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Abstract

This chapter formulates a multi-objective optimization problem to simultaneously mini-
mize the objectives of fuel cost and emissions from the power plants to meet the power
demand subject to linear and nonlinear system constraints. These conflicting objectives are
formulated as a combined economic emission dispatch (CEED) problem. Various meta-
heuristic optimization algorithms have been developed and successfully implemented to
solve this complex, highly nonlinear, non-convex problem. To overcome the shortcomings
of the evolutionary multi-objective algorithms like slow convergence to Pareto-optimal
front, premature convergence, local trapping, it is very natural to think of integrating
various algorithms to overcome the shortcomings. This chapter proposes a hybrid evolu-
tionary multi-objective optimization framework using Non-Dominated Sorting Genetic
Algorithm II and Multi-Objective Particle Swarm Optimization to solve the CEED prob-
lem. The hybrid method along with the proposed constraint handling mechanism is able
to balance the exploration and exploitation tasks. This hybrid method is tested on IEEE 30
bus system with quadratic cost function considering transmission loss and valve point
effect. The Pareto front obtained using hybrid approach demonstrates that the approach
converges to the true Pareto front, finds the diverse set of solutions along the Pareto front
and confirms its potential to solve the CEED problem.

Keywords: multi-objective optimization, economic emission dispatch, Pareto
optimality, NSGAII, MOPSO, B-loss coefficients

1. Introduction

In order to operate the power system economically and also to protect the environment from

pollution the power system operator has to carry out optimal scheduling of active power to

simultaneously minimize the fuel cost and the emissions from the fossil fuel-fired power plants.
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Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



These objectives are desirable to obtain great economic benefit [1] and to reduce the nitrogen

oxide (NOx), sulfur oxide (SOx) and carbon dioxide (CO2) pollutants which cause harmful effect

on human beings [2]. These conflicting objectives can be formulated as a multi-objective com-

bined economic emission dispatch (CEED) problem. This CEED problem can be solved using

traditional mathematical programming techniques such as lambda iteration, gradient search [1]

and can also be solved using modern heuristics optimization techniques. The numerous advan-

tages of solving the CEED problem using heuristic optimization methods compared to the

traditional mathematical programming techniques are they are population-based, do not require

any derivative information, do not use gradient information in search process, use stochastic

operators in search process, they are simple to implement and flexible, have inbuilt parallel

architecture and they are scalable and are also computationally quick.

A single optimal solution cannot be obtained for a multi-objective CEED problem which

simultaneously minimizes the conflicting objectives of fuel cost and emission. Thus the simul-

taneous minimization of conflicting objectives in a multi-objective optimization problem

(MOP) gives rise to a set of tradeoff solution called as Pareto-optimal (PO) solutions [3] which

needs further processing to arrive at a single preferred solution. In literature domination based

framework using multi-objective evolutionary algorithms (MOEA) which simultaneously min-

imizes the fuel cost and emission have been employed to solve the CEED problem. These

population-based approaches can obtain the multiple non dominated solutions in a single

simulation run. These non-dominated solutions portray the tradeoff between fuel cost and

emission objectives of CEED problem. Modern meta-heuristic optimization algorithms like

Genetic Algorithm [4, 5], Biogeography Based Optimization [6], Particle Swarm Optimization

[7], Bacterial Foraging Algorithm [8], Scatter Search [9], Teaching Learning Based Optimization

[10], Differential Evolution [11] and Harmony Search Algorithm [12] have been developed and

successfully implemented to solve this complex, highly nonlinear, non-convex CEED problem.

The multiple objective CEED problem can also be transformed into a single objective problem

using a weighted sum approach and h parameter values. The h parameters are used to overcome

the dimensionality problem when combining multi-objectives and the converted single objective

problem is then solved using evolutionary algorithms [13–15]. Another technique to solve CEED

problem without the h parameter is to normalize the fuel cost and emission components [6] and

solve the single objective function using evolutionary algorithms (EA). In these approaches for

the chosen value of weights will give one particular PO solution at a time. However, the

disadvantage of these methods is that it requires multiple runs to find the set of PO solutions.

