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Abstract

Human immunodeficiency virus type 1 (HIV-1) promotes a generalized immune  activation 
that alters the physiology of cells that are not sensitive to viral infection. Endothelial cells 
(ECs) display heavy dysfunctions in HIV-1-seropositive (HIV+) patients that persist even 
in patients under successful combined antiretroviral therapy (cART). In vivo studies 
failed to demonstrate the presence of replicating virus in ECs suggesting that a direct role 
of the virus in vascular dysfunction is unlikely. This finding paves the way to the hypoth-
esis of a key role of molecules released in the microenvironment by HIV-1-infected cells 
in sustaining aberrant EC function. Here we review the current understanding regarding 
the contribution of HIV-1 infection to vascular dysfunction. In particular, we argue that 
different HIV-1 proteins may play a key role in driving and sustaining inflammation and 
EC dysregulation, thus underlining the need to target them for therapeutic benefit.
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1. Introduction

Human immunodeficiency virus type 1 (HIV-1) infection is highly pathogenic since it stimulates 
a generalized immune activation involving not only the main targets of HIV-1 infection, such as 
CD4+ T cells and monocytes/macrophages, but also cells that are not sensitive to viral infection.

Endothelial cells (ECs) are not fully permissive to HIV-1 infection, and there are no in vivo 
evidences that demonstrate the presence of replicating virus in ECs. Nowadays, the number 
of HIV-1-seropositive (HIV+) patients that exhibit EC dysfunction is increasing vertiginously. 
In this chapter, the actual knowledges of how HIV-1 can directly and/or indirectly contribute 
to vascular dysfunction are reviewed. In particular, we underline the emerging role played by 
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some structural and regulatory HIV-1 proteins released in the microenvironment by infected 
cells in driving inflammation and EC dysregulation. This finding highlights the need to target 
these viral proteins for therapeutic benefit.

2. Endothelial dysfunction during HIV-1 infection

Chronic inflammation contributes to many leading causes of death, and in particular cardio-
vascular events have emerged as a clinically significant issue and have become the matter 
of several studies. HIV-1 infection is characterized by altered immune responses leading to 
a generalized chronic inflammation and, in particular, to a pro-inflammatory status in the 
vascular endothelium fostering the development of cardiovascular diseases [1]. A strong 
correlation between high plasma HIV-1 RNA levels and signs of endothelial dysfunction is 
known [2], and subclinical signs of atherosclerosis have been found in asymptomatic HIV+ 

young men with long-standing HIV-1 disease [3]. As the efficacy of combined antiretroviral 
therapy (cART) improves and patients live longer, the prevalence of cardiovascular diseases is 
increasing in HIV+ individuals [4, 5]. Moreover, many antiretroviral drugs, particularly HIV-1 
protease inhibitors, can cause dyslipidemia, thus contributing to the increased risk for endo-
thelial dysfunction. The high risk of endothelial dysfunction persists even in new-generation 
antiretroviral drugs era, despite the fact that several adverse metabolic effects (e.g., insulin 
resistance, dyslipidemia, and hypertension) are abolished [6]. In light of these considerations, 
the following paragraphs consider three essential factors in the development and pathogen-
esis of endothelial dysfunction during the natural course of HIV-1 infection: (a) the ability of 
HIV-1 to promote inflammation, (b) the HIV-mediated damage of endothelium, and (c) the 
capability of HIV-1 structural and regulatory proteins of affecting EC function.

2.1. HIV-1 and inflammatory microenvironment

Chronic activation of the immune system is a peculiar feature of HIV-1 infection. Persistent 
activation of immune cells is known to gain an elevated pro-inflammatory cytokine/chemokine 
release contributing to the development of a chronically inflamed microenvironment. HIV-1 
virus cycle is dominated by a local replication at the transmission site and in local lymphoid 
tissues and then dissemination. Virus expansion is associated with a dramatic depletion of 
memory CD4+ T cells, particularly from gut-associated lymphoid tissues and with increased 
plasma levels of pro-inflammatory cytokines and chemokines. During the early phase of infec-
tion, a pro-inflammatory cytokine storm contributes to the control of viral replication but also 
to the early immunopathology of the infection and to the associated long-term consequences. 
Many cell types contribute to the release of different pro-inflammatory cytokines and chemo-
kines during HIV-1 infection [7] such as interferon (IFN)-α, tumor necrosis factor (TNF)-α, INF-
γ, interleukin (IL)-1β, IL-10, interferon gamma-induced protein (IP)-10, IL-15, IL-8, IL-6, IL-18, 
and monocyte chemoattractant protein (MCP)-1 [8, 9]. Antiretroviral therapy usually controls 
and even abolishes HIV-1 replication, but does not completely recover immune dysfunction. 
Therefore, immune alteration and inflammation are common features of HIV+ patients even 
under successful cART.
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2.2. Role of inflammatory cytokines and chemokines in the HIV-1-triggered 
endothelial dysfunction

