. The first potent activator of SIRT1 is resveratrol, 
a small polyphenol discovered in red wine, which could protect ECs against  inflammation, 
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 apoptosis, and oxidative stress [72]. It was found to dramatically lower the incidence of 

cardiovascular diseases in spite of high saturated fat diet, which was termed as “French 
paradox” [73]. Several natural ingredients extracted from various traditional Chinese herbs 

were also found to activate SIRT1. Tetramethylpyrazine is proved to reverse high-glucose-

induced endothelial dysfunction via SIRT1 [74]. Polydatin can attenuate hemorrhagic shock 
by upregulating SIRT1 [75]. Quercetin is capable of inhibiting oxidized LDL-induced EC dam-

age by SIRT1 activation [76]. Some other natural polyphenols including fisetin and butein 
can also activate SIRT1 [77]. Vitamin D protects ECs from irradiation-induced senescence and 
apoptosis by modulating MAPK/SirT1 axis [78]. On the other hand, a series of SIRT1 activators 

like SRT2183, SRT1460, SRT1720, SRT2379, SRT501, SRT2104, SRT3025, and BMT0-512 have 

been synthesized and developed as potential drugs to protect against vascular aging [77, 79].

Despite the fact that SIRT1 is as an optimal therapeutical target for cardiovascular diseases, 

the dosage of upregulation of SIRT1 should be considered seriously and titrated cautiously 

in clinical practice. It was reported that 2.5- to 7-fold overexpression of SIRT1 prevented heart 

from oxidative stress via SIRT1/FOXO, while 12.5-fold overexpression of SIRT1 increased 
apoptosis and hypertrophy and decreased cardiac function, suggesting that only low to mod-

erate doses of SIRT1 can exert beneficial effects [80]. The aforementioned findings call for 
more careful evaluation of dosage and possible adverse effects in drug development targeting 
endothelial SIRT1.

In light of all the above studies, there have already been several potential drugs to target the 

anti-vascular aging effects of endothelial SIRT1. The entry of SIRT1 activators into human 
trials is exciting but also highlights the necessity to better understand the SIRT1 specificity, 
clinical effects, and side effects of these promising activators in vivo.
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