Each evolutionary algorithm has its own characteristics and merits; therefore it is natural to

think of integrating these different algorithms to handle a complex problem like CEED. In the

research field of Evolutionary Algorithms merging of two or more optimization algorithms

into a single framework is called hybridization. In [16–21] hybrid multi-objective optimization

algorithms have been successfully applied to solve CEED, various complex engineering prob-

lems, and standard test functions. The results indicate that the hybrid algorithms are effective,

can exchange elite knowledge within the hybrid framework, can do parallel processing, can

improve the exploration and exploitation capabilities and can yield more favorable perfor-

mance than any single algorithm.
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In order to obtain a globally optimal solution without being trapped in local optima requires a

tradeoff between exploration and exploitation task in the search process. Exploration phase in

any algorithm is important to search every part of the solution domain to provide an estimate

of the global optimal solution. On the other hand exploitation phase in any algorithm is

important to improve the best solutions found so far by searching in their neighborhood. In

this chapter, a hybrid framework using Non-Dominated Sorting Genetic Algorithm II (NSGA

II) [22] and Multi-objective Particle Swarm Optimization (MOPSO) [23] is used to solve the

CEED problem. This hybrid framework integrates the desirable features of the NSGA II and

MOPSO while curbing their individual flaws. These population-based approaches use differ-

ent techniques for exploring the search space and when they are combined will improve the

tradeoff between the exploration and exploitation tasks to converge around the best possible

solutions. The main purpose of this hybridization technique is to obtain a well-spread and

well-diverse PO solution. When the proposed hybrid algorithm is used to solve the highly

complex CEED problem the PO solution is obtained in less number of iteration and is also

computationally fast when compared to MOPSO.

The rest of the chapter is organized as follows. The next section formulates the CEED problem.

In Section 3, the transmission loss handling procedure and the constraint handling procedure

is explained. In Section 4 the short review of NSGA II and MOPSO is provided. Section 5 is

devoted to explaining the hybrid algorithm. In Section 6 the hybrid algorithm is applied on

standard IEEE 30 bus systems and it also discusses the simulation results. Finally, the conclu-

sion is drawn in Section 7.

2. Formulation of combined economic emission dispatch (CEED) problem

The combined economic emission dispatch problem has two conflicting objectives. The first

objective can be stated as determining the optimal power generation schedule from a set of

online generating units to satisfy the load demand subject to several physical and operational

constraints to minimize the fuel cost. The second objective can be stated as determining the

optimal power generation schedule from a set of online generating units to satisfy the load

demand to minimize the pollutant emissions produced by the generating units. Both the

conflicting objectives have to be minimized at the same time because operating the system with

minimum cost will result in higher emission and considering only the minimum environmental

impact is not practical which results in high production cost of the system. This section formu-

lates the objective functions of the CEED problem along with equality and inequality constraints

to maintain rigorous standards to meet the practical requirements of the power system. The goal

of this chapter is to find the Pareto-optimal solutions of the CEED problem which minimize both

these objectives subject to constraints. The mathematical formulation is as follows.

2.1. Objective functions of CEED problem

The general formulation for a multi-objective optimization problem (MOOP) is to minimize the

number of objective functions simultaneously. A general mathematical model is represented as

follows [21]:
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Minimize f xð Þ ¼ f 1 xð Þ; f 2 xð Þ;⋯fm xð Þ
� �

, x∈D (1)

where f xð Þ represents the vector of objectives and f i xð Þ, i ¼ 1, 2,⋯, m is a scalar decision

variable which maps decision variable x into objective space f i ¼ R
n ! R: The n-dimensional

variable x is restricted to lie in a feasible region D which is constrained by j in-equality

constraint and k equality constraint, i.e.

D ¼ x : gj xð Þ ≤ 0; hk xð Þ ¼ 0; j ¼ 1; 2;⋯J; k ¼ 1; 2;⋯;K
n o

(2)

The decision variable x can be written more suitably as

x ¼ x1; x2; x3;⋯; xn½ �T (3)

where T is the transposition of the column vector to the row vector. The decision variables are

restricted to take a value within a lower x
minð Þ
i and upper x

maxð Þ
i bounds. These bounds are

called the decision space [3].