Endothelial dysfunction and vascular diseases such as atherosclerosis and arterial damage are 
predominantly enhanced during a systemic chronic inflammatory status. Elevated levels of 
IL-6 have been associated with carotid atherosclerosis and progressive stenosis of the carotid 
artery, thereby upregulating the lipid uptake in macrophages and inhibiting the activity of 
lipoprotein lipase [10]. Increased carotid intima-media thickness (IMT) and hypertension are 
common features of patients with increased plasma levels of IL-18 [11], whereas TNF-α has a 
key role in promoting atherosclerosis, myocardial ischemia/reperfusion, and heart failure via 
several mechanisms: increased cholesterol uptake and foam cell formation in macrophages, 
augmented leukocyte transmigration in subendothelial structures, and increased prolifera-
tion and migration of vascular smooth muscle cells [12].

HIV-1 infection generates a systemic chronic inflammatory disorder as a result of continuous 
alteration of the immune response, contributing to dyslipidemia, EC dysfunction, vascular 
smooth muscle cell proliferation and migration, and, ultimately, the atherosclerotic plaque for-
mation. The virus itself promotes the release of IL-6, IL-18, and TNF-α, together with IFN-γ, 
IL-1β, IL-10, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), and macrophage 
colony-stimulating factor (M-CSF) by T cells and monocytes [13].

Liver-synthesized C-reactive protein (CRP) is a member of the pentraxin family factors and 
is considered a marker for coronary vascular disease and endothelial damage. CRP plasma 
levels are significantly upregulated in HIV+ patients and inversely correlated with CD4+ T 
lymphocyte count [14], and elevated CRP levels have been associated with an increased risk 
of myocardial infarction in HIV+ patients [15]. It is noteworthy that increased levels of IL-6, 
IL-1, and TNF- α induce CRP, which in turn is able to activate pro-inflammatory cytokines 
such as IL-6 and M-CSF via a positive feedback loop.

The levels of cell adhesion molecules such as vascular cell adhesion protein 1 (VCAM-1) and 
intercellular adhesion molecule 1 (ICAM-1) are raised during HIV-1 infection, thus contribut-
ing to trans-endothelial migration of immune cells [16].

HIV-1 causes a continuous recruitment of monocytes that migrate across the endothelial bar-
rier in blood vessels, differentiate into macrophages, and produce pro-inflammatory cyto-
kines, thus determining the progressive damage of vessel structures. Furthermore, HIV-1 
replicates in macrophages and induces activation and synthesis of several pro-inflammatory 
cytokines that in turn induce endothelial activation and leukocyte adhesion generating a 
positive feedback [17].

An important alteration in lipid metabolism is evident in more than 50% of HIV+ patients. It 
likely relies on the upregulation of hepatic fatty acid synthesis and very low-density lipopro-
tein (VLDL) production, usually triggered by inflammatory cytokines as IFN-γ, TNF-α, and 
IL-1β [18]. At the same time, the continuous trans-endothelial migration of immune cells and 
their inhibited reverse transport determines the localization of monocytes inside the vessel 
wall and promotes the formation of foam cells, the fat-laden macrophages that are implicated 
in the buildup of an atheromatous plaque [17].
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Figure 1. HIV-1 capability to promote inflammation, dyslipidemia, and endothelial dysfunction through the activation 
of different immune cells such as T and B cells, macrophages, and natural killer cells (NK cells).

Monocytes, depending on the cytokine/chemokine stimulation, may differentiate into M1 
macrophages, which promote inflammation or into M2 macrophages, which are inflamma-
tory resolving cells [19]. In particular, IFN-γ and IL-1β drive monocytes to acquire an M1 
profile, whereas IL-4 and IL-13 generate M2 macrophages. HIV-1, by infecting macrophages, 
polarizes these cells toward the M1 phenotype [20]. This leads to the imbalance of the M1/M2 
ratio, a condition necessary for sustaining endothelial dysfunction [21].

Endothelin-1 (ET-1) is a potent vasoconstrictor that promotes migration and proliferation of 
smooth muscle cells. HIV-1-triggered secretion of ET-1 promotes a reduction of vascular nitric 
oxide (NO) production by ECs with the consequent proliferation and migration of smooth 
muscle cells leading to arterial vasoconstriction.

Altogether, these findings suggest that HIV-1 produces a general inflammatory microenvi-
ronment that contributes to dyslipidemia, EC dysfunction, chemotaxis, and vascular smooth 
muscle cell proliferation and migration. All these conditions are likely to foster endothelial 
degeneration and atherosclerotic plaque formation (Figure 1).
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2.3. HIV-1-triggered damage of ECs

HIV-1 is not an endothelium-tropic virus. It displays a narrow tropism predominantly deter-
mined by the cell surface receptors required for HIV-1 infection. CD4 and co-receptors are 
usually essential for HIV-1 to infect cells efficiently. The chemokine (C-C motif) receptor 
type 5 (CCR5) is the main co-receptor used in vivo, but variants that use another co-receptor, 
namely, chemokine (C-X-C motif) receptor type 4 (CXCR4), evolve during disease. In vitro, 
more than a dozen different co-receptors have been identified that support infection of cell 
lines by different HIV-1 strains. Moreover, HIV-1 particles interact with a range of cell surface 
receptors via interactions of its envelope glycoprotein gp120 with glycolipid galactocerebro-
side (gal)-C and its sulfated derivative.

HIV-1 capability to infect ECs in vitro depends on the tissue source of ECs and on their func-
tional status. Microvascular ECs from the brain, kidney glomeruli, hepatic sinusoid, and bone 
marrow may be infected by HIV-1 in the absence of cytolysis [22, 23]. HIV-1 infection of 
brain ECs has been largely studied for its relevance in neurological diseases. T cell tropic but 
not brain-derived macrophage tropic HIV-1 strains selectively infect the brain endothelium 
in vitro, suggesting that T cell tropism may be important for HIV-1 entry through the blood-
brain barrier [22] and spreading in the central nervous system [24]. However, it is important 
to underline that in vivo studies do not support the presence of replicating virus in ECs. 
Even if HIV-1 infection of ECs cannot be completely ruled out, this may suggest an indirect 
action of molecules released in the microenvironment by HIV-1-infected cells at the base of 
the mechanism for vascular dysfunction.

In the pathophysiology of cardiovascular disease, the damage of ECs assessed by responses to 
altered blood flow (e.g., flow-mediated dilatation) and differences in the levels of EC specific 
molecules released in the blood (e.g., von Willebrand factor) represent a hallmark. The equi-
librium between the mechanisms of vascular damage and repair plays a crucial role during 
homeostasis of vascular integrity. Following a blood vessel injury, high levels of circulating 
ECs (cECs) and microvesicles are released from endothelium, and the reinstatement of the 
vascular integrity mainly implies activity of endothelial progenitor cells (EPCs), plaque neo-
vascularization, and reverse cholesterol transport [25]. EPCs are key determinants of endo-
thelial dysfunction and show a high predictive value of early vascular disease. Interestingly, 
all vascular repair mechanisms are impaired in HIV+ individuals who have lower EPC levels 
than HIV-1-seronegative subjects [26]. Decrease in the number of EPCs is attributed to HIV-
1, which seems to be able to infect these cells because of their chemokine receptor CCR5 and 
CXCR4 expressions.

Along with reduced EPC levels, HIV+ individuals show high plasma levels of EC-derived 
microvesicles also known as microparticles that are small membranous structures released 
from ECs during apoptosis, which impair the restoration of physiological conditions and 
sustain endothelial dysfunction [27]. HIV+ patients also exhibit high plasma concentrations 
of high sensitivity C-reactive protein (hsCRP), IL-6, TNF-α, D-dimer, fibrinogen, soluble 
ICAM, and VCAM, suggesting endothelial activation and damage. These molecules are also 
responsible for an increased interaction of infected monocytes with ECs, thereby disrupting 
the integrity of the EC monolayer and promoting extravasation of HIV-1-infected cells into 
peripheral tissues and viral dissemination [28].
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2.4. Role of HIV-1 proteins in the pathogenesis of endothelial dysfunction

The HIV-1 genome encodes a total of three structural proteins, two envelope proteins, three 
enzymes, and six accessory proteins. HIV-1 has designed its structural and regulatory/accessory 
proteins to better adapt to the human host and to promote virus replication and transmission. 
Among the many functions in the virus life cycle, a major role played by different HIV-1 pro-
teins in directly driving inflammation and EC dysregulation is strengthening (Figure 2), thus 
highlighting the need to target them for therapeutic benefit.