In MO CEED problem the number of objectives m ¼ 2.The mathematical model of CEED is

represented as follows:

Minimize f xð Þ ¼ f 1 xð Þ; f 2 xð Þ
� �

, x∈D (4)

subject to power balance equality constraints h xð Þ and bounds. The function f 1 xð Þ represents

the minimization of total fuel cost function and the function f 2 xð Þ represents the minimization

of the emissions from the fossil fuel fired plants. The decision variable x consists of the real

power generation of the n generating units and can be written as

x ¼ Pg1;Pg2;Pg3;⋯;Pgn
� �T

(5)

where Pgi is the real power output of the ith generator.

Power plants commonly have multiple valves that are used to control the power output of the

units. In a practical generating unit, when steam admission valves in thermal units are first

opened, a sudden increase in losses is registered which results in ripples in the cost function. In

order to model these ripples accurately, sinusoidal functions are added to the quadratic cost

function [24]. The resulting cost function contains higher order nonlinearity and makes the

problem non-differentiable and non-convex. Hence there are two versions of the fuel cost

function, the quadratic function represented by f 1 xð Þ and the combination of quadratic and a

sinusoidal (valve-point) function represented by f 1,V xð Þ . The two versions of the fuel cost

functions are given below

f 1 Pgð Þ ¼
X

n

i¼1

aiPg
2
i þ biPgi þ ci (6)

f 1,V Pgð Þ ¼
X

n

i¼1

aiPg
2
i þ biPgi þ ci þ ei sin f i Pg

min
i � Pgi

� �� �
�

�

�

� (7)
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where ai, bi, ci represent the cost coefficients of the generator i. ei and f i are coefficients to model

the effect of valve point of the generator i.

The second objective function f 2 xð Þ is an emission function which takes into account the major

pollutants caused by the fossil fuel fired power plants. The main pollutants from the power

plants are the sulfur oxides and nitrogen oxides. The sulfur oxide emissions are proportional to

the fuel consumed by the power plants and have the same form as that of the fuel cost function

given by (6). The sulfur oxide emission function can be stated as follows [7].

f 2, so Pgð Þ ¼
X

n

i¼1

Si,1 þ Si,2Pgi þ Si,3Pg
2
i (8)

The nitrogen oxides emissions are difficult to evaluate as the nitrogen is available in air and

also in the fuel. The production of nitrogen gas is related to boiler temperature and air content.

The modeling of the nitrogen oxides consists of straight lines and exponential terms. The

nitrogen oxides emission function can be stated as follows

f 2,No Pgð Þ ¼
X

n

i¼1

Ni,1 þNi,2Pgi þNi,3e
Ni,4Pgi (9)

The total emission function is obtained by adding the coefficients of (8) and (9) which gives the

combination of the mixture of sulfur oxides and nitrogen oxides pollutants [7]. The total

emission function can be stated as follows

f 2 Pgð Þ ¼
X

n

i¼1

10�2 αi þ βiPgi þ γiPg
2
i

� �

þ ηie
δiPgi

� �

(10)

The total emission function given by (10) has a quadratic term and an exponential term which

makes the function highly nonlinear. In (10) αi, βi,γi, ηi, δi are the emission coefficients of the

generator i. The modeling of the emission function is very important because according to the

Amendments of the Clean Air Act regulatory agencies might decide to limit power plant

emission in the areas where there are high concentrations of harmful contaminants.

2.2. Active power balance equality constraint and bounds

In order ensure that the total real power generation exactly match with the total load demand Pd

and transmission loss Pl in the system a power balance equality constraint given in (11) should

be satisfied.

h xð Þ ¼
X

n

i¼1

Pgi � Pd� Pl ¼ 0 (11)

The transmission losses in the power network are function of Pg and can be represented using

B-matrix coefficients (Kron’s loss formula [1]) as follows

Pl Pgð Þ ¼
X

n

i¼1

X

n

j¼1

PgiBijPgj þ
X

n

i¼1

B0iPgi þ B00 (12)
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where Bij, B0i, B00 are transmission loss coefficients. There are instances in literature where the

power losses in the system is neglected and the power balance equation given by (11) is

curtailed as follows

h xð Þ ¼
X

n

i¼1

Pgi � Pd ¼ 0 (13)

The above equations given by (11) and (13) are most common form of power balance equation

found in the literature.

The power output of each generator i should lie within its minimum limit (Pgmin
i ) and maxi-

mum limit (Pgmax
i ) given by

Pgmin
i ≤Pgi ≤Pg

max
i ; i ¼ 1, 2, 3⋯, n (14)

2.3. Combined economic emission dispatch

The purpose of the CEED problem is to determine the Pareto-optimal real power generation

vector x∗ ¼ Pg∗1;Pg
∗

2;Pg
∗

3;⋯;Pg∗n
� �T

that minimize the two conflicting objective given by (7)

and (10) while satisfying the real power equality constraint given by (11) and the bounds given

by (14). The bi-objective CEED problem can be formulated as

Minimize f ¼ f 1,V Pgð Þ; f 2 Pgð Þ
h i

(15)

In MO CEED problem, the economic and emission objectives will conflict with each other and

is not possible to satisfy them simultaneously. There is no way of improving these objectives

without degrading at least one of these objectives and the resulting set of non-dominated

solutions thus obtained are called Pareto-optimal set. The objective function values of all

elements in the PO set in the objective space constitute the Pareto front. When the sufficient

number of PO solutions is available for the CEED problem then it is possible to find a convex

curve containing these solutions to produce the Pareto front. The two main goals of MO CEED

problem:

1. Find a set of non-dominated solutions which lie on the Pareto-optimal front

2. Find a wide spread of non-dominated solutions to represent the entire range of the Pareto-

optimal front.

3. Constraint handling mechanism

At any stage of the algorithm whenever a new population is being generated it is very

important to make sure that the population lies within the decision space. While solving

the CEED problem this implies that the population should satisfy the equality constraints

and bounds. If the transmission losses are neglected than the kth variable of the candidate

solution Pgk can be calculated by subtracting the sum of the power generations (excluding the
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kth variable)
P

n�1

i¼1

Pgifrom the power demand Pd. If the power transmission losses are consid-

ered, to determine Pgk and to maintain the equality constraint becomes hard. It is done using

the following steps.

Step 1. Update the variables belonging to the set αn by normal optimization process of an

evolutionary algorithm.

Pgi ¼ Pgmin
i � rand∗ Pgmin

i � Pgmax
i

� �

; i∈αn (16)

Here rand is a uniformly distributed random number in the range of 0; 1½ �. The set αn

contains all the integers in the range 1; n½ � except k, where k is a randomly generated

integer which lies in the range of 1; n½ �

Step 2. If updating of the variables is carried out using any other technique then regulate the

updated variables which violate the lower bounds as Pgi ¼ Pgmin
i ; i∈αn. Regulate the

updated variables which violate the upper bounds as Pgi ¼ Pgmax
i ; i∈αn.

Step 3. Obtain the value of the kth variable of the candidate solution Pgk by solving the

following quadratic equation (17) whose coefficients are associated with the variables

belonging to the set αn and the transmission loss coefficients [7]. To improve the

potential candidate solution and also to improve the flexibility and diversity of the

optimization algorithm the value of k is randomly generated integer between 1 and n.

BkkPg
2
k þ 2

X

i∈αn

BkiPgi þ B0k � 1

 !

Pgkþ

Pdþ
X

i∈αn

X

j∈αn

PgiBijPgj þ
X

i∈αn

B0iPgi �
X

i∈αn

Pgi þ B00

0

@

1

A ¼ 0

(17)

Out of the two roots of the quadratic equation (17), one root will be selected as the

value of the variable Pgk using the following procedure. If both the roots of the qua-

dratic equation lie within the bounds then the root which has the minimum value is

selected. If only one root lies within the bounds, this root is selected as the value of Pgk
and the other root which lies outside the bounds is neglected. If both the roots lay

outside the bounds the value of Pgk is set equal to Pgmin
k .

Step 4. Calculate the residue PRD by subtracting the total system demand Pd and the total

system transmission loss Pl from the sum of the total power generation
P

n

i¼1

Pgi.

If PRDj j < tol, then go to step 7; otherwise go to step 5. Here, tol is the demand tolerance

usually set as 0:001 p:u:

Step 5. Recalculate Pgi using Eq. (16).

Step 6. Repeat step 3, step 4 and step 5 until PRDj j < tol. This step will ensure that the

candidate solution will always lie within the decision space.

Step 7. Stop the constraint handling procedure.

Solution of Combined Economic Emission Dispatch Problem with Valve-Point Effect Using Hybrid NSGA II-MOPSO
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The main purpose of this constraint handling mechanism is to increase the flexibility and

diversity of the algorithm and to make sure that the candidate solution generated at any point

of the algorithm always lies within the decision space.