2.5. HIV-1 structural proteins

The HIV-1 gp120 is the key protein for viral entry by binding to the CD4 receptor and to the 
co-receptor CCR5 or CXCR4. The HIV-1 matrix protein p17 (p17) is a myristoylated protein 
that exerts many important and crucial functions during the virus cell cycle. It contributes 
to nuclear localization of the pre-integration complex after HIV-1 entry and promotes virus 
maturation and assembly [29]. In addition to its key role in the virus life cycle, p17 exerts a 
chemokine-like activity by binding to the chemokine receptor CXCR1 and CXCR2 and mimics 
some of the biological activities of IL-8, the CXCR1 and CXCR2 natural ligand.

Binding of gp120 and p17 to their receptors and/or co-receptors alters the biological activity 
of different cells. Extracellularly, p17 alters immune responses by activating different immune 
cells such as CD4+ T cells, CD8+ T cells, NK cells, plasmacytoid dendritic cells, monocytes, and 
B cells and contributing to the production and release of pro-inflammatory molecules and to 
the development of an inflammatory microenvironment [30–32]. Furthermore, p17 stimulates 
the rapid adhesion and chemotaxis of monocytes and B cells through activation of the Rho/

Figure 2. Role of HIV-1 structural and regulatory proteins in the pathogenesis of inflammation and endothelial cell 
(EC) dysfunction: endothelin-1 (ET-1), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), HIV-1 
glycoprotein-120 (gp120), HIV-1 matrix protein (p17), HIV-1 transactivator of transcription (Tat), and HIV-1 negative 
regulatory factor (Nef).
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ROCK signaling pathway [33], suggesting that p17 may recruit activated monocytes and B 
cells in different tissues and organs to participate and/or sustain inflammatory processes.

On the other hand, gp120 is known to induce dysfunction of T cells, macrophages, cardio-
myocytes, ECs, and central nervous system cells, when expressed on the viral particle, on the 
surface of infected cells, or as a viral-free soluble protein [34].

Endothelial dysfunction mediated by these two HIV-1 structural proteins results to occur 
through different mechanisms: gp120 is considered a direct and indirect proapoptotic factor 
favoring EC death, whereas p17 is a potent angiogenic and lymphangiogenic factor.

EC death by gp120 is mediated by its interaction with CXCR4 expressed on the endothelial 
cell surface that triggers different downstream effects, as activation of the CXCR4-dependent 
caspase and the mitogen-activated protein kinase (MAPK), or through protein kinase C (PKC) 
activation [35]. The indirect mechanism of gp120 apoptosis is based on the increased secretion 
of ET-1 [36, 37], inhibition of NO synthase [38], and a higher surface expression of endothelial 
monocyte-activating polypeptide II (EMAPII) [39]. In particular, EMAPII acts as proapoptotic 
factor following different types of stress including hypoxia and mechanical stress. It is worth 
noting that after its interaction with CXCR4, gp120 promotes p38 MAPK signaling pathway 
activation and a rapid surface expression and release of EMAPII, thus favoring apoptosis 
through a paracrine mechanism. In the context of an inflammatory microenvironment, gp120 
may also contribute to reduce the EC-derived NO synthesized by the NO synthase that is a 
major mediator of endothelium-dependent vasorelaxation and endothelial dysfunction.

P17 is a potent angiogenic and lymphangiogenic molecule both in vitro and in vivo. Activity 
of p17 is dependent on its interaction with the chemokine receptors CXCR1 and CXCR2, 
expressed on ECs [40–42]. Angiogenesis and lymphangiogenesis promoted by p17 after its 
interaction with CXCR1 and/or CXCR2 involve activation of both MAPK/ERK and PI3K/
Akt signaling pathways [40–42]. Lymphangiogenesis induced by p17 was found to be partly 
mediated by the selective release of the pro-angiogenic/lymphangiogenic factor ET-1 [42], 
which binds to its B receptor (ETBR) expressed on lymph node-derived ECs (LECs) and acti-
vates the downstream PI3K/Akt and MAPK/ERK signaling pathways.

Interestingly, many studies demonstrated a long-term persistence of these two structural 
HIV-1 proteins in lymph node germinal centers and lymphoid tissue of HIV+ patients, even 
during successful cART and in the absence of any detectable viral replication [43, 44].