4. NSGA II and MOPSO algorithms for solving CEED problem

Several Evolutionary Multi-objective (EMO) algorithms like NSGAII, MOPSO, SPEA 2 (Strength

Pareto Evolutionary Algorithm), GDE 3 (Generalized Differential Equation) have been designed

and used in solving numerous complex real word problems involving two or more objectives.

All these algorithms can find the multiple Pareto-optimal solutions in a single run. Out of all

these available algorithms, two of the widely used reliable methods for solving bi-objective

optimization problems are the NSGA II and MOPSO. This section provides the review of these

two EMO algorithms.

NSGA II was proposed in [22] as an improvement of the NSGA proposed in [25]. This NSGA II

algorithm was the revised version of NSGA to overcome the following criticisms:

• Computational complexity associated with non-dominated sorting.

• Lack of elite-preserving strategy.

• Lack of maintaining diversity among obtained solutions.

The NSGA II algorithm is very efficient for solving multi-objective optimization problems

since it incorporates an efficient elitism preserving technique using non-domination sorting.

The population is ranked based on non-domination sorting before the selection is performed.

All non-dominated individuals are classified into one category. Another layer of non-dominated

individuals are considered after the group of classified individuals are ignored. This process is

continued until all individuals in the population are classified. NSGA II also uses a mechanism

for preserving the diversity and spread of the solutions without specifying any additional

parameters (NSGA uses fitness sharing). This crowding distance operator guides the selection

process towards a uniformly spread out Pareto-optimal front. The NSGA II algorithm for

solving the CEED problem is stated below:

• Specify the parameters for the CEED problem

• The total demand of the power system Pd

• Fuel cost and emission coefficients for each generating unit

• B matrix coefficients for transmission loss calculations

• Number of decision variables nVar

• Lower bounds of the decision variables VarMin

• Upper bounds of the decision variables VarMax

• Specify the parameters for NSGA II Algorithm

• Population Size nPop
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• Maximum number of iteration MaxIt

• Crossover Percentage pCrossover

• Mutation Percentage pMutation

• Mutation rate mu

• Mutation step size sigma

• Initialize Population

• Generate a random nPop size population

• Once the random population is initialized the Constraint Handling Mechanism pro-

posed in Section 3 is carried out.

• Evaluate the objective functions

• Evaluate the fuel cost objective function E and emission objective function F

• Perform Non Domination Sorting

• Calculate Crowding Distance and rank the population based on Non Dominated fronts

• For each generation do

• Create offspring population

• Selection, Crossover and Mutation

• Apply Constraint Handling Mechanism

• Evaluate the fuel cost objective function E and emission objective function F

• Merge the parent and offspring population

• Perform non domination sorting

• Calculate crowding distance and rank based on non-domination fronts

• Select solutions

• Each front is filled in ascending order

• Last front-descending order of crowding distance

• Store the non-dominated solutions in list Ϝ1

• Plot the non-dominated solutions in list Ϝ1

• Increment generation count

• End for

In order to handle multiple objectives Pareto dominance is incorporated into PSO algorithm

and the MOPSO algorithm is proposed in [23]. The algorithm proposed in [23] uses an external

repository of particles to keep a record of the non-dominated vectors found along the search
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process. At each generation, for each particle in the swarm, by using Roulette wheel selection,

a leader is selected from the external repository. This leader then guides other particles towards

better regions of the search space by modifying the flight of the particles. A special mutation

operator is applied to the particles of the swarm and also to the range of each design variable of

the problem to be solved to improve the explorative behavior of the algorithm. The value of the

mutation operator is decreased during the iteration. To produce well spread Pareto fronts the

MOPSO algorithm in [23] uses an adaptive grid. The MOPSO algorithm for solving the CEED

problem is stated below:

• Specify the parameters for the CEED problem

• The total demand of the power system Pd

• Fuel cost and emission coefficients for each generating unit

• B matrix coefficients for transmission loss calculations

• Number of decision variables nVar

• Lower bounds of the decision variables VarMin

• Upper bounds of the decision variables VarMax

• Specify the parameters for MOPSO Algorithm

• Maximum number of iteration MaxIt

• Population Size nPop

• Repository size nRep

• Inertia Weight w and Inertia Weight damping rate wdamp

• Personal learning coefficient c1 and Global learning coefficient c2

• Number of grids per dimension nGrid

• Inflation Rate alpha, leader selection pressure beta, Deletion selection pressure

gamma

• Mutation rate mu

• Initialize Swarm Population

• Generate a random swarm particles

• Once the random particles are initialized the Constraint Handling Mechanism (Sec-

tion 3) is carried out.

• Store the values of the particles as their personal best pBest

• Determine Domination

• Initialize external repository rep

• Create grid and find grid index
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• For each generation do

• For each particle do

• Select leader from external repository

• Update particle position and velocity

• Apply Constraint Handling Mechanism

• Evaluate the fuel cost objective function E and emission objective function F

• Apply Mutation and calculate new solutions

• Apply Constraint Handling Mechanism

• Determine Domination

• Update pBest

• End for

• Add non dominated particles to the repository

• Determine domination of new repository members

• Keep only the non-dominated members in the repository

• Update grid and grid index

• If repository is full delete members

• Plot the members in the external repository

• Modify inertia weight

• End for

5. Hybrid NSGA II and MOPSO algorithm for solving CEED problem

The mechanism of the proposed hybrid approach for solving the CEED problem is to

integrate the desirable features of NSGA II (retaining the elitism feature) and MOPSO

(exploitation capability) while curbing the individual flaws (NSGAII––does not have an

efficient feedback mechanism, PSO overutilization of resources). The mechanism to explore

the search space differs in both the algorithms. GA uses mutation and crossover operators

which will enhance the exploration task of the hybrid algorithm. The particles in PSO are

influenced by their own knowledge and information shared among swarm members. PSO

enhances the exploitation task of the hybrid algorithm by finding better solutions from the

good ones by searching the neighborhood of good solutions. In this hybrid algorithm at

every generation, the Pareto dominance of the population is computed and based on these

values non dominated sorting is performed [19]. In order to avoid premature convergence,

the elite upper half of the population are enhanced by NSGA II algorithm while the lower
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half of the population are considered as swarm particles and are optimized by MOPSO to

make them converge around the best possible solutions. The hybrid NSGA II-MOPSO

algorithm for solving the CEED problem is stated below:

• Specify the parameters for the CEED problem

• Specify the parameters for NSGA II Algorithm

• Population Size nPop

• Maximum number of iteration MaxIt

• Crossover Percentage pCrossover

• Mutation Percentage pMutation

• Mutation rate mu

• Mutation step size sigma

• Specify the parameters for MOPSO Algorithm

• Repository size nRep

• Inertia Weight w and Inertia Weight damping rate wdamp

• Personal learning coefficient c1 and Global learning coefficient c2

• Number of grids per dimension nGrid

• Inflation Rate alpha, leader selection pressure beta, Deletion selection pressure gamma

• Mutation rate mu

• Initialize Population

• Generate a random nPop size population

• Once the random population is initialized the Constraint Handling Mechanism pro-

posed in Section 3 is carried out.

• Evaluate the objective functions

• Evaluate the fuel cost objective function E and emission objective function F

• For each generation do

• Perform Non Domination Sorting

• Calculate Crowding Distance and rank the population based on Non Dominated

fronts

• Truncate and divide the population into two halves.

• Using the upper half of the population create offspring population

• Selection, Crossover and Mutation
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• Perform Constraint Handling Mechanism

• Evaluate the fuel cost objective function E and emission objective function F

• Merge the parent and offspring population

• Perform non domination sorting

• Calculate crowding distance and rank based on non-domination fronts

• Select solutions

• Each front is filled in ascending order

• Last front- descending order of crowding distance

• Store the non-dominated solutions in list Ϝ1

• Plot the non-dominated solutions in list Ϝ1

• Position and cost of the particle are initialized from the lower half of the population