Interestingly, p17 is continuously released in the extracellular space even in the absence of 
viral replication and viral protease activity [45] and is detected at nanomolar concentrations 
in the blood of HIV+ patients even in the presence of anti-p17 antibodies [46].

Altogether, these findings suggest that gp120 and p17 are released by infected cells even 
during cART, bind to ECs, and drive cell activation, angiogenesis, and/or apoptosis, leading 
to vascular disease. In addition, the capability of p17 to stimulate the immune system and 
promote a pro-inflammatory status highlights the key role played by this protein in driving 
endothelial dysfunction.
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2.6. HIV-1 regulatory proteins

HIV-1 Tat protein is a trans-activating regulatory protein, which is essential for efficient tran-
scription of the viral genome. Tat is a proto-cytokine promoting several disease conditions by 
modulating the function of immune cells, mesenchymal cells, and ECs [47, 48].

The HIV-1 viral protein Nef is a 27-kD myristoylated protein. It is not secreted by infected 
cells, but its interaction with membrane and host cell proteins is crucial to sustain its biological 
activity. Nef protein is involved in different intracellular functions including alteration of pro-
tein trafficking, cell signaling cascades, and inhibition of antibody maturation in B cells [49]. 
Nef is able to enhance HIV-1 infectivity by promoting the formation of nanotubes connecting 
HIV-1-infected cells to bystander cells [50]. In particular, transfer of Nef from a HIV-1-infected 
target cell to ECs through nanotubes supports EC activation, dysfunction, and death [51].

Similarly to many potent angiogenic growth factors such as vascular endothelial growth fac-
tor (VEGF) A, Tat has a basic domain rich in arginine and lysine residues that endows the 
viral protein of a potent and direct angiogenic activity [52, 53]. On the contrary, Nef contains 
multiple domains capable of interacting with the endocytic cellular machinery [54]. Tat and 
Nef are both capable of inducing apoptosis in ECs. Many studies demonstrate that Nef is able 
to induce and activate NADPH oxidase that drives ECs to go for apoptosis. Indeed, by signifi-
cantly decreasing NO production and increasing superoxide anion production, Nef contrib-
utes to reactive oxygen species (ROS) production, cell oxidative stress, and cell death [55, 56]. 
Moreover, Nef was also found to potently induce EC apoptosis by activation of caspases [57]. 
Tat causes apoptotic death of ECs via either TNF-α secretion or through activation of the Fas-
dependent pathway. Additionally, Tat is able to promote apoptosis in ECs by activating the 
MAPK/ERK signaling pathway and caspase-3 [58].

In contrast to its proapoptotic effect, Tat may also exert an angiogenic activity through a 
multi-signaling-dependent pathway. Angiogenic activity promoted by Tat depends on bind-
ing and activation of the Flk-1/kinase insert domain receptor (Flk-1/KDR), a VEGF-A tyrosine 
kinase receptor, and on binding to integrin αvβ5 receptor and heparan sulfate proteoglycans. 
Tat interaction with cellular receptors leads to the activation of signaling pathways associated 
with EC growth, migration, and angiogenesis [59, 60].

Similarly to the HIV-1 structural protein p17, both Tat and Nef proteins trigger immune cells 
activation and inflammation. In fact, Tat promotes transmigration of monocytes through 
the endothelial barrier and inflammation by inducing ECs to express adhesion molecules 
as E-selectin, ICAM-1, VCAM-1, and ELAM-1 and to release IL-6 [61, 62]. Tat-induced EC 
activation is likely aimed to facilitate interaction of inflammatory cells with ECs and promote 
MCP-1 secretion by activation of PKC signaling pathway [63]. At the same time, Nef protein 
contributes to inflammation increasing the endothelial MCP-1 production through activation 
of the NF-kB signaling pathway [50]. It is worth noting that this activity is also promoted 
by the HIV-1 structural protein p17, following activation of the AP-1 signaling pathway [32] 

highlighting a remarkable redundancy in the biological activity of structural and regulatory 
proteins. Interestingly, it has been recently shown that Nef is also involved in the alteration of 
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EC cholesterol homeostasis by phosphorylation of Caveolin-1 (Cav-1) at Tyr14 that promotes 
Cav-1 redistribution and impairment of HDL-mediated cholesterol efflux in ECs [64].

Secretion of Tat in the microenvironment, even during antiretroviral therapy [65]; its direct 
involvement in endothelial homeostasis, acting as proapoptotic factors or as a pro-angiogenic 
factor; and its ability to generate an inflammatory status suggest that in the absence of HIV-1 
detectable viremia, persistence of endothelial dysfunction in HIV+ patients may be, at least in 
part, ascribed to this (and bona fide to Nef) HIV-1 regulatory protein.