• Store the values of the particles as their personal best pBest

• Determine Domination

• Initialize external repository rep

• Create grid and find grid index

• For each particle do

• Select leader from external repository

• Update particle position and velocity

• Constraint Handling Mechanism

• Evaluate the fuel cost objective function E and emission objective function F

• Apply Mutation and calculate new solutions

• Apply Constraint Handling Mechanism

• Determine Domination pBest

• End for

• Add non dominated particles to the repository

• Determine domination of new repository members

• Keep only the non-dominated members in the repository

• Update grid and grid index

• Modify inertia weight
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• Create a new set of particles half the size nPop and fill it with the non-dominated

solutions in the repository followed by the pBest

• Combine the populations of NSGA II and the new set of particles of the MOPSO

• Increment generation count

• End for

6. Numerical tests

In order to validate the proposed hybrid algorithm, the CEED problem was solved for IEEE 30-

bus system and the results are presented in this section. The fuel cost coefficients with valve-

point loading, emission coefficients, and generator limits are adapted from [26] and is given in

Table 1. The transmission loss B-matrix coefficients are obtained by running a load flow

program and is in [26] is adapted here and given in Table 2. The total power demand in the

system is 2:834 p:u: to the base of 100 MVA. Program in MATLAB was developed for the

Hybrid Algorithm to perform CEED and executed on 1:60 GHz, Intel T2050 processor, 1:5 GB

RAM HP Pavilion Laptop with WINDOWS 7 operating system. Various test cases are consid-

ered to compute the Pareto front of the multi-objective CEED problem. The Pareto-optimal

front is obtained using the NSGA II algorithm and also using the MOPSO algorithm given in

Section 4. The Pareto front obtained from the hybrid approach given in Section 5 is then

compared with the Pareto front obtained using NSGAII and MOPSO algorithm.

In case 1 the fuel cost function is modeled as a quadratic function with sine term to incorporate

the valve-point effect. The transmission losses are also considered in this case. The Pareto front

obtained using NSGA II, MOPSO, and Hybrid NSGAII-MOPSO is shown in Figures 1, 2 and 3

respectively. In all these figures there is a discontinuity in the Pareto front due to modeling of

the valve point loading effect of generators.

The parameter settings for NSGA II are obtained using trial and error is as follows: M ¼ 2;

Population Size nPop ¼ 100; Maximum number of iteration MaxIt ¼ 100; Crossover Percentage

Unit i Generation Limits Fuel Cost Coefficients with valve point loading Emission Coefficients

Pɡmin
i

Pɡmax
i ai bi ci ei f i αi βi γi ηi δi

1 0.05 0.5 10 200 100 15 6.283 4.091 �5.554 6.490 2e�4 2.857

2 0.05 0.60 10 150 120 10 8.976 2.543 �6.047 5.638 5e�4 3.333

3 0.05 1.00 20 180 40 10 14.784 4.258 �5.094 4.586 1e�6 8.000

4 0.05 1.20 10 100 60 5 20.944 5.326 �3.550 3.380 2e�3 2.000

5 0.05 1.00 20 180 40 5 25.133 4.258 �5.094 4.586 1e�6 8.000

6 0.05 0.60 10 150 100 5 18.480 6.131 �5.555 5.151 1e�5 6.667

Table 1. Fuel costs Coefficients with valve point loading, Emission Coefficients, Generator limits of IEEE 30 bus system.
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pCrossover ¼ 0:7; Mutation Percentage pMutation ¼ 0:4; Mutation rate mu ¼ 0:02. The

extreme points of the Pareto front and time for execution of NSGAII algorithm are provided

in Table 3.

B 0.02180 0.01070 �0.00036 �0.00110 0.00055 0.00330

0.01070 0.01704 �0.00010 �0.00179 0.00026 0.00280

�0.00040 �0.00020 0.02459 �0.01328 �0.01180 �0.00790

�0.00110 �0.00179 �0.01328 0.02650 0.00980 0.00450

0.00055 0.00026 �0.01180 0.00980 0.02160 �0.00010

0.00330 0.00280 �0.00792 0.00450 �0.00012 0.02978

B0 1.0731e�05 0.0017704 �0.0040645 0.0038453 0.0013832 0.0055503

B00 0.0014

Table 2. B�Loss Coefficients for IEEE 30 bus test system.

Figure 1. Pareto-optimal curve for IEEE 30 bus system obtained using NSGA II.