2.7. Animal models in HIV-1 endothelial dysfunction

Although many improvements have been made in the development of animal models to 
study HIV-1-associated endothelial dysfunction, these models do not completely reproduce 
the pathophysiological features of endothelial dysfunction in humans.

A model of transgenic mice partially reproduces, but below expectations, the features of endo-
thelial dysfunction observed during HIV-1 infection in humans [66]. Indeed, HIV-1-infected 
mice develop an adventitial mixed inflammatory cell migration, medial hypocellularity, and 
intimal hyperplasia following smooth muscle infiltration with sparing of the ECs. Furthermore, 
viral components are observed in smooth muscle cells, which in some instances proliferate in 
the absence of inflammation, remarking the conceptual principles of viral invasion [66]. The 
model of macaque species infected with the simian immunodeficiency virus (SIV) shares many 
more similarities than the transgenic mouse model, in term of disease, with HIV-1 infection and 
vascular diseases in humans. In an animal model based on macaques infected with a chimeric 
viral construct containing the HIV-1 Nef gene in a SIV backbone (SHIV-1-nef), the presence of 
complex vascular lesions has been demonstrated that are not evident in SIV-infected animals 
[67]. These findings seem to highlight a possible role of HIV-1 Nef in endothelial dysfunction 
leading to severe arterial disease. Interestingly, vascular alterations, subendothelial infiltration 
of immune cells, and significantly reduced levels of NO have been found in a model of Rhesus 
macaques infected by SIV and SHIV-1 [68].

Vasculogenic activity of p17 has been recently demonstrated using ex vivo and in vivo model 
[40–42]. The ex vivo rat aortic ring assay showed that p17 was able to promote vasculogenesis 
as potent as that observed using VEGF-A [40]. Similar results were obtained in the in vivo 
chick chorioallantoic membrane (CAM) assay, which highlighted the capability of p17 to gen-
erate allantoic neovessels as compared to control CAMs [40]. Matrigel plug assay has been 
used to test the lymphangiogenic activity of p17 in mice. Matrigel plugs containing the viral 
matrix protein were implanted into the dorsal subcutaneous tissue of C57BL/6 mice and after 
10 days from the injection; matrigel plugs were immunostained with polyclonal antibody to 
lymphatic vessel endothelial receptor-1 (LYVE-1) identifying pronounced lymphatic vessel 
formation in p17-treated mice, compared to controls [42]. Interestingly, matrigel plugs con-
taining a p17 variant derived from an Ugandan clade A1, named S75X and endowed with B 
cell growth-promoting activity, showed the presence of adipocyte infiltration observed at the 
histological level, thus suggesting that at least some p17 variants may trigger a possible inter-
play between angiogenesis, lymphangiogenesis, and adipogenesis [41].
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3. Conclusions

As described in the present chapter, endothelial dysfunction occurring in HIV+ patients may 
be considered as a multifactorial pathology in which the HIV-1 virus itself and, most of all, 
its structural and regulatory proteins are able to induce strong changes in the physiology and 
morphology of ECs by altering their homeostasis and function.

Interestingly, HIV+ patients have a high risk of endothelial dysfunction in the absence and in 
the presence of suppressive cART [69, 70], although low-level transcription of HIV-1 genes 
continues even after years of cART [71, 72]. Many studies demonstrated the persistence of 
HIV-1-encoded proteins in different tissues and organs also during pharmacological con-
trol of infection. Since these proteins are able to induce a direct endothelial damage and to 
develop an inflammatory microenvironment, it is possible to hypothesize that viral proteins 
are among the most important factors involved in endothelial dysfunction development. 
Although animal models have limitations and can never completely mimic HIV-1 infection 
of humans or the physiological relevance of a single protein product in the human micro-
environment, they start to provide proof of concept for a general vascular dysregulation 
operated by HIV-1 and its products. Altogether, these data show that a microenvironment 
disposed to endothelial dysfunction is a common feature in HIV+ individuals (Figure 3). 
Recognizing the interaction of some HIV-1 protein products with their receptors as the key 
events in sustaining endothelial aberrant functioning could help us to identify new thera-
peutic strategies in combating and/or preventing HIV-1-related vascular disease.

Figure 3. Endothelial dysfunction in HIV+ patients under combination antiretroviral therapy (cART) occurs following 
multiple trigger factors.
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