Figure 2. Pareto-optimal curve for IEEE 30 bus system obtained using MOPSO.
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The parameter settings for MOPSO is obtained using trial and error is as follows: M ¼ 2;

Maximum number of iteration MaxIt ¼ 500; Population Size nPop ¼ 250; Repository size

nRep ¼ 100; Inertia Weight w ¼ 0:5; Inertia Weight damping rate wdamp ¼ 0:99; Personal

learning coefficient c1 ¼ 1; Global learning coefficient c2 ¼ 2; Number of grids per dimension

nGrid ¼ 10; Inflation Rate alpha ¼ 0:1, leader selection pressure beta ¼ 2, Deletion selection

pressure gamma ¼ 2; Mutation rate mu ¼ 0:1. The extreme points of the Pareto front and time

for execution of MOPSO algorithm are provided in Table 3. We can observe from Figure 2 and

Table 3 that there are difficulties in MOPSO algorithm in obtaining well spread Pareto front

and also very slow convergence to the Pareto front when compared to NSGA II. This can be

improved if the proposed hybrid approach is used to solve the CEED problem.

The Parameter setting for the hybrid algorithm is same as those given above expect for the

settings provided here Population Size nPop ¼ 200; Maximum number of iteration MaxIt ¼ 50;

Repository size nRep ¼ 20. The extreme points of the Pareto front and time for execution of the

proposed NSGAII-MOPSO hybrid algorithm are provided in Table 3. From Table 3 it is clear

that the extreme points found by the hybrid algorithm are better than NSGA II and MOPSO

Figure 3. Pareto-optimal curve for IEEE 30 bus system obtained using Hybrid NSGAII and MOPSO Algorithm.

Method Pɡ1 Pɡ2 Pɡ3 Pɡ4 Pɡ5 Pɡ6 Pl Fuel Cost

($/h)

Emission

(Tons/h)

Time

Taken (s)

NSGA II 0.0649 0.3866 0.6851 0.7999 0.5399 0.3886 0.03126 616.426 0.2121 367

0.4070 0.4528 0.5416 0.4198 0.5365 0.5087 0.03279 677.941 0.1942

MOPSO 0.0626 0.4106 0.6885 0.7994 0.5472 0.3564 0.03090 618.211 0.2125 1507

0.4412 0.4574 0.5501 0.3821 0.5523 0.4832 0.03242 678.702 0.1943

Hybrid NSGAII-

MOPSO

0.0500 0.3893 0.6861 0.8001 0.5490 0.3911 0.03178 613.85 0.2127 662

0.4109 0.4563 0.5429 0.4002 0.5435 0.5128 0.03279 678.30 0.1942

Table 3. Comparison of extreme points (shown in bold) and time taken for convergence using NSGAII, MOPSO and

Hybrid NSGA II-MOPSO for IEEE30 bus system with valve point loading.
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algorithm. Even though the time of execution of the Hybrid algorithm is slower than NSGA II it

is able to find well spread Pareto front compared to NSGA II. The hybrid algorithm is far

superior to MOPSO in terms of converge speed and also in finding well spread Pareto-optimal

front.

In case II the valve point effect is neglected from the fuel cost curve and is solved using the

proposed hybrid approach using the same parameters. The Pareto front obtained is shown in

Figure 4 and is a continuous curve when compared to the Pareto front shown in Figure 3. In

Figure 3 the Pareto front is discontinuous due to the effect of the Valve point loading in the cost

curve. Both these case studies indicate that the hybrid approach is effective to solve the CEED

problem.

7. Conclusion

In this chapter, a hybrid multi-objective optimization algorithm based on NSGA II and

MOPSO have been proposed to solve the highly nonlinear, highly constrained combined

economic emission dispatch problem. At any stage of the algorithm, only feasible solution is

created because of the incorporation of the proposed constraint handling mechanism. During

every iteration of the hybrid algorithm new population is created and NSGA II is applied on

best performing individuals whereas MOPSO is applied on the lower ranked individuals to

strengthen the exploration and exploitation capability of the algorithm. This hybrid approach

is tested on an IEEE 30 bus system. The results obtained shows that the hybrid approach is

efficient for solving CEED problem and is also able to quickly converge to a better Pareto-

optimal front when compared to MOPSO algorithm. The result obtained by the hybrid

approach also demonstrates it is able to yield a wide spread of solutions and convergence to

true Pareto-optimal fronts.

Figure 4. Pareto-optimal curve for IEEE 30 bus system without valve point effect obtained using hybrid NSGAII and

MOPSO algorithm.